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Immobilization procedure

If a force acts on a single node of an elastic network, it induces not only
internal deformations in the network, but also rigid translations and rota-
tions of the entire object. If the network is pinned, e.g. by immobilizing
one of its nodes, this can introduce additional internal deformations and the
results of the study would depend on the location of the pinned node. To
avoid such effects in our simulation, we have employed a special immobi-
lization procedure. Compensating forces were applied to all network nodes
in such a way that they could only lead themselves to a rigid translation or
rotation. The magnitudes of the additional forces were determined by the
condition that prevented translational and rotational motions induced by
the external force. The computation of compensating forces was performed
at each next integration step, so that they were automatically adjusted to
the conformational changes.

To construct compensating forces, we first note that, if the same force f

is applied to each particle, it would lead to a rigid translation of the entire
network. Moreover, if forces fi = ω × Ri with an arbitrary vector ω are
applied to the particles with coordinates Ri, they can induce only rigid
rotation.

Without loss of generality, the coordinates Ri can always be chosen
in the coordinate frame whose origin coincides with the center of mass of
the network. Suppose that an external force Fext acts on a particle with
coordinates R0. Then, it generates an external torque R0×Fext that should
be balanced by some compensating forces fi. These additional forces should
therefore satisfy the balance equation

R0 × Fext +

N
∑

i=1

Ri × fi = 0 , (S1)

which can be rewritten as

−Mω = R0 × Fext (S2)

with the matrix

M=
N

∑

i=1





|Ri|2 − X2
i −XiYi −XiZi

−XiYi |Ri|2 − Y 2
i −YiZi

−XiZi −YiZi |Ri|2 − Z2
i



. (S3)

Thus, to prevent rigid rotation, additional forces

fi = −
[

M
−1 (R0 × Fext)

]

× Ri (S4)
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should be supplied. Note that, as can be easily checked,
∑

i fi = 0 and,
hence, such compensating forces do not induce translational motion of the
network. To prevent rigid translation induced by the external force, the
compensating force f = −Fext/N should be additionally applied to each
network node.

Thus, if compensating forces f + fi are applied to all nodes at every
integration step, both translation and rotation induced by the external force
can be balanced out in a noninvasive manner.

Myosin Directions

Myosin-V walks along the filament in the direction of the barbed end. In
the experiments, the protein was dragged along the filament. The forward
strain direction corresponded to the direction of processive motion, whereas
the backward direction was opposite to it. If one wants to computationally
reproduce the experimental situation, forward and backward directions for
the elastic network of the protein must be identified. We have done this by
including F-actin into the elastic network simulations and determining the
equilibrium conformation of the myosin-actin complex.

Employing guided MD simulations, Lorenz and Holmes (1, 2) have re-
cently identified several possible binding sites of myosin-II to actin. Com-
paring structures of myosin-II and myosin-V, analogous binding sites for
myosin-V can be suggested. The myosin head binds to two distinct F-actin
monomers in the filament (constructed from PDB ID: 2ZWH (3)) at the
positions given in Table S1.

To determine the equilibrium position of myosin with respect to the
actin filament, the following procedure has been employed: Elastic links,
connecting myosin to the actin filament, have been introduced with equilib-
rium lengths of 3.5 Å and stiffness κ = 1. After that, relaxation equations
(3) of the myosin-actin complex were numerically integrated until a station-
ary state has been reached. In this way, we approximated the actomyosin

Table S1: Links between myosin and actin monomers in the filament
myosin 1st actin monomer 2nd actin monomer

343 328 -

386 337 -

517 167 -

526 - 50

542 - 95
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Figure S1: Myosin-V modeled on actin filament: the elastic network (green)
is anchored to the actin at specific binding sites (red balls mark correspond-
ing residues on myosin and actin, respectively). The direction of the pro-
cessive motion is shown by the gray arrow and the force applied by the red
arrow.

structure as shown in Fig. S1.
Relaxation to the equilibrium state of the complex involved rotation

of the myosin-V molecule, To quantify this rotation, we have chosen four
residues (165, 195, 559, 691). These residues belong to the stiff core of the
protein. With these residues, one can construct three linear independent
vectors that define a coordinate system only in terms of the network struc-
ture. Thus, the forward direction n‖ can be approximated by transforming
the filament axis to the coordinate frame of the reference state (PDB ID:
1W7J) (4) that is defined by the same residues. In this way, we found the
forward direction to be approximately n‖ = (−0.254,−0.888, 0.383).
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Sensitivity Tables

Our aim is to examine the mechanical responses of the protein to forces with
varying directions applied to individual residues in the nucleotide-binding
pocket and actin-binding cleft. To probe mechanical responses, we select
two sets of residues in the respective regions (see Fig. 2a). For every cho-
sen residue, a series of 200 simulations was performed. In all simulations,
the magnitude of the applied force was the same (f0 = 1 Å), but its ori-
entations were randomly varied. The simulations were continued until a
stationary state was found. After that, changes in the monitored pair dis-
tances between the labels in different regions were determined. The induced
distance changes were analyzed and, for each pair of labels, the maximum
absolute distance change of 200 force orientations was evaluated. In this
way, we obtained the sensitivity to forces applied to a residue with respect
to a particular pair distance.

The results are shown in Tables S2 and S3 and will be commented below.
Note that absolute sensitivities for different pairs of labels cannot be com-
pared. As a matter of fact, distance changes for the tail are always larger
than for the actin-binding cleft. To show the variations of sensitivity, a color
code was employed. In each column, the maximum and the minimum entries
are taken and color gradations from dark blue for the minimum to dark red
for the maximum are applied.

Forces in the nucleotide-binding region

In the NBP, a set of 27 residues adjacent to the ATP in the considered
equilibrium conformation was selected (left column Table S2 and Fig. 2a).
The sensitivities of these residues with respect to different pair distances
are shown in Table S2. The left column lists the residues and, in each of
the other columns, the sensitivities with respect to the distance between a
particular pair of labels (e.g., between residues 343 and 517) are given.

The last two columns of Table S2 show the sensitivity of the tail with
respect to forces in the NBP. Applying forces to the residues 115 and 116
or their neighbors, a strong effect on the tail is induced. These two residues
are located in the front-door region (Fig. 4). Remarkably, applying forces
to residues in the back door (219, 220 and 438–442) or the P-loop (163–169)
only weakly affects the tail region. Thus, the tail responds mainly to the
perturbations applied at the entrance of the front door.

Moreover, sensitivity with respect to residues in the actin-binding cleft
was investigated. The strongest response with respect to the distance 343-
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517 characterizing cleft opening is seen if forces are applied to the residue
442, which belongs to the back-door region. Additionally, perturbations near
the front-door residues 115 and 116 show some effect. The distance between
residues 386 and 517 describes cleft opening, but mostly reflects movement
of the HCM loop to which residue 386 belongs. Here, large responses were
observed when the forces were applied in the back-door region with the
strongest sensitivity to the perturbations of residues 219 and 220. Only
small changes were seen if the forces were applied in the front-door area.

In terms of the sensitivity of its residues, the NBP region is clearly
divided into a front-door and a back-door domain (Fig. 4). A pronounced
effect on the actin cleft was observed when forces were applied to residues
219, 220 and 442 in the back-door region. Remarkably, it is exactly the salt
bridge between residues 219 and 442 that hinders phosphate release after
the hydrolysis. The P-loop region is seen to be relatively stiff and external
forces here do not induce large conformational changes in the tail or the
actin cleft. Perturbations in the front door affect the tail.

Forces in the actin-cleft region

Using the results of Lorenz and Holmes (1, 2), we identified 54 residues which
may come in contact with the filament (left column Table S3 and Fig. 2a).
To study communication between the actin-binding region and the NBP or
the tail, we repeat the simulation procedure described above and obtain the
sensitivities shown in Table S3.

As can be seen from the results, application of forces to the HCM loop
(residues 377 to 390) can induce strong responses of the tail. Moreover,
there is some effect on the distance between residues 789 and 92 in the tail
region to the forces applied at the residues from 340 to 350, which belong to
the upper 50kDa subdomain, as well. Remarkably, the tail is only weakly
affected by the forces applied to the residues in the lower 50kDa subdomain.

The front door (distance between residues 115 and 297) is strongly sen-
sitive to the forces applied at the upper 50kDa subdomain, including the
HCM loop. The back door (distance between residues 442 and 291) is mostly
sensitive to the forces applied to residues 540 to 544 in the lower 50kDa sub-
domain; it should however be noted that these residues are located near the
back door and, therefore, stronger sensitivity might have been expected.
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Comparison to the linearized model

The relaxation equations (3) of the elastic network are linear in terms of the
distance changes between the particles. They are, however, still nonlinear
in terms of the changes of the absolute coordinates of the particles ri =

Ri − R
(0)
i , since the distance dij is a nonlinear function of the coordinates

Ri and Rj . Note that not the distance, but the particle coordinates are
the dynamical variables in these equations. Hence, to proceed further to
the linear (or harmonic) approximation, equations (3) need to be linearized
with respect to the coordinate changes ri. After linearization, they take the
form

ṙi = Fi −
N

∑

j=1

Aij

R
(0)
i − R

(0)
j

(

d
(0)
ij

)2

[(

R
(0)
i − R

(0)
j

)

· (ri − rj)
]

. (S5)

This system of linear equations can further be used to obtain the eigenvalues
and the eigenvectors corresponding to various normal modes. It should
be noted that, although the overdamped limit of relaxational dynamics is
considered here, the resulting eigenvalues and eigenvectors are still the same
as when the purely inertial (vibrational) dynamics is assumed.

The linearized equations (S5) can be used as long as all coordinate
changes ri are much smaller than the (natural) lengths of the elastic links
connecting neighbor particles. Therefore, to test the possible validity of the
linear approximation, the observed coordinate changes should be compared
with the typical natural lengths of the elastic links. By the construction of
the EN model, natural lengths of all elastic links cannot exceed the cutoff
length, which has been 10Å in the present study. The average natural length
lav of a link is smaller and, for a rough estimate, the value lav = 5Å can be
chosen. Linearization holds if the coordinate changes ri are much smaller
than lav, which requires that they should not exceed, e.g., 10% of lav, that
is they cannot be larger than 0.5Å.

When the effects of forward strain were considered, an external force with
the magnitude f = 6Å was applied to the tail and, after a new equilibrium
state was reached, conformational changes have been inspected and changes
of the distances between the labels were analyzed. We have also checked
what were the deviations in the absolute positions of some typical residues.
As it turns out, when such a force is applied to the tail, the position of
the characteristic residue 384 in the HCM loop gets changed by r384 =
7.4Å. Moreover, the residue 792, which is located in the tail, moves by
12.2Å from its equilibrium position. Such displacements are comparable
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to the cutoff length and, thus, when responses in the actin cleft or in the
tail are considered, the linear description cannot hold. On the other hand,
the respective induced changes within the nucleotide binding pocket are
much smaller. For example, residue 115 in the front door region shifts its
position by only r115 = 0.6Å when the same force is applied to the tail.
Such weaker changes in the nucleotide-binding region could probably have
also been correctly reproduced within the local linear approximation for this
protein region.

The limitations of the linearized normal-mode descriptions have been
previously discussed for myosin-V and kinesin (6). In the present study, we
have decided to stay completely within the full nonlinear elastic description,
so that such difficulties cannot arise. Because the linearized equations are
only an approximation to the full set of nonlinear equations, considered here,
their analysis, once performed within the validity region of the approxima-
tion, cannot obviously yield anything which is not already contained in the
nonlinear model.

As an illustration of the difficulties encountered in the linearized de-
scription, Fig. S2 shows the behavior described by the linearized equations
(S5) as compared with the responses described by the full nonlinear equa-
tions (3). Here, a constant force f = (−1, 1, 1)/

√
3 Å is applied to residue

384 in the HCM loop. The dynamical responses of the elastic network are
determined by integration of equations (3) or (S5), respectively. The ab-
solute displacements r115 and r792 of the residues 115 and 792, located in
the front-door region and the tail, respectively, are plotted here as functions
of time for both descriptions. As we see, the full nonlinear equations yield
the responses (solid curves) which saturate as the new equilibrium state of
the network, under the constant applied force, is approached. In contrast
to this expected behavior, integration of the linearized equations yields the
displacements which indefinitely grow with time (dashed curves in Fig. S2).

Such unphysical behavior has been observed because the linearized equa-
tions have been used in the above example beyond their validity limit. In-
deed, the final stationary displacements of the considered residues in the full
nonlinear model are of the order of tens of Å in this case, strongly exceeding
what is required for the validity of the linearized description. The origin of
the observed unphysical divergence lies in the fact that, after linearization,
the energy of an elastic network does not depend on the displacement com-
ponents of particles which are orthogonal to the directions of equilibrium
links between them (cf. equations (S5)). Therefore, such displacements
may indeed grow indefinitely without increasing the energy of the linearized
system. In the full nonlinear model, the energy is invariant, on the other
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Figure S2: Comparison of the network responses to the application of a
static force to the tail, as yielded by the full nonlinear and the linearized
models. Constant force of amplitude f = 0.5Å and direction (−1, 1, 1)/

√
3

is applied to residue 384 in the HCM loop. Time-dependent displacements
r792 (green) and r115 (red) of residues 792 and 115 from their equilibrium
positions are displayed, as yielded by the integration of the full nonlinear (3)
(solid curves) and the linearized equations of motion (S5) (dashed curves)
can be compared.

hand, only under the displacements of particles which preserve distances
between all of them, i.e the lengths of all elastic links. They correspond to
rigid translations and rotations of the entire network, always eliminated in
our simulations via the immobilization procedure.
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Table S2: Maximal distance changes (Å) observed when forces are applied
to different residues in the nucleotide-binding pocket

residue 343 to 517 386 to 517 789 to 141 789 to 92

111 0.126 0.069 7.199 6.346

112 0.134 0.078 8.275 7.231

113 0.148 0.067 8.029 7.222

114 0.146 0.104 9.112 8.065

115 0.171 0.140 9.517 8.533

116 0.167 0.138 9.825 8.476

163 0.124 0.167 4.304 3.719

164 0.137 0.186 4.131 3.746

165 0.140 0.203 4.001 3.869

166 0.131 0.157 4.897 4.817

167 0.123 0.126 5.439 4.827

168 0.121 0.117 5.768 5.114

169 0.114 0.156 4.859 4.279

170 0.107 0.188 5.171 4.494

171 0.109 0.148 6.395 5.468

214 0.075 0.244 4.953 5.040

215 0.048 0.305 5.523 5.615

216 0.066 0.282 5.362 5.299

217 0.068 0.292 4.168 4.303

218 0.090 0.307 3.580 3.669

219 0.087 0.336 2.644 2.983

220 0.125 0.333 2.310 2.359

438 0.106 0.255 2.364 2.159

439 0.135 0.250 2.274 2.203

440 0.134 0.229 2.852 2.722

441 0.144 0.272 3.004 2.682

442 0.228 0.286 2.956 2.470
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Table S3: Maximal distance changes (Å) observed when forces are applied
to different residues in the actin-binding pocket

residue 789 to 141 789 to 92 115 to 297 442 to 219

340 4.911 6.086 0.359 0.095

341 5.103 6.191 0.409 0.107

342 5.431 5.790 0.430 0.111

343 6.643 6.378 0.466 0.107

344 6.884 6.007 0.480 0.118

345 6.531 5.374 0.468 0.127

346 6.919 5.619 0.442 0.111

347 6.898 6.160 0.423 0.094

348 6.226 6.104 0.401 0.090

349 6.545 6.892 0.388 0.079

350 6.376 7.288 0.357 0.077

377 7.457 6.754 0.341 0.061

378 7.395 6.492 0.332 0.069

379 8.492 7.168 0.346 0.075

380 9.036 7.613 0.370 0.098

381 9.204 7.994 0.385 0.109

382 9.377 7.998 0.395 0.106

383 9.533 8.123 0.403 0.116

384 9.374 8.130 0.411 0.107

385 9.494 8.152 0.420 0.102

386 9.359 8.028 0.412 0.103

387 9.425 8.161 0.418 0.101

388 9.163 7.815 0.399 0.071

389 8.631 7.215 0.410 0.081

390 7.634 6.752 0.397 0.078

500 3.929 3.617 0.136 0.019

501 4.952 4.752 0.155 0.053

502 5.688 5.403 0.184 0.069

503 5.905 5.307 0.199 0.055

504 5.216 4.540 0.177 0.035

505 4.631 3.732 0.163 0.021

506 4.074 3.315 0.140 0.020

516 6.723 5.423 0.207 0.103

517 6.591 5.050 0.179 0.080

518 6.065 4.319 0.171 0.058

519 5.378 3.560 0.162 0.067

520 4.713 2.870 0.163 0.075

521 5.584 3.334 0.202 0.072

522 6.114 4.012 0.207 0.038

523 5.386 3.621 0.191 0.033

524 5.261 3.627 0.208 0.064

525 6.319 4.426 0.236 0.060

526 6.227 4.830 0.228 0.037

527 5.616 4.385 0.218 0.056

528 6.419 5.106 0.252 0.089

529 6.908 5.667 0.272 0.088

530 6.689 5.728 0.249 0.086

540 6.058 4.730 0.260 0.145

541 5.986 4.442 0.267 0.172

542 6.953 4.672 0.292 0.199

543 7.004 4.175 0.287 0.197

544 5.939 3.638 0.262 0.160

545 5.990 3.735 0.253 0.125

634 4.464 3.959 0.100 0.117
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Movie S1: A constant force with amplitude f = 6Å in the forward direction
(−0.254,−0.888, 0.383) is applied to residue 792 in the tail region and the
equations of motion (3) are integrated. The movie shows relaxation to the
new stationary conformation, starting from the equilibrium conformation of
the network. The force is indicated by a red arrow.

Movie S2: A constant force (−1, 0, 0) Å is applied to residue 115 in the front-
door region and the equations of motion (3) are integrated. This movie
shows the relaxation to the new stationary conformation, starting from the
equilibrium conformation. The force is indicated by the a arrow.

Movie S3: A constant force (−1, 1, 1)/
√

3 Å is applied to residue 384 in
the HCM loop and the equations of motion (3) are integrated. This movie
shows the relaxation to the new stationary conformation, starting from the
equilibrium conformation. The force is indicated by a red arrow.


