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Supporting Material 
 
“Contractile equilibration of single cells to step changes in extracellular stiffness” 
by A. Crow, K.D. Webster, et al. 
 
Conversion from stiffness to elasticity 
We use a simple conversion that assumes cell height is on the order of 10 m and contact 
area on the order of 100 µm2.  Young’s modulus can then be calculated according to 

  
E 

kH
cell

A
contact

 0.1k  (where k is in nN/µm and E is in kPa). 

 
Calculation of model parameters for a contracting cell 
The model predictions may be retroactively applied to the data to get median and 
percentile values for the independent actuator rate, , and viscoelastic parameters as 
follows:  
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where  is the response timescale. Calculations based on the median, 25th and 75th 
percentile values reported yield the following presented as median (25th percentile, 75th 
percentile): 
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Table S1. Model Parameters calculated based on data. 
 

  (nm/s) k1 (nN/µm) k2 (nN/µm)  (nN*s/µm) 
Control 

 
-13 

(-8.3, -20) 
36 

(35, 37) 
53 

(27, 75) 
140 

(78, 240) 
30 M 

Blebbistatin 
-4.8 

(-3.5, -6.7) 
16 

(12, 23) 
25 

(14, 34) 
89 

(82, 90) 
500 nM 
Cyto D 

-6.7 
(-3.8, -10) 

15 
(7.0, 23) 

12 
(3.1, 46) 

64 
(51, 83) 

10 nM 
Jasplakinolide 

-15 
(-9.3,  -24) 

26 
(16, 27 

40 
(11, 62) 

89 
(48, 98) 

30 M 
Nocodazole 

-4.7 
(-2.5, -6.3) 

93 
(73, 97) 

140 
(48, 190) 

340 
(210, 600) 

25 M 
pp2 

-14 
(-8.2, -17) 

40 
(34, 58) 

85 
(61, 110) 

140 
(92, 150) 

30 M 
FAK inhibitor 

-6.7 
(-3.7, -9.5) 

42 
(11, 53) 

52 
(12, 67) 

170 
(60, 180) 

200 M 
Gadolinium 

-9.2 
(-5.9, -16) 

51 
(43, 55) 

110 
(38, 120) 

170 
(92, 240) 

 
 
The calculated viscoelastic parameters reveal interesting inhibition-based trends that are 
not visible by simply studying the response timescale. Specifically, both elastic and 
viscous parameters decrease for blebbistatin and cytochalasin D treated cells while elastic 
and viscous parameters increase for nocodazole-treated cells. These changes in 
mechanical properties are not observed in the response timescale because elastic and 

viscous properties have opposing effects: 0
1 2

1 1
exk k k

 

 
  

 
. Therefore corresponding 

increases or decreases in both parameters may cancel resulting in a response timescale 
consistent with the control. The decrease in elastic components in the cases of 
blebbistatin and cytochalasin D and the increase in elastic components in the case of 
nocodazole are consistent with previously published results (1). To further examine the 
role of actin structures, we stabilized the actin cytoskeleton with Jasplakinolide. This had 
a similar effect to cytochalasin D in that 10 nM Jasplakinolide had no effect on the 
response timescale compared to the control, but 50 nM was adequate to stop contraction 
altogether. Calculation of viscoelastic parameters in the presence of 10nM Jasplakinolide 
reveals a slight decrease in all values to yield a response timescale indistinguishable from 
the control, as shown in Table S1. In the case of blebbistatin, the decrease in the viscous 
component is not as great and therefore does not fully cancel the decrease in elastic 
component, resulting in a response timescale distinct from control. 
 
Inhibition of FAK, Src family kinases, or stretch-activated ion channels did not yield any 
major difference in k1 or  components compared to the control in our system. We note 
that the internal spring parameter k2 shows the greatest inhibition-induced changes 
compared to the control in all cases, including focal adhesion signaling. We therefore 



 

3 
 

expect we may see a difference in response timescale for extreme step increases in 

stiffness: 
2

exk k

   . While we do anecdotally observe the expected trends, we are 

unable to show statistical significance with the limited number of force trace intervals 
that pass our F-test criterion. We therefore leave investigation of this intriguing 
phenomenon to a subsequent study. 
 
 
Derivation of the response of the model to step changes in stiffness 
The equations for the model are: 

   1 1 2

2 2 2 3

1 2 3

f t k x t f

f k x x

x x x





  

 
 

  

where f (t)  is the tensile force applied at the cell-cantilever interface,  is the velocity at 

which the reference length of the spring 1x  is changing (i.e., this is the actuator), and 2x  

and 3x  describe the state of the internal spring and dashpot, respectively. 

In the experiment, the effective stiffness jumps at the set of times  
1

j N

j
j

t



.  This can be 

described within the model by setting  

        1 1j ex j jf t f t k t x x t      

for 1,j jt t t     where  exk t  is the applied stiffness at time t .  When the intervals 

between jumps in stiffness are very long, t  , we can analyze the model by 
considering its behavior for a single jump. First we define: jt t t    and 

  

x1 t  x1 t  t j  x1 t j 
x2 t  x2 t  t j 
x
3 t  x

3 t  t
j  x

1
t

j 
 

so that the equations take the form  

 

        1 1 1 1 1 2

2 2 2 3
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j ex j j jf t k t x k x t k x t t f
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
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This can be rearranged to   
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The solution of this model is  

   

   

3 3
1

2
1 3

1 1 2 1 2

0 exp 1 exp 1 exp

0 exp 1 exp 1 exp
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 
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and for long stiffness intervals we find  

 

 

3
1

1
2 1

f
x t t

k

f
x t t

k k

  

  


      


 

       


 

Using these asymptotic relations we can deduce the values of  3 0x  and f   immediately 

following a change in stiffness at 1jt t  , let us call these   3 0x  and f  . Assuming 

t   so that we can use the asymptotic formulas, with the recurrence formula for  f t  

and the formula for   we find f   .  We can also easily find that  3
2

0x
k

    . 

These formulas can be used to give the final complete solution for changes in stiffness 
with long time intervals as 

       1
1 1 1 1

1 1

j j

ex j

k
x t x t t t

k k t
 



  

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where 

 
 1

21 1

1 1
j

ex j kk k t
 



 
  
  

  

The increment to the measured force during the interval 1 2,j jt t   can be derived from 

this relation by multiplying by  1ex jk t  , and in the case of a displacement clamp, taking 

the limit  1ex jk t   . 
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Supporting Figures 
 

 
 
Fig. S1. Contractile behavior of single cell under constant stiffness. Under a constant extracellular 
stiffness, kex, here presented as the stiffness of the cantilever, the cell originally accelerates 
(decreasing cell height and increasing contractile force) to a constant contraction velocity and 
traction rate. This linear regime is maintained over several minutes before slowing. We 
consistently observe this linear contractile regime whereas behavior upon slowing is variable 
ranging from a temporary tensional equilibrium at constant force to the cell releasing one surface 
resulting in a decrease in contractile force and lengthening of the cell. Note a stable steady-state 
force/height is never permanently reached in our setup due to the motile nature of fibroblasts. All 
stiffness response data were collected from the middle linear regime of contraction. 
 
 

 
 
Fig. S2. Same trend observed for force trace as for height trace upon a step change in stiffness. 
The ratio of the slope over the last quarter of the interval to the slope over the first quarter of the 
interval is calculated for each 20-second stiffness interval for the force trace. At a given stiffness, 
the force and height traces are directly related by the extracellular stiffness. Therefore by 
definition of the system we observe the same trend as seen for the height trace in Figure 2g.  n 
represents number of stiffness transitions, N represents number of cells, and box plot presents 
median, 25th and 75th percentile and 10 and 90th percentile outliers. 
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Fig. S3. Response timescale is independent of contractile force, cell height, force rate, and 
contraction velocity. Response time was not statistically significantly correlated with (a) cell 
height, (b) contractile force, (c) contraction velocity, (d) or force rate, as determined by 
Spearman’s rank correlation analysis (p>0.2).  
 

 
 
Fig. S4.  Contractile response of a cell to changes in stiffness in the presence of 30 μM 
blebbistatin. At an intermediate dose of blebbistatin, acto-myosin contraction is slowed, but the 
seconds timescale acceleration upon a reduction in stiffness and deceleration upon an increase in 
stiffness are present. However, the median response timescale is 52% longer with 30 μM 
blebbistatin than for the control. 
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Fig. S5.  Detailed explanation of mechanical model. (a) Cartoon illustrating the independent 
actuator moving at rate α in series with the standard linear solid (SLS) element consisting of a 
spring k2 and dashpot γ in parallel with a spring k1. As extracellular stiffness conditions change, 
different elements of the SLS absorb the sudden change in stiffness as illustrated. (b) Predictions 
of the model perfectly simulate the observed response for a step increase and step decrease in 
stiffness, for both the height and force behavior, as shown by the solid lines labeled “Total” 
(indicating whole-cell behavior). The activity of individual elements is indicated by dashed lines. 
For the height trace, the change in height of the actuator is constant as indicated by the linearity 
of the trace marked α. The standard linear solid element (SLS), however, equilibrates to the step 
change in extracellular stiffness. For the force channel, the individual activity of the two sides of 
the SLS model are shown: the lone spring k1 and the spring and dashpot in series: k2+γ. The sum 
of these two curves yields the total force exerted by the whole-cell. The roman numerals indicate 
corresponding time points in (a) and (b). 
 
 


