

# Supporting Information © Wiley-VCH 2011

69451 Weinheim, Germany

# Lewis Acid Activated Synthesis of Highly Substituted Cyclopentanes by the N-Heterocyclic-Carbene-Catalyzed Addition of Homoenolate Equivalents to Unsaturated Ketoesters\*\*

Daniel T. Cohen, Benoit Cardinal-David, and Karl A. Scheidt\*

anie\_201005908\_sm\_miscellaneous\_information.pdf

# **Supporting Information**

# **Table of Contents**

| Table of Contents                                                        | S1  |
|--------------------------------------------------------------------------|-----|
| General Information                                                      | S2  |
| General Procedure for the Synthesis of Cyclopentanols                    | S2  |
| Selected NMR Spectra                                                     | S19 |
| HPLC Traces of Racemic and Enantioenriched Compounds                     | S46 |
| Determination of Absolute Stereochemistry of 4                           | S68 |
| Determination of Relative Stereochemistry of the Minor Diastereomer (29) | S68 |

## **General Information**

All reactions were carried out under a nitrogen atmosphere in oven-dried glassware with magnetic stirring. THF, toluene, and DMF were purified by passage through a bed of activated alumina.<sup>1</sup> Reagents were purified prior to use unless otherwise stated following the guidelines of Perrin and Armarego.<sup>2</sup> Isopropanol (IPA) was distilled from CaH<sub>2</sub>. Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and ceric ammonium nitrate stain or potassium permangenate stain followed by heating. Infrared spectra were recorded on a Brucker Tensor 37 FT-IR spectrometer. <sup>1</sup>H-NMR spectra were recorded on a Bruker Avance 500 (500 MHz) spectrometer and are reported in ppm using solvent as an internal standard  $(CDCl_3 \text{ at } 7.26 \text{ ppm})$ . Data are reported as (ap = apparent, s = singlet, d = doublet, t = 1000 ppm)triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration. Proton-decoupled <sup>13</sup>C-NMR spectra were recorded on a Brucker Avance 500 (125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl<sub>3</sub> at 77.1 ppm). Mass spectra data were obtained on a Varian 1200 Quadrupole Mass Spectrometer and Micromass Quadro II Spectrometer.

Trans-cinnamaldehyde, 3-(4-Methoxy-phenyl)-propenal, and (E)-3-(2methoxyphenyl)acrylaldehyde were used from commercial sources (Sigma Aldrich, Acros Chemical Company respectively). Other enals prepared according to Cacchi.<sup>3</sup>

*E*- $\gamma$ -aryl- $\alpha$ -oxobutenoic esters were prepared according to Dujardin<sup>4</sup>, Chen<sup>5</sup>, Srivastava<sup>6</sup>, and Meijer.<sup>7</sup>

## **General Procedure for the Synthesis of Cyclopentanols**

A oven dried screw-capped vial equipped with a magnetic stirbar was charged with azolium precatalyst **E** (0.2 equiv) and E- $\gamma$ -aryl- $\alpha$ -oxobutenoic ester (3.0 equiv). The vial was capped with a septum cap, removed from the drybox and put under positive N<sub>2</sub> pressure. Into the vial were then successively added cinnamaldehyde (32.2 mg, 0.244 mmol), THF (0.50 M), Ti(O*i*Pr)<sub>4</sub> (5.0 equiv.), *i*-PrOH (6.0 equiv) and finally DBU (0.4 equiv) by a syringe. The reaction mixture was stirred at room temperature under static nitrogen. Upon consumption of the aldehyde and transesterification (all reactions were

<sup>[1]</sup> A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.

<sup>[2]</sup> D. D. Perrin, W. L. Armarego, *Purification of Laboratory Chemicals*; 3rd Ed., Pergamon Press, Oxford. 1988.

<sup>[3]</sup> G. Battistuzzi, S. Cacchi, G. Fabrizi, Org. Lett. 2003, 5, 777-780.

<sup>[4]</sup> G. Dujardin, S. Leconte, A. Benard, E. Brown, *Synlett* **2001**, 147–149.

<sup>[5]</sup> Y-C. Wu, L. Liu, H-J. Li, D. Wang, Y-J. Chen, J. Org. Chem., 2006, 71, 6592-6595.

<sup>[6]</sup> B. K. Srivastava,\* A. Joharapurkar, S. Raval, J. Z. Patel, R. Soni, P. Raval, A. Gite, A. Goswami, N. Sadhwani, N. Gandhi, H. Patel, B. Mishra, M. Solanki, B. Pandey, M. R. Jain, and P. R. Patel, *J. Med. Chem.* 2007, 50, 5951–5966.

<sup>[7]</sup> L. H. P. Meijer, J. C. G. Van Niel, U. K. Pandit, *Tetrahedron* 1984, 40, 5185–5195.

completed within 48 hours) the reaction mixture was filtered through a short plug of  $SiO_2$  and washed with EtOAc. The solution was concentrated under reduced pressure and purified by flash chromatography with EtOAc/hexanes to afford the corresponding cyclopentanol.

The corresponding racemic compounds were prepared by employing the same protocol but with achiral azolium precatalyst A (20 mol%) and no *i*-PrOH.



(1R, 2S, 3R, 4R)-diisopropyl 1-hydroxy-3,4-diphenylcyclopentane-1,2-dicarboxylate (3): Prepared according to the general procedure using *trans*-cinnamaldehyde (31  $\mu$ L, 0.244 mmol) and (E)-methyl 2-oxo-4-phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 78 mg (78% yield) of 3 (20:1 dr) as a yellowish oil. Analytical data for 3: IR (film) 3502, 3058, 3030, 2981, 2920, 2851, 1737, 1679, 1604, 1498, 1455, 1375, 1321, 1263, 1241, 1182, 1107, 1067, 911, 742, 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>): δ 7.06-6.97 (m, 6H), 6.97-6.90 (m, 4H), 5.26 (sept, J = 6.3 Hz, 1H), 4.97 (sept, J = 6.2 Hz, 1H), 4.26 (dd, J = 9.5, 9.5 Hz, 1H), 4.05 (ddd, J = 9.8, 7.3, 7.3 Hz, 1H), 3.99 (s, 1H), 3.85 (d, J = 9.2 Hz, 1H), 2.80 (dd, J =13.4, 10.1 Hz, 1H), 2.36 (dd, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 13.5, 7.2 Hz, 1H), 1.45 (d, J = 13.5, 1H), 1.55 (d, J = 13.5, 1H), 1.55 (d 6.3 Hz, 3H), 1.17 (d, J = 6.2 Hz, 3H), 1.10 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz;  $CDCl_3$ :  $\delta$  174.8, 170.2, 140.9, 140.7, 128.7(2C), 128.5(2C), 127.8(2C), 127.7(2C), 126.1, 126.0, 81.5, 70.7, 68.5, 59.0, 50.1, 47.9, 44.3, 22.0(2C), 21.9(2C); LRMS (ESI): Mass calcd for C<sub>25</sub>H<sub>31</sub>O<sub>5</sub> [M+H]<sup>+</sup>, 411. Found [M+H]<sup>+</sup>, 411. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 5% i-PrOH/Hexanes, 0.50 mL/min, 210 nm), Rt(major) = 13.2 min, Rt(minor) = 18.7 min; ee = 95%.



(1*R*,2*S*,3*R*,4*R*)-diisopropyl 4-(4-chlorophenyl)-1-hydroxy-3-phenylcyclopentane-1,2dicarboxylate (4): Prepared according to the general procedure using *trans*cinnamaldehyde (31  $\mu$ L, 0.244 mmol) and (*E*)-methyl 4-(4-chlorophenyl)-2-oxobut-3enoate (164 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 75 mg (69% yield) of **4** (20:1 dr) as a white solid. Analytical data for **4**: IR (film) 3518, 3069, 3030, 2981, 2921, 2851, 1737, 1699, 1664, 1603, 1494, 1454, 1375, 1283, 1248, 1182, 1107, 1014, 911, 830, 738, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.08-6.99 (m, 5H), 6.91-6.90 (m, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 5.25 (sept, *J* = 6.3 Hz, 1H), 4.96 (sept, *J* = 6.3 Hz, 1H), 4.24 (dd, *J* = 9.3, 9.3 Hz, 1H), 4.01 (ddd, *J* = 9.9, 7.2, 7.2 Hz, 1H), 3.97 (s, 1H), 3.82 (d, *J* = 9.0 Hz, 1H), 2.72 (dd, *J* = 13.4, 10.3 Hz, 1H), 2.33 (dd, J = 13.4, 7.1 Hz, 1H), 1.44 (d, J = 6.3 Hz, 3H), 1.42 (d, J = 6.2 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H), 1.10 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.6, 170.0, 140.5, 139.4, 131.8, 129.8(2C), 128.7(2C), 128.0(2C), 127.8(2C), 126.4, 81.3, 70.9, 68.6, 59.1, 49.9, 47.4, 44.3, 22.0, 21.9(2C), 21.8; LRMS (ESI): Mass calcd for C<sub>25</sub>H<sub>30</sub>O<sub>5</sub>Cl [M+H]<sup>+</sup>, 445. Found [M+H]<sup>+</sup>, 445. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% *i*-PrOH/Hexanes, 1.0 mL/min, 210 nm), Rt (major) = 16.0 min, Rt (minor) = 12.8 min; ee = 97%.



(1R,2S,3R,4R)-diisopropyl 4-(2-chlorophenyl)-1-hydroxy-3-phenylcyclopentane-1,2dicarboxylate (5): Prepared according to general procedure using cinnamaldehyde (15.4 µL, 0.12 mmol) and (E)-methyl 4-(2-chlorophenyl)-2-oxobut-3-enoate (82 mg, 0.37 mmol) and purified by flash chromatography using 5% EtOAc/hexanes to 15% EtOAc/hexanes to afford 39 mg (72% yield) of 5 (13:1 dr) as a yellowish oil. Analytical data for 5: IR (film) 3499, 2981, 2937, 1737, 1375, 1244, 1196, 1182, 1107, 1055, 911, 754, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.12 (dd, J = 1.3, 7.5 Hz, 1H), 7.05-6.91 (m, 8H), 5.25 (sept, J = 6.3 Hz, 1H), 4.99 (sept, J = 6.3 Hz, 1H), 4.53-4.45 (m, 2H), 3.94 (s, 1H), 3.82 (d, J = 6.9 Hz, 1H), 2.86-2.77 (m, 1H), 2.23-2.17 (m, 1H), 1.45 (d, J = 6.3Hz, 3H), 1.41 (d, J = 6.2 Hz, 3H), 1.19 (d, J = 6.2 Hz, 3H), 1.13 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) & 174.5, 169.9, 141.2, 138.1, 134.7, 129.0, 128.5(2C), 128.0, 127.6(2C), 127.3, 126.1, 125.8, 81.0, 70.6, 68.5, 60.5, 47.3, 44.7, 43.0, 21.9, 21.8(2C), 21.7; LRMS (ESI): Mass calcd for C<sub>25</sub>H<sub>29</sub>NaClO<sub>5</sub> [M+Na]<sup>+</sup>, 467. Found [M+Na]<sup>+</sup>, 467; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 3% i-PrOH/Hexanes, 0.5 mL/min, 210 nm), Rt (major) = 12.7 min, Rt (minor) = 18.1 min; ee = 95%.



(1*R*,2*S*,3*R*,4*R*)-diisopropyl 1-hydroxy-4-(4-methoxyphenyl)-3-phenylcyclopentane-1,2-dicarboxylate (6): Prepared according to the general procedure using *trans*cinnamaldehyde (31 µL, 0.244 mmol) and (*E*)-methyl 4-(4-methoxyphenyl)-2-oxobut-3enoate (164 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 88 mg (82% yield) of 4 (20:1 dr) as a orange oil. Analytical data for 4: IR (film) 3502, 3062, 3031, 2981, 2932, 2852, 1735, 1612, 1584, 1514, 1455, 1375, 1250, 1180, 1107, 1038, 971, 910, 830, 738, 701 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.06-6.99 (m, 3H), 6.92-6.90 (m, 2H), 6.84 (m, 2H), 6.59-6.58 (m, 2H), 5.25 (sept, *J* = 6.3 Hz, 1H), 4.96 (sept, *J* = 6.3 Hz, 1H), 4.20 (dd, *J* = 9.4, 9.4 Hz, 1H), 4.013.96 (m, 2H), 3.83 (d, J = 9.2 Hz, 1H), 3.68 (s, 3H), 2.73 (dd, J = 13.5, 10.0 Hz, 1H), 2.33 (dd, J = 13.5, 7.2 Hz, 1H), 1.44 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 6.2 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.8, 170.3, 157.8, 140.8, 133.0, 129.4(2C), 128.8(2C), 127.9(2C), 126.1, 113.1(2C), 81.4, 70.7, 68.5, 58.9, 55.2, 50.1, 47.2, 44.6, 22.0(2C), 21.9(2C); LRMS (ESI): Mass calcd for C<sub>26</sub>H<sub>33</sub>O<sub>6</sub> [M+H]<sup>+</sup>, 441. Found [M+H]<sup>+</sup>, 441. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% *i*-PrOH/Hexanes, 0.75 mL/min, 210 nm), Rt (major) = 27.0 min, Rt (minor) = 22.1 min; ee = 96%.



(1R,2S,3R,4R)-diisopropyl 1-hydroxy-3-phenyl-4-p-tolylcyclopentane-1,2dicarboxylate (7): Prepared according to general procedure using cinnamaldehyde (29.7)  $\mu$ L, 0.236 mmol) and (E)-methyl 2-oxo-4-p-tolylbut-3-enoate (145 mg, 0.708 mmol) and purified by flash chromatography using 7.5% EtOAc/hexanes to 20% EtOAc/hexanes to afford 82 mg (82% yield) of 7 (20:1 dr) as a yellowish oil. Analytical data for 7: IR (film) 3498, 2980, 2935, 1737, 1375, 1241, 1226, 1181, 1108, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz,  $CDCl_3$ )  $\delta$  7.07-6.97 (m, 3H), 6.93-6.89 (m, 2H), 6.85 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.1Hz, 2H), 5.24 (sept, J = 6.3 Hz, 1H), 4.95 (sept, J = 6.3 Hz, 1H), 4.22 (d, J = 9.4, 9.4 Hz, 1H), 4.00 (ddd, J = 7.8, 9.7, 9.7 Hz, 1H), 3.97 (s, 1H), 3.83 (d, J = 9.2 Hz, 1H), 2.76 (dd, J = 10.1, 13.3 Hz, 1H, 2.34 (dd, J = 7.2, 13.5 Hz, 1H), 2.18 (s, 3H), 1.44 (d, J = 6.3 Hz, 3H), 1.42 (d, J = 6.2 Hz, 3H), 1.15 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 174.8, 170.2, 140.8, 137.7, 135.4, 128.7(2C), 128.33(2C), 128.31(2C), 127.7(2C), 126.0, 81.3, 70.6, 68.4, 58.9, 50.0, 47.5, 44.4, 21.9, 21.8(3C), 21.0; LRMS (ESI): Mass calcd for  $C_{26}H_{32}NaO_5$  [M+Na]<sup>+</sup>, 447. Found [M+Na]<sup>+</sup>, 447; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 3% i-PrOH/Hexanes, 0.5 mL/min, 210 nm), Rt (major) = 11.7 min, Rt (minor) = 13.9 min; ee = 97%.



## (1R,2S,3R,4R)-diisopropyl

1-hydroxy-3-phenyl-4-*m*-tolylcyclopentane-1,2-

**dicarboxylate (8)**: Prepared according to general procedure using cinnamaldehyde (29.7  $\mu$ L, 0.236 mmol) and (*E*)-methyl 2-oxo-4-*m*-tolylbut-3-enoate (145 mg, 0.708 mmol) and purified by flash chromatography using 7.5% EtOAc/hexanes to 20% EtOAc/hexanes to afford 68 mg (68% yield) of **8** (20:1 dr) as a yellowish oil. Analytical data for **8**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.06-6.96 (m, 3H), 6.94-6.88 (m, 3H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.73-6.70 (m, 2H), 5.25 (sept, *J* = 6.3 Hz, 1H), 4.96 (sept, *J* = 6.3 Hz, 1H), 4.23 (dd, *J* =

9.6, 9.6 Hz, 1H), 3.99 (ddd, J = 7.6, 9.7, 9.7 Hz, 1H), 3.98 (s, 1H), 3.84 (d, J = 9.3 Hz, 1H), 2.77 (dd, J = 9.9, 13.4 Hz, 1H), 2.34 (dd, J = 7.2, 13.5 Hz, 1H), 2.15 (s, 3H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 6.2 Hz, 3H), 1.15 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.7, 170.1, 140.7, 140.6, 137.0, 129.3, 128.6(2C), 127.5(2C), 127.4, 126.6, 126.0, 125.4, 81.4, 70.6, 68.4, 58.7, 50.0, 47.7, 44.2, 21.9, 21.7(3C), 21.3; IR (film) 3501, 2981, 2937, 1736, 1375, 1235, 1182, 1107, 701 cm<sup>-1</sup>; LRMS (ESI): Mass calcd for C<sub>26</sub>H<sub>32</sub>NaO<sub>5</sub> [M+Na]<sup>+</sup>, 447. Found [M+Na]<sup>+</sup>: 447; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 5% *i*-PrOH/Hexanes, 0.5 mL/min, 210 nm), Rt (major) = 11.5 min, Rt (minor) = 15.7 min; ee = 97%.



1-hydroxy-3-phenyl-4-(pyridin-4-yl)cyclopentane-1,2-(1R, 2S, 3R, 4R)-diisopropyl dicarboxylate (9): Prepared according to general procedure using cinnamaldehyde (12.6 µL, 0.10 mmol) and (E)-methyl 2-oxo-4-(pyridin-4-yl)but-3-enoate (57 mg, 0.30 mmol) and purified by flash chromatography using 30% EtOAc/hexanes to 70% EtOAc/hexanes to afford 21 mg (51% yield) of **9** (12:1 dr) as a yellowish oil. Analytical data for **9**:  ${}^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.25 (s broad, 2H), 7.08-6.99 (m, 3H), 6.93-6.90 (m, 2H), 6.88-6.82 (m, 2H), 5.26 (sept, J = 6.3 Hz, 1H), 4.97 (sept, J = 6.3 Hz, 1H), 4.31 (dd, J =9.5, 9.5 Hz, 1H), 4.01 (ddd, J = 7.1, 10.0 Hz, 1H), 3.98 (s, 1H), 3.81 (d, J = 9.0 Hz, 1H), 2.76 (dd, J = 10.3, 13.3 Hz, 1H), 2.35 (dd, J = 7.0, 13.4 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43 (d, J = 6.2 Hz, 3H), 1.17 (d, J = 6.2 Hz, 3H), 1.11 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) & 174.2, 169.6, 150.0, 149.0(2C), 139.9, 128.4(2C), 128.0(2C), 126.5(2C), 123.7, 81.2, 70.9, 68.6, 59.1, 49.5, 47.1, 43.3, 21.9, 21.73, 21.71, 21.70; IR (film) 3495, 2981, 2930, 1738, 1375, 1231, 1182, 1108, 702 cm<sup>-1</sup>; LRMS (ESI): Mass calcd for C<sub>24</sub>H<sub>30</sub>O<sub>5</sub> [M+H]<sup>+</sup>, 412. Found [M+H]<sup>+</sup>, 412; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 12% i-PrOH/Hexanes, 1 mL/min, 210 nm), Rt (major) = 25.6 min, Rt (minor) = 14.4 min; ee = 97%.



(1*R*,2*S*,3*R*,4*R*)-diisopropyl 4-(furan-2-yl)-1-hydroxy-3-phenylcyclopentane-1,2dicarboxylate (10): Prepared according to general procedure using cinnamaldehyde (30.2  $\mu$ L, 0.24 mmol) and (*E*)-methyl 4-(furan-2-yl)-2-oxobut-3-enoate (135 mg, 0.72 mmol) and purified by flash chromatography using 7.5% EtOAc/hexanes to 30% EtOAc/hexanes to afford 77 mg (77% yield) of 10 (20:1 dr) as a yellowish oil. Analytical data for 10: IR (film) 3495, 2982, 1735, 1375, 1233, 1182, 1107, 737, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.14-7.08 (m, 3H), 7.06-7.04 (m, 1H), 7.02-6.98 (m, 2H), 6.07 (dd, J = 1.9, 2.9 Hz, 1H), 5.89 (d, J = 3.1 Hz, 1H), 5.21 (sept, J = 6.3 Hz, 1H), 4.92 (sept, J = 6.3 Hz, 1H), 4.14 (dd, J = 10.2, 10.2 Hz, 1H), 4.02 (s, 1H), 3.96 (dd, J = 8.5, 17.6 Hz, 1H), 3.80 (d, J = 10.9 Hz, 1H), 2.72 (dd, J = 8.4, 13.8 Hz, 1H), 2.38 (dd, J = 8.1, 13.8 Hz, 1H), 1.41 (d, J = 6.3 Hz, 3H), 1.40 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.2 Hz, 3H), 1.04 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.2, 170.1, 155.1, 141.1, 139.7(2C), 128.2(2C), 127.7, 126.3, 109.8, 106.6, 81.2, 70.4, 68.3, 57.9, 49.6, 43.0, 41.4, 21.8, 21.7, 21.6(2C); LRMS (ESI): Mass calcd for C<sub>23</sub>H<sub>28</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup>, 423. Found [M+Na]<sup>+</sup>, 423; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 5% *i*-PrOH/Hexanes, 0.5 mL/min, 210 nm), Rt (major) = 11.8 min, Rt (minor) = 14.8 min; ee = 97%.



(1R, 2S, 3S, 4R)-diisopropyl 1-hydroxy-3-phenyl-4-(thiophen-2-yl)cyclopentane-1,2dicarboxylate (11): Prepared according to general procedure using cinnamaldehyde (31.5 µL, 0.25 mmol) and (E)-methyl 2-oxo-4-(thiophen-2-yl)but-3-enoate (141 mg, 0.75 mmol) and purified by flash chromatography using 7.5% EtOAc/hexanes to 20% EtOAc/hexanes to afford 85 mg (85% yield) of **11** (20:1 dr) as a yellowish oil. Analytical data for **11**: IR (film) 3501, 2981, 2936, 1738, 1375, 1233, 1182, 1107, 697 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.14-7.05 (m, 3H), 7.02-6.98 (m, 2H), 6.95-6.93 (m, 1H),  $6.72 \text{ (dd, } J = 3.7, 4.9 \text{ Hz}, 1\text{H}), 6.60 \text{ (d, } J = 3.4 \text{ Hz}, 1\text{H}), 5.24 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text{H}), 4.95 \text{ (sept, } J = 6.3 \text{ Hz}, 1\text$ (sept, J = 6.2 Hz, 1H), 4.25-4.15 (m, 2H), 3.98 (s, 1H), 3.86 (d, J = 6.9 Hz, 1H), 2.77-2.71 (m, 1H), 2.51-2.46 (m, 1H), 1.44 (d, J = 6.5 Hz, 3H), 1.43 (d, J = 6.4 Hz, 3H), 1.15 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.4, 169.9, 144.9, 140.1, 128.6(2C), 127.8(2C), 126.4, 126.2(2C), 124.9, 123.7, 81.1, 70.7, 68.5, 58.4, 50.2, 46.3, 43.3, 21.9, 21.8(2C), 21.7; LRMS (ESI): Mass calcd for C<sub>23</sub>H<sub>29</sub>O<sub>5</sub>S [M+H]<sup>+</sup>, 417. Found [M+H]<sup>+</sup>, 417; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OJ, 10% *i*-PrOH/Hexanes, 1 mL/min, 210 nm), Rt (major) = 5.3 min, Rt (minor) = 7.6 min; ee = 97%.



(1*R*,2*S*,3*R*,4*S*)-diisopropyl 4-cyclopropyl-1-hydroxy-3-phenylcyclopentane-1,2dicarboxylate (12): Prepared according to general procedure using cinnamaldehyde (12.6  $\mu$ L, 0.10 mmol) and (*E*)-methyl 4-cyclopropyl-2-oxobut-3-enoate (46 mg, 0.30 mmol) and purified by flash chromatography using 5% EtOAc/hexanes to 20% EtOAc/hexanes to afford 23 mg (61% yield) of **12** (20:1 dr) as a yellowish oil. Analytical data for **12**: IR (film) 3505, 2981, 2936, 1738, 1375, 1230, 1181, 1108, 750, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.27 (m, 4H), 7.24-7.18 (m, 1H), 5.18 (sept, J = 6.2 Hz, 1H), 4.93 (sept, J = 6.2 Hz, 1H), 3.95 (dd, J = 9.3, 9.3 Hz, 1H), 3.80 (s, 1H), 3.76 (d, J = 9.1 Hz, 1H), 2.20 (dd, J = 10.5, 13.0 Hz, 1H), 2.10 (dd, J = 6.8, 13.2 Hz, 1H), 1.92 (dddd, J = 7.1, 9.8, 9.8, 9.8 Hz, 1H), 1.38 (d, J = 6.0 Hz, 3H), 1.37 (d, J = 5.7 Hz, 3H), 1.14 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.2 Hz, 3H), 0.30-0.16 (m, 2H), 0.04- -0.03 (m, 2H), -0.11- 0.17 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.7, 170.3, 142.0, 128.8(2C), 127.9(2C), 126.1, 81.3, 70.2, 68.2, 59.4, 48.0(2C), 45.1, 21.8, 21.73, 21.70, 21.66, 12.8, 4.6, 3.8, ; LRMS (ESI): Mass calcd for C<sub>22</sub>H<sub>31</sub>O<sub>5</sub> [M+H]<sup>+</sup>, 375. Found [M+H]<sup>+</sup>, 375; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% *i*-PrOH/Hexanes, 0.5 mL/min, 210 nm), Rt (major) = 18.8 min, Rt (minor) = 15.7 min; ee = 99\%.



(1R,2S,3R,4R)-diisopropyl 1-hydroxy-3-phenyl-4-(phenylethynyl)cyclopentane-1,2dicarboxylate (13): Prepared according to general procedure using cinnamaldehyde (12.6 µL, 0.10 mmol) and (E)-methyl 2-oxo-6-phenylhex-3-en-5-ynoate (64 mg, 0.30 mmol) and purified by flash chromatography using 5% EtOAc/hexanes to 15% EtOAc/hexanes to afford 27 mg (62% yield) of **13** (20:1 dr) as a vellowish oil. Analytical data for 13: IR (film) 3496, 2981, 2935, 1734, 1375, 1233, 1181, 757, 694 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.39-7.33 (m, 4H), 7.29-7.26 (m, 1H), 7.22-7.16 (m, 3H), 7.05-7.01 (m, 2H), 5.18 (sept, J = 6.3 Hz, 1H), 4.94 (sept, J = 6.3 Hz, 1H), 4.09 (dd, J = 9.9, 9.9Hz, 1H), 3.90 (s, 1H), 3.78 (d, J = 10.4 Hz, 1H), 3.75 (ddd, J = 7.9, 8.6, 8.6 Hz, 1H), 2.56(dd, J = 8.7, 13.4 Hz, 1H), 2.42 (dd, J = 7.6, 13.4 Hz, 1H), 1.35 (d, J = 6.3 Hz, 3H), 1.35(d, J = 6.4 Hz, 3H), 1.14 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125) MHz, CDCl<sub>3</sub>) δ 173.9, 169.6, 140.5, 131.2(2C), 128.8(2C), 128.0(2C), 127.9(2C), 127.6, 126.8, 123.4, 90.3, 85.0, 81.1, 70.5, 68.5, 58.7, 48.5, 46.2, 35.0, 21.74, 21.71, 21.66, 21.63; LRMS (ESI): Mass calcd for  $C_{27}H_{30}NaO_5$  [M+Na]<sup>+</sup>, 457. Found [M+Na]<sup>+</sup>, 457.4; Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% i-PrOH/Hexanes, 0.5 mL/min, 210 nm), Rt (major) = 23.9 min, Rt (minor) = 18.3 min; ee = 94%.



(1R,2S,3R,4R)-diisopropyl 3-(4-chlorophenyl)-1-hydroxy-4-phenylcyclopentane-1,2dicarboxylate (14): Prepared according to the general procedure using (*E*)-3-(4-Chlorophenyl)-propenal (40.6 mg, 0.244 mmol) and (*E*)-methyl 2-oxo-4-phenylbut-3-enoate

(139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 81 mg (74% yield) of **14** (20:1 dr) as a yellow oil. Analytical data for **14**: IR (film) 3488, 3068, 3030, 2983, 2938, 1734, 1699, 1664, 1623, 1602, 1494, 1454, 1366, 1266, 1229, 1182, 1106, 1014, 910, 827, 739, 702, 640 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.06 (m, 3H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 7.2 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 5.26 (sep, *J* = 6.3 Hz, 1H), 4.96 (sep, *J* = 6.2 Hz, 1H), 4.23 (dd, *J* = 9.7, 9.7 Hz, 1H), 4.01 (ap q, *J* = 8.7 Hz, 1H), 3.97 (s, 1H), 3.77 (d, *J* = 9.8 Hz, 1H), 2.77 (dd, *J* = 13.7, 9.3 Hz, 1H), 2.40 (dd, *J* = 13.7, 7.5 Hz, 1H), 1.44 (d, *J* = 6.7 Hz, 3H), 1.45 (d, *J* = 6.8 Hz, 3H), 1.16 (d, *J* = 6.2 Hz, 3H), 1.10 (d, *J* = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.6, 169.9, 140.8, 139.1, 131.9, 130.0(2C), 128.5(2C), 128.0(2C), 127.9(2C), 126.3, 81.4, 70.9, 68.7, 58.8, 49.6, 47.6, 44.4, 22.0, 21.9(2C), 21.8; LRMS (ESI): Mass calcd for C<sub>25</sub>H<sub>30</sub>O<sub>5</sub>Cl [M+H]<sup>+</sup>, 445. Found [M+H]<sup>+</sup>, 445. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% *i*-PrOH/Hexanes, 0.75 mL/min, 210 nm), Rt (major) = 20.3 min, Rt (minor) = 12.0 min; ee = 97%.



(1R,2S,3R,4R)-diisopropyl 3-(3-chlorophenyl)-1-hydroxy-4-phenylcyclopentane-1,2dicarboxylate (15): Prepared according to the general procedure using (E)-3-(3-Chlorophenyl)-propenal (40.6 mg, 0.244 mmol) and (E)-methyl 2-oxo-4-phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 80 mg (73% yield) of 15 (20:1 dr) as a clear oil. Analytical data for 15: IR (film) 3500, 3066, 3029, 2981, 2938, 2877, 1736, 1598, 1573, 1496, 1467, 1454, 1434, 1375, 1318, 1239, 1194, 1106, 1035, 912, 828, 786, 747, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.06 (m, 3H), 6.96-6.93 (m, 5H), 6.73 (d, J = 7.4 Hz, 1H), 5.26 (sep, J = 6.3Hz, 1H), 4.97 (sep, J = 6.2 Hz, 1H), 4.22 (dd, J = 9.5, 9.5 Hz, 1H), 4.02 (ddd, J = 9.8, 7.5, 7.5 Hz, 1H), 3.97 (s, 1H), 3.79 (d, J = 9.3 Hz, 1H), 2.77 (dd, J = 13.5, 9.8 Hz, 1H), 2.37 (dd, J = 13.6, 7.3 Hz, 1H), 1.46 (d, J = 6.4 Hz, 3H), 1.45 (d, J = 6.4 Hz, 3H), 1.17 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.6, 169.9, 142.8, 140.5, 133.6, 129.0, 128.6(2C), 128.4(2C), 127.9, 127.2, 126.4, 126.3, 81.4, 71.0, 68.7, 58.6, 49.9, 47.9, 44.2, 22.0, 21.88(2C), 21.86; LRMS (ESI): Mass calcd for  $C_{25}H_{30}O_5Cl$  [M+H]<sup>+</sup>, 445. Found [M+H]<sup>+</sup>, 445. Enantiometric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% i-PrOH/Hexanes, 1.0 mL/min, 210 nm), Rt (major) = 12.7 min, Rt (minor) = 10.2 min; ee = 97%.



(1R,2S,3R,4R)-diisopropyl 3-(2-chlorophenyl)-1-hydroxy-4-phenylcyclopentane-1,2dicarboxylate (16): Prepared according to the general procedure using (E)-3-(2-Chlorophenyl)-propenal (40.6 mg, 0.244 mmol) and (E)-methyl 2-oxo-4-phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 81 mg (74% yield) of 16 (10:1 dr) as a light yellow solid. Analytical data for 16: IR (film) 3502, 3063, 3029, 2981, 2936, 2876, 1738, 1603, 1496, 1477, 1455, 1444, 1375, 1321, 1238, 1183, 1106, 1034, 970, 910, 828, 786, 749, 727, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.17 (dd, J = 7.8, 0.8 Hz, 1H), 7.03 (m, 4H), 7.01-6.96 (m, 1H), 6.91 (td, J = 7.6, 1.6 Hz, 1H), 6.86 (t, J = 7.2 Hz, 1H), 6.73 (d, J = 7.4 Hz, 1H), 5.26 (sep, J = 6.3 Hz, 1H), 4.94 (sep, J = 6.2 Hz, 1H), 4.73 (dd, J = 11.6, 10.0 Hz, 1H), 4.16 (ap q, J) = 8.5 Hz, 1H, 4.00 (s, 1H), 3.89 (d, J = 11.9 Hz, 1H), 2.77 (dd, J = 14.2, 7.2 Hz, 1H),2.53 (dd, J = 14.3, 8.5 Hz, 1H), 1.46 (d, J = 6.1 Hz, 3H), 1.45 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.2 Hz, 3H), 1.10 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.6, 169.9, 141.8, 137.6, 134.7, 129.2, 128.3(2C), 128.1, 127.7(2C), 127.3, 126.2, 125.9, 81.5, 70.8, 68.6, 56.7, 47.0, 45.2, 45.1, 21.2, 21.9, 21.83, 21.77; LRMS (ESI): Mass calcd for  $C_{25}H_{30}O_5Cl$  [M+H]<sup>+</sup>, 445. Found [M+H]<sup>+</sup>, 445. Enantiometric ratio was measured by chiral phase HPLC (Regis-Pirkle Welk-01, 3% i-PrOH/Hexanes, 0.50 mL/min, 210 nm), Rt (major) = 45.3 min, Rt (minor) 41.2 min; ee = 98%.



(1*R*,2*S*,3*R*,4*R*)-diisopropyl 3-(4-bromophenyl)-1-hydroxy-4-phenylcyclopentane-1,2dicarboxylate (17): Prepared according to the general procedure using (*E*)-3-(4-bromophenyl)-propenal (51.5 mg, 0.244 mmol) and (*E*)-methyl 2-oxo-4-phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 81 mg (74% yield) of **17** (20:1 dr) as a yellow oil. Analytical data for **17**: IR (film) 3502, 3062, 3029, 2981, 2936, 2873, 1786, 1733, 1603, 1491, 1454, 1386, 1237, 1183, 1107, 1010, 910, 825, 777, 749, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.16-7.13 (m, 2H), 7.10-7.02 (m, 3H), 6.95-6.93 (m, 2H), 6.77-6.74 (m, 2H), 5.25 (sep, *J* = 6.3 Hz, 1H), 4.95 (sep, *J* = 6.3 Hz, 1H), 4.21 (dd, *J* = 9.7, 9.7 Hz, 1H), 4.00 (ddd, *J* = 9.6, 7.4, 7.4 Hz, 1H), 3.96 (s, 1H), 3.75 (d, *J* = 9.8 Hz, 1H), 2.76 (dd, *J* = 13.7, 9.3 Hz, 1H), 2.39 (dd, *J* = 13.7, 7.5 Hz, 1H), 1.44 (d, *J* = 6.3 Hz, 3H), 1.43 (d, *J* = 6.3 Hz, 3H), 1.16 (d, *J* = 6.2 Hz, 3H), 1.10 (d, *J* = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.6, 169.9, 140.7, 139.7, 130.8(2C), 130.4(2C), 128.5(2C), 128.0(2C), 126.4, 120.0, 81.4, 70.9, 68.7, 58.8, 49.7, 47.6, 44.4, 22.0, 21.9(2C), 21.8; LRMS (ESI): Mass calcd for  $C_{25}H_{30}O_5Br [M+H]^+$ , 489. Found  $[M+H]^+$ , 489. Enantiomeric ratio was measured by chiral phase HPLC (Regis-Pirkle Welk-01, 30% *i*-PrOH/Hexanes, 0.50 mL/min, 210 nm), Rt (major) = 19.5 min, Rt (minor) = 4.6 min; ee = 96%.



(1R, 2S, 3R, 4R)-diisopropyl 1-hvdroxy-3-(4-(isopropoxycarbonyl)phenyl)-4phenylcyclopentane-1,2-dicarboxylate (18): Prepared according to the general procedure (except 6.0 eq of Ti(Oi-Pr)<sub>4</sub> was used and the reaction mixture was stirred for 96 hrs to facilitate complete transesterification of all 3 esters) using (E)-methyl 4-(3oxoprop-1-envl)benzoate (46.4 mg, 0.244 mmol) and (E)-methyl 2-oxo-4-phenylbut-3enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 74 mg (61% yield) of 18 (18:1 dr) as a yellow oil. Analytical data for 18: IR (film) 3499, 3062, 3030, 2981, 2937, 2876, 1738, 1714, 1611, 1497, 1467, 1454, 1374, 1277, 1242, 1181, 1104, 913, 829, 747, 701 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.71-7.69 (m, 2H), 7.07-7.00 (m, 3H), 6.97-6.94 (m, 4H), 5.25 (sep, J = 6.3Hz, 1H), 5.16 (sep, J = 6.3 Hz, 1H), 4.95 (sep, J = 6.3 Hz, 1H), 4.31 (dd, J = 9.7, 9.7Hz, 1H), 4.06 (ddd, J = 9.4, 7.6, 7.6 Hz, 1H), 3.96 (s, 1H), 3.83 (d, J = 9.7 Hz, 1H), 2.79 (dd, J = 13.6, 9.5 Hz, 1H), 2.40 (dd, J = 13.6, 7.4 Hz, 1H), 1.45 (d, J = 6.3 Hz, 3H), 1.43(d, J = 6.2 Hz, 3H), 1.31 (d, J = 6.3 Hz, 6H), 1.15 (d, J = 6.2 Hz, 3H), 1.10 (d, J = 6.3 Hz, 6Hz), 1.10 (d, J = 6.3 Hz)Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>2</sub>): δ 174.6, 169.8, 166.2, 146.1, 140.6, 129.1(2C), 128.7, 128.6(2C), 128.4(2C), 128.0(2C), 126.4, 81.5, 70.9, 68.7, 68.3, 58.9, 50.1, 47.7, 44.5, 22.1(2C), 22.0, 21.9(2C), 21.8; LRMS (ESI): Mass calcd for C<sub>29</sub>H<sub>37</sub>O<sub>7</sub> [M+H]<sup>+</sup>, 497. Found [M+H]<sup>+</sup>, 497. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 5% *i*-PrOH/Hexanes, 0.50 mL/min, 210 nm), Rt (major) = 18.7 min, Rt (minor) = 23.5 min; ee = 91%.



(1*R*,2*S*,3*R*,4*R*)-diisopropyl 1-hydroxy-4-phenyl-3-*p*-tolylcyclopentane-1,2dicarboxylate (19): Prepared according to the general procedure using (*E*)-3-*p*- tolylacrylaldehyde (35.7 mg, 0.244 mmol) and (E)-methyl 2-oxo-4-phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 66 mg (63% yield) of **19** (20:1 dr) as a white solid. Analytical data for **19**: IR (film) 3505, 3058, 3028, 2981, 2937, 2876, 1734, 1603, 1515, 1497, 1454, 1375, 1323, 1241, 1183, 1107, 1035, 971, 911, 820, 750, 700, 641 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.07-6.99 (m, 3H), 6.95 (d, J = 7.1 Hz, 2H), 6.84 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 8.1 Hz, 2H), 5.25 (sep, J = 6.3 Hz, 1H), 4.96 (sep, J = 6.3 Hz, 1H), 4.22 (dd, J = 9.4, 9.4 Hz, 1H), 4.02 (ddd, J = 9.7, 7.3, 7.3 Hz, 1H), 3.97 (s, 1H), 3.81 (d, J = 9.1 Hz, 1H), 2.79 (dd, J = 13.4, 10.1 Hz, 1H), 2.35 (dd, J = 13.4, 7.1 Hz, 1H), 2.17 (s, 3H), 1.45 (d, J = 6.3 Hz, 3H), 1.42 (d, J = 6.2 Hz, 3H), 1.17 (d, J = 6.2 Hz, 3H), 1.10 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>): δ 174.9, 170.2, 141.1, 137.7, 135.5, 128.61(2C), 128.56(2C), 128.5(2C), 127.7(2C), 126.0, 81.4, 70.7, 68.5, 59.3, 49.7, 47.8, 44.3, 22.0, 21.89(2C), 21.86, 21.1; LRMS (ESI): Mass calcd for C<sub>26</sub>H<sub>33</sub>O<sub>5</sub> [M+H]<sup>+</sup>, 425. Found [M+H]<sup>+</sup>, 425. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 5% i-PrOH/Hexanes, 0.50 mL/min, 210 nm), Rt (major) = 12.9 min, Rt (minor) = 16.9 min; ee = 97%.



(1R, 2S, 3R, 4R)-diisopropyl 1-hydroxy-3-(4-methoxyphenyl)-4-phenylcyclopentane-**1,2-dicarboxylate** (20): Prepared according to the general procedure using (E)-3-(4methoxyphenyl)acrylaldehyde (39.6 mg, 0.244 mmol) and (E)-methyl 2-oxo-4phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 60 mg (56% yield) of 20 (17:1 dr) as a yellow oil. Analytical data for **20**: IR (film) 3498, 3271, 3062, 3029, 2980, 2934, 2854, 1785, 1729, 1676, 1612, 1514, 1454, 1386, 1250, 1181, 1108, 1036, 971, 910, 829, 749, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.04 (m, 3H), 6.94 (d, J = 7.1 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 6.57 (d, J = 8.7 Hz, 2H), 5.24 (sep, J = 6.2 Hz, 1H), 4.96 (sep, J = 6.2 Hz, 1H), 4.20 (dd, J = 9.5, 9.5 Hz, 1H), 3.99 (m, 2H), 3.77 (d, J = 9.4 Hz, 1H), 3.68 (s, 3H), 2.77 (dd, J = 13.4, 9.9 Hz, 1H), 2.35 (dd, J = 13.5, 7.2 Hz, 1H), 1.44 (d, J = 6.3 Hz, 3H), 1.42 (d, J = 6.2 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125) MHz; CDCl<sub>3</sub>): δ 174.8, 170.3, 157.9, 141.1, 132.8, 129.7(2C), 128.6(2C), 127.8(2C), 126.1, 113.2(2C), 81.4, 70.7, 68.5, 59.1, 55.2, 49.5, 47.8, 44.3, 22.0, 21.89(2C), 21.86; LRMS (ESI): Mass calcd for C<sub>26</sub>H<sub>33</sub>O<sub>6</sub> [M+H]<sup>+</sup>, 441. Found [M+H]<sup>+</sup>, 441. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% i-PrOH/Hexanes, 0.75 mL/min, 210 nm, Rt (major) = 28.2 min, Rt (minor) = 16.7 min; ee = 96%.



1-hydroxy-3-(2-methoxyphenyl)-4-phenylcyclopentane-(1R, 2S, 3R, 4R)-diisopropyl **1,2-dicarboxylate** (21): Prepared according to the general procedure using (E)-3-(2methoxyphenyl)acrylaldehyde (39.6 mg, 0.244 mmol) and (E)-methyl 2-oxo-4phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 66 mg (62% yield) of 21 (5:1 dr) as a yellow oil. Analytical data for **21**: IR (film) 3484, 3068, 3030, 2981, 2935, 1784, 1665, 1602, 1495, 1466, 1454, 1387, 1366, 1293, 1266, 1108, 1032, 911, 830, 747, 701, 648 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.10-6.93 (m, 7H), 6.67 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 8.1 Hz, 1H), 5.23 (sep, J = 6.2 Hz, 1H), 4.97 (sep, J = 6.3 Hz, 1H), 4.56-4.50 (m, 1H), 4.12 (ap q, J = 8.9Hz, 1H), 4.00-3.89 (m, 2H), 3.63 (s, 3H), 2.81-2.75 (m, 1H), 2.36 (dd, J = 13.0, 7.3 Hz, 1H), 1.42 (d, J = 6.3 Hz, 6H), 1.17 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>): δ 174.9, 170.7, 157.0, 141.7, 128.8, 128.3(2C), 127.4, 127.2(2C), 125.7, 119.8, 109.7(2C), 81.8, 70.4, 68.4, 56.4, 54.7, 45.9, 44.6(2C), 22.0, 21.91, 21.90(2C); LRMS (ESI): Mass calcd for  $C_{26}H_{33}O_6$  [M+H]<sup>+</sup>, 441. Found [M+H]<sup>+</sup>, 441. Enantiomeric ratio was measured by chiral phase HPLC (Regis-Pirkle Welk-01, 5% *i*-PrOH/Hexanes, 1.5 mL/min, 210 nm), Rt (major) = 25.8 min, Rt (minor) = 16.4 min; ee = 97%.



(1*R*,2*S*,3*R*,4*R*)-diisopropyl 1-hydroxy-3-(naphthalen-1-yl)-4-phenylcyclopentane-1,2dicarboxylate (22): Prepared according to the general procedure using (*E*)-3-(naphthalen-1-yl)acrylaldehyde (44.5 mg, 0.244 mmol) and (*E*)-methyl 2-oxo-4phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 87 mg (78% yield) of **22** (12:1 dr) as a clear foam. Analytical data for **22**: IR (film) 3493, 3030, 2981, 2936, 2874, 1732, 1600, 1512, 1496, 1455, 1374, 1312, 1258, 1236, 1179, 1107, 911, 830, 777, 746, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  8.26 (d, *J* = 8.5 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.54-7.49 (m, 2H), 7.42 (ddd, *J* = 8.1, 6.8, 1.0 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 1H), 6.90 (d, *J* = 7.2 Hz, 1H), 6.83-6.81 (m, 3H), 6.79-6.77 (m, 2H), 5.28 (sep, *J* = 6.3 Hz, 1H), 5.10 (dd, *J* = 11.6, 9.7 Hz, 1H), 4.93 (sep, *J* = 6.2 Hz, 1H), 4.21 (ddd, *J* = 9.2, 7.1, 7.1 Hz, 1H), 4.10 (s, 1H), 4.08 (d, *J* = 11.8 Hz, 1H), 2.85 (dd, *J* = 14.4, 7.0 Hz, 1H), 2.62 (dd, *J* = 14.4, 8.5 Hz, 1H), 1.49 (d, *J* = 6.2 Hz, 3H), 1.47 (d, *J* = 6.3 Hz, 3H), 1.12 (d, *J* = 6.2 Hz, 3H), 1.07 (d, *J* = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.7, 170.2, 141.9, 135.7, 133.6, 132.4, 128.6, 128.2(2C), 127.4(2C), 126.8, 126.0, 125.8, 125.3, 124.6, 124.0, 123.9, 81.6, 70.8, 68.6, 56.8, 46.7, 45.8, 45.7, 22.03, 21.96, 21.9, 21.8; LRMS (ESI): Mass calcd for  $C_{29}H_{33}O_5$  [M+H]<sup>+</sup>, 461. Found [M+H]<sup>+</sup>, 461. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% *i*-PrOH/Hexanes, 1.0 mL/min, 210 nm), Rt (major) = 24.4 min, Rt (minor) = 18.4 min; ee = 97%.



(1R,2S,3R,4R)-diisopropyl 1-hydroxy-3-(naphthalen-1-yl)-4-phenylcyclopentane-1,2dicarboxylate (23): Prepared according to the general procedure using (E)-3-(naphthalen-1-yl)acrylaldehyde (44.5 mg, 0.244 mmol) and (E)-methyl 2-oxo-4phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 86 mg (77% yield) of 23 (16:1 dr) as a yellow oil. Analytical data for 23: IR (film) 3504, 3058, 3028, 2980, 2936, 2877, 1734, 1602, 1508, 1454, 1375, 1242, 1221, 1182, 1107, 1035, 911, 747, 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz;  $CDCl_{2}$ :  $\delta$  7.65 (dd, J = 7.6, 1.7 Hz, 2H), 7.48-7.46 (m, 2H), 7.39-7.33 (m, 2H), 6.98-6.97 (m, 4H), 6.96-6.91 (m, 2H), 5.29 (sep, J = 6.3 Hz, 1H), 4.96 (sep, J = 6.3 Hz, 1H), 4.44(dd, J = 9.5, 9.5 Hz, 1H), 4.14 (ddd, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 3.95 (d, J = 9.8, 7.2, 7.2 Hz, 1H), 4.04 (s, 1H), 4.049.3 Hz, 1H), 2.88 (dd, J = 13.5, 9.9 Hz, 1H), 2.43 (dd, J = 13.5, 7.2 Hz, 1H), 1.49 (d, J = 6.3 Hz, 3H), 1.46 (d, J = 6.2 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H), 1.07 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.8, 170.2, 140.8, 138.4, 133.2, 132.0, 128.5(2C), 127.8(2C), 127.7, 127.5, 127.3, 127.25, 127.21, 126.1, 125.7, 125.3, 81.5, 70.8, 68.6, 59.1, 50.2, 47.8, 44.5, 22.0, 21.9, 21.87, 21.86; LRMS (ESI): Mass calcd for C<sub>29</sub>H<sub>33</sub>O<sub>5</sub> [M+H]<sup>+</sup>, 461. Found [M+H]<sup>+</sup>, 461. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 5% i-PrOH/Hexanes, 1.0 mL/min, 210 nm), Rt (major) = 18.5 min, Rt (minor) = 14.6 min; ee = 96%.



(1*R*,2*S*,3*R*,4*R*)-diisopropyl 3-(4-chlorophenyl)-1-hydroxy-4-(4-methoxyphenyl) cyclopentane-1,2-dicarboxylate (24): Prepared according to the general procedure using (*E*)-3-(4-Chloro-phenyl)-propenal (40.6 mg, 0.244 mmol) and (*E*)-methyl 2-oxo-4-

Page S15

phenylbut-3-enoate (139 mg, 0.732 mmol) and purified by flash chromatography using 9% EtOAc/hexanes to afford 91 mg (78% yield) of **24** (20:1 dr) as an orange oil. Analytical data for **24**: IR (film) 3500, 3061, 3032, 2981, 2936, 2837, 1735, 1612, 1514, 1494, 1466, 1454, 1375, 1251, 1180, 1107, 1037, 1015, 971, 910, 830, 746, 704 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  7.03-7.00 (m, 2H), 6.86-6.80 (m, 4H), 6.63-6.60 (m, 2H), 5.24 (sep, *J* = 6.3 Hz, 1H), 4.95 (sep, *J* = 6.3 Hz, 1H), 4.17 (dd, *J* = 9.7, 9.7 Hz, 1H), 3.97-3.91 (m, 2H), 3.74 (d, *J* = 9.8 Hz, 1H), 3.71 (s, 3H), 2.71 (dd, *J* = 13.7, 9.3 Hz, 1H), 2.37 (dd, *J* = 13.7, 7.5 Hz, 1H), 1.44 (d, *J* = 6.7 Hz, 3H), 1.42 (d, *J* = 6.7 Hz, 3H), 1.15 (d, *J* = 6.2 Hz, 3H), 1.09 (d, *J* = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.7, 170.0, 157.9, 139.3, 132.8, 131.8, 130.0(2C), 129.4(2C), 127.9(2C), 113.3(2C), 81.3, 70.8, 68.6, 58.7, 55.3, 49.7, 46.9, 44.7, 22.0, 21.9(2C), 21.8; LRMS (ESI): Mass calcd for C<sub>26</sub>H<sub>32</sub>O<sub>6</sub>Cl [M+H]<sup>+</sup>, 475. Found [M+H]<sup>+</sup>, 475. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H, 5% *i*-PrOH/Hexanes, 0.50 mL/min, 210 nm), Rt (major) = 22.7 min, Rt (minor) = 17.3 min; ee = 97%.



(1R,2R,3R,4R)-1-hydroxy-3,4-diphenylcyclopentane-1,2-diyl)dimethanol (25): Into a flame-dried 50 mL round bottom flask equipped with a magnetic stirbar was weighed bisester 22 (>20:1 dr), (430 mg, 0.935 mmol). The flask was purged with  $N_2$  and THF (19 mL, 0.05M) was added under positive N<sub>2</sub> pressure. The mixture was cooled at 0 °C and LiAlH<sub>4</sub> (355 mg, 9.35 mmol) was added in small portions. The reaction mixture was stirred at 0 °C for 30 min and at 25 °C for 16h. The mixture was then slowly quenched with the addition of water until gas evolution ceased. The mixture was transferred into an extraction funnel containing 100 mL of 1M HCl solution. The aqueous phase was extracted with EtOAc (3x), and the combined organic extracts were dried over  $Na_2SO_4$ , filtered and concentrated under reduced pressure. The crude mixture was purified by flash chromatography using 80% EtOAc/hexanes to 100% EtOAc to afford 245 mg (75% yield) of 25 as a white solid. Analytical data for 25: IR (film) 3324 (broad), 3060, 3029, 2939, 2907, 1736 (weak), 1455, 1263, 1030, 778, 701 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  8.17 (d, J = 8.5 Hz, 1H), 7.73-7.70 (m, 1H), 7.54-7.47 (m, 2H), 7.42 (ddd, J = 1.0, 6.8, 8.0 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H), 6.88 (d, J = 7.2 Hz, 1H), 6.82-6.78 (m, 3H), 6.64-6.60 (m, 2H), 4.43 (dd, J = 9.8, 12.5 Hz, 1H), 4.12 (s broad, 1H), 4.05 (ddd, J = 6.8, 9.3 Hz, 4.05 (ddd, J = 6.8, 9.3 Hz)Hz, 1H), 4.00 (d, J = 11.3 Hz, 1H), 3.84 (d, J = 11.2 Hz, 1H), 3.77 (ddd, J = 9.3, 10.9, 10.9 Hz, 1H), 3.73 (dd, J = 3.2, 10.9 Hz, 1H), 3.33 (d, J = 1.0 Hz, 1H), 2.75 (ddd, J = 3.2, 8.9, 12.3 Hz, 1H), 2.48 (dd, J = 8.9, 14.8 Hz, 1H), 2.44 (s broad, 1H), 2.25 (d, J = 6.7, 15.2 Hz, 1H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>): δ 142.5, 135.6, 133.4, 132.5, 128.6, 128.1(2C), 127.2(2C), 126.5, 125.7, 125.6, 125.2, 124.7, 124.0, 123.6, 80.7, 68.5, 60.3, 52.9, 45.6, 45.4, 44.0; LRMS (ESI): Mass calcd for  $C_{23}H_{24}O_3Na$  [M+Na]<sup>+</sup>, 371. Found [M+H]<sup>+</sup>, 371.



(2R,3R,4R)-2-(hydroxymethyl)-3-(naphthalen-1-yl)-4-phenylcyclopentanone (26): Into a flame-dried 10 mL round bottom flask equipped with a magnetic stirbar was weighed triol 25 (90 mg, 0.258 mmol). The flask was purged with N<sub>2</sub> and CH<sub>2</sub>Cl<sub>2</sub> (4 mL) was added under positive  $N_2$  pressure. NaIO<sub>4</sub> adsorbed onto silica gel (520 mg of a 1 mmol NaIO<sub>4</sub>/g SiO<sub>2</sub>, 4 equiv.)<sup>8</sup> was added to the solution and stirring was maintained at 25 °C until TLC analysis indicated complete conversion of the triol (5-16h). The mixture was then filtered over a short plug of SiO<sub>2</sub>, washed with EtOAc and concentrated under reduced pressure. The crude mixture was purified by flash chromatography using 20% EtOAc/hexanes to 40% EtOAc/hexanes to afford 57 mg (69% yield) of 26 as a colorless gum. Analytical data for 26: IR (film) 3447 (broad), 3060, 3031, 2930, 2881, 1736, 779, 733, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  8.30 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.64 (ddd, J = 1.3, 6.9, 8.4 Hz, 1H), 7.55 (ddd, J = 0.9, 6.8, 7.9 Hz, 1H), 7.08 (t, J = 7.7 Hz, 1H), 7.05-7.00 (m, 1H), 6.97-6.92 (m, 2H), 6.52 (d, J = 7.2 Hz, 1H), 6.43-6.39 (m, 2H), 4.58 (dd, J = 6.7, 13.3 Hz, 1H), 4.13 (dt, J = 2.9, 6.6 Hz, 1H), 3.96 (ddd, J = 3.8, 7.7, 11.4 Hz, 1H), 3.70-3.65 (m, 1H), 3.11 (ddd, J = 4.2, 5.6, 13.2 Hz, 1H), 3.03-3.00 (m, 2H), 2.49-2.42 (m, 1H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>): δ 220.6, 139.8, 133.8, 133.3, 132.1, 129.2, 127.7(2C), 127.5(2C), 127.4, 126.5, 126.4, 125.6, 124.9, 123.3, 122.7, 60.2, 50.6, 45.1, 44.3, 43.4; LRMS (ESI): Mass calcd for  $C_{22}H_{21}O_2$  [M+H]<sup>+</sup>, 317. Found [M+H]<sup>+</sup>, 317.



(1S,2R,4R,5R)-isopropyl 2-hydroxy-2-(hydroxymethyl)-5-(naphthalen-1-yl)-4phenylcyclopentanecarboxylate (27): Into an oven-dried vial equipped with a magnetic stirbar was weighed bis-ester 22 (>20:1 dr), (50 mg, 0.11 mmol). The vial was purged with N<sub>2</sub> and THF (1.2 mL) and MeOH (0.6 mL) were added under positive N<sub>2</sub> pressure. The solution was cooled to 0 °C and NaBH<sub>4</sub> (62 mg, 1.62 mmol) was added in one portion. The mixture was stirred at 0 °C for 1hr before an additional 5 equiv. of NaBH<sub>4</sub> (21 mg, 0.54 mmol) was added. The mixture was stirred an additional 30 min at 0 °C, after which time TLC analysis indicated complete conversion of the bis-ester. The reaction mixture was slowly quenched with 1M HCl, and the aqueous phase was extracted with EtOAc (3x). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. <sup>1</sup>H NMR analysis of the crude indicated

<sup>8)</sup> Zhong, Y.-L.; Shing, T. K. M. J. Org. Chem. 1997, 62, 2622-2624.

regioselective reduction (>20:1) and a 4:1 ratio (diol **27**:triol **25**). The crude mixture was purified by flash chromatography using 30% EtOAc/hexanes to 50% EtOAc/hexanes to afford 31 mg (71% yield) of **27** as a colorless gum. Analytical data for **27**: IR (film) 3437 (broad), 3060, 3029, 2937, 2874, 1703, 1384, 1106, 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  8.21 (d, *J* = 8.5 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.54 (ddd, *J* = 1.3, 6.8, 8.4 Hz, 1H), 7.49 (d, *J* = 8.2 Hz, 1H), 7.43 (ddd, *J* = 1.0, 6.8, 7.9 Hz, 1H), 7.07 (t, *J* = 7.7 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 6.84-6.79 (m, 3H), 6.66-6.63 (m, 2H), 5.04 (dd, *J* = 9.6, 12.6 Hz, 1H), 4.92 (sep, *J* = 6.3 Hz, 1H), 4.51 (d, *J* = 1.0 Hz, 1H), 4.19 (ddd, *J* = 6.3, 9.2 Hz, 1H), 3.93 (dd, *J* = 6.2, 11.3 Hz, 1H), 3.89 (dd, *J* = 6.3 Hz, 1H), 2.29 (ddd, *J* = 0.9, 6.3, 14.8 Hz, 1H), 1.14 (d, *J* = 6.2 Hz, 3H), 0.97 (d, *J* = 6.3 Hz, 3H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  174.5, 142.1, 134.4, 133.3, 132.2, 128.5, 128.0(2C), 127.3(2C), 126.8, 125.8, 125.7, 125.2, 124.4(2C), 123.7, 81.9, 68.9, 68.8, 53.0, 48.3, 46.1, 43.3, 21.5(2C); LRMS (ESI): Mass calcd for C<sub>26</sub>H<sub>29</sub>O<sub>4</sub> [M+H]<sup>+</sup>, 405.



(2*R*,3*R*)-isopropyl 2-(naphthalen-1-yl)-5-oxo-3-phenylcyclopentanecarboxylate (30): β-ketoester 30 was prepared from diol 27 (14.6 mg, 0.036 mmol) by the same procedure described for compound 26. The crude reaction mixture was purified by flash chromatography using 5% EtOAc/hexanes to 7.5% EtOAc/hexanes to afford 13.5 mg (74% yield) of 30 as a colorless gum and 12:1 (keto:enol). <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>): *keto:* δ 8.30 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.67-7.60 (m, 2H), 7.56-7.52 (m, 1H), 7.09 (t, J = 7.7 Hz, 1H), 7.04-7.00 (m, 1H), 6.96-6.91 (m, 2H), 6.57 (d, J = 7.2Hz, 1H), 6.42-6.39 (m, 2H), 5.06 (dd, J = 6.6, 12.9 Hz, 1H), 4.97 (sep, J = 6.2 Hz, 1H), 4.21 (ddd, J = 1.1, 6.5, 7.9 Hz, 1H), 3.95 (d, J = 12.8 Hz, 1H), 3.15 (dd, J = 8.2, 19.0 Hz, 1H), 3.02 (td, J = 0.9, 19.0 Hz, 1H), 1.20 (d, J = 6.2 Hz, 3H), 1.11 (d, J = 6.3 Hz, 3H); *enol (key signals):* 11.00 (s broad, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.30-7.27 (m, 1H), 7.19 (ddd, J = 1.3, 6.9, 8.2 Hz, 1H), 7.14 (d, J = 7.0 Hz, 1H), 6.75-6.69 (m, 3H), 6.68-6.65 (m, 2H), 5.23 (d, J = 8.7 Hz, 1H), 3.06 (ddd, J = 1.2, 10.9, 17.8 Hz, 1H), 2.91 (dd, J = 8.6, 17.7 Hz, 1H), 1.05 (d, J = 6.2 Hz, 3H).



(3S,4R)-3-(naphthalen-1-yl)-4-phenylcyclopentanone (28): Into a tube equipped with a magnetic stirbar was weighed  $\beta$ -ketoester 30 (19 mg, 0.051 mmol). The tube was purged

with N<sub>2</sub> and DMSO (1.0 mL) and H<sub>2</sub>O (0.25 mL) were added under positive N<sub>2</sub> pressure. The solution was heated to 130 °C for 3 hours, after which time TLC analysis indicated complete conversion. The mixture was transferred into an extraction funnel containing brine. The aqueous phase was extracted with EtOAc (3x) and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude mixture was purified by flash chromatography using 5% EtOAc/hexanes to 10% EtOAc/hexanes to afford 14 mg (96% yield) of **28** as a colorless gum. Analytical data for **27**: IR (film) 3059, 3048, 2959, 2850, 1740, 1261, 798, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>):  $\delta$  8.12-8.08 (m, 1H), 7.86-7.82 (m, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.52-7.45 (m, 2H), 7.17 (t, *J* = 7.7 Hz, 1H), 7.00-6.96 (m, 1H), 6.93-6.88 (m, 2H), 6.71 (d, *J* = 7.2 Hz, 1H), 6.47-6.44 (m, 2H), 4.71 (ddd, *J* = 7.0, 7.0, 10.6 Hz, 1H), 4.16 (ddd, *J* = 6.4, 6.4, 6.4 Hz, 1H), 2.97 (dd, *J* = 10.6, 18.3 Hz, 1H), 2.92 (d, *J* = 1.8 Hz, 1H), 2.91 (s, 1H), 2.65 (dd, *J* = 7.3, 18.3 Hz, 1H); <sup>13</sup>C NMR (125 MHz; CDCl<sub>3</sub>):  $\delta$  218.3, 139.4, 134.8, 133.6, 132.0, 128.9, 127.62(2C), 127.56(2C), 127.3, 126.5, 126.0, 125.4, 124.8, 123.5, 123.0, 45.7, 44.8, 42.5, 41.6; LRMS (EI): Mass calcd for C<sub>21</sub>H<sub>18</sub>O [M]<sup>+</sup>, 286.



(1R,2S,3R,4S)-diisopropyl 4-(4-chlorophenyl)-1-hydroxy-3-phenylcyclopentane-1,2dicarboxylate (29): A screw-capped vial equipped with a magnetic stirbar was charged with azolium precatalyst E (42 mg, 0.098 mmol, 0.2 equiv.) and E-methyl 4-(4chlorophenyl)-2-oxobut-3-enoate (330 mg, 1.47 mmol, 3.0 equiv.). The vial was capped with a septum cap, removed from the drybox and put under positive  $N_2$  pressure. Into the vial were then successively added cinnamaldehyde (61.5 µL, 0.489 mmol, 1.0 equiv.), THF (1.0 mL, 0.50 M), Ti(OiPr)<sub>4</sub> (297 μL, 0.978 mmol, 2.0 equiv.) and finally DBU (29 µL, 0.195 mmol, 0.4 equiv.) via a syringe. Upon consumption of the aldehyde (24 hours), 3 equiv. of  $Ti(OiPr)_4$  (350 µL) were added and stirring was maintained for an additional 48 hours to allow for complete transesterification. The reaction mixture was filtered through a short plug of SiO<sub>2</sub> and washed with EtOAc. The solution was concentrated under reduced pressure and analysis of the <sup>1</sup>H NMR of the crude indicated 9:1 dr (4:29). The crude reaction mixture was purified by flash chromatography using 93% EtOAc/hexanes to afford a 1:10 mixture (4:29) of diastereoisomers. This mixture was further purified by flash chromatography using 5% Et<sub>2</sub>O/hexanes to 20% Et<sub>2</sub>O/hexanes affording 5.8 mg of 29 as a white solid. An X-ray of a crystal was obtained for compound 29 (see below) after recrystallization from hexanes. Analytical data for 29: <sup>1</sup>H NMR (500 MHz; CDCl<sub>3</sub>): δ 7.25-7.20 (m, 2H), 7.19-7.15 (m, 3H), 7.15-7.11 (m, 4H), 5.20 (sep, J = 6.3 Hz, 1H), 4.90 (sep, J = 6.1 Hz, 1H), 4.09 (s, 1H), 3.71 (dd, J = 11.7, 11.7 Hz, 1H), 3.52 (d, J = 12.4 Hz, 1H), 3.34 (ddd, J = 8.2, 10.6, 10.6 Hz, 1H), 2.87 (dd, J = 10.5, 14.4 Hz, 1H, 2.15 (dd, J = 7.5, 14.5 Hz, 1H), 1.38 (d, J = 6.4 Hz, 3H), 1.37 (d, J = 6.2 Hz, 3H, 1.11 (d, J = 6.2 Hz, 3H), 1.03 (d, J = 6.1 Hz, 3H).

# Selected NMR Spectra

























































### **HPLC Traces of Racemic and Enantioenriched Compounds**





![](_page_49_Figure_2.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_51_Figure_3.jpeg)

| Racemic 9                                                                                                                      |                    |                                           |                                       |                    |      |          |           |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|---------------------------------------|--------------------|------|----------|-----------|
| Racemic 9<br>DAD1 C, Sig=2<br>mAU<br>100<br>80<br>60<br>40<br>20                                                               | 10,8 Ref=3         | 60,100 (BCD\041)                          | 08A02.D)                              |                    |      | La Start |           |
|                                                                                                                                | <u></u>            |                                           |                                       |                    |      | >        | <u></u>   |
| ° <del>1,</del>                                                                                                                | · · ·              | · · · · ·                                 | · · · · ·                             | · · · ·            | ···· |          | · · · · · |
| 14                                                                                                                             | 16                 | 18                                        | 20                                    |                    |      | 26       | 28 miit   |
|                                                                                                                                | i                  | Area Percent                              | Report                                |                    |      | =        |           |
| Sorted Bv<br>Multiplier<br>Dilution<br>Use Multiplier & D                                                                      | ilution            | Signal<br>1.0000<br>1.0000<br>Factor with | ISTDs                                 |                    |      |          |           |
| Signal 1: DAD1 C,                                                                                                              | Sig=210,           | ,8 Ref=360,1                              | 00                                    |                    |      |          |           |
| Peak RetTime Type<br># [min]                                                                                                   | Width<br>[min]     | Area<br>[mAU*s]                           | Height<br>[mAU]                       | Area<br>%          |      |          |           |
|                                                                                                                                |                    |                                           |                                       |                    |      |          |           |
| 1 14.341 MM<br>2 25.677 MM                                                                                                     | $0.6440 \\ 1.1746$ | 3760.70752<br>3720.23462                  | 97.33033<br>52.78723                  | 50.2705<br>49.7295 |      |          |           |
| Totals :                                                                                                                       |                    | 7480.94214                                | 150.11756                             |                    |      |          |           |
| Enantioenriched                                                                                                                | 9                  |                                           |                                       |                    |      |          |           |
| DAD1 C, Sig=2<br>mAU<br>80-<br>60-<br>40-<br>20-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5-<br>5- | °0,8 Ket=3         |                                           | ,                                     |                    |      | A BUEL   |           |
| 14                                                                                                                             | - , .<br>16        | 18                                        | · · · · · · · · · · · · · · · · · · · | 22                 |      |          |           |
|                                                                                                                                | j                  | Area Percent                              | Report                                |                    |      | =        |           |
| Sorted Bv<br>Multiplier<br>Dilution<br>Use Multiplier « D                                                                      | ilution            | Signal<br>1.0000<br>1.0000<br>Factor with | ISTDs                                 |                    |      |          |           |
| Signal 1: DAD1 C,                                                                                                              | Sig=210,           | ,8 Ref=360,1                              | 00                                    |                    |      |          |           |
| Peak RetTime Type<br># [min]                                                                                                   | Width<br>[min]     | Area<br>[mAU*s]                           | Height<br>[mAU]                       | Area<br>% .        |      |          |           |
| <br>1 14.409 MM<br>2 25.597 MM                                                                                                 | 0.6392<br>1.2072   | 94.20879<br>5802.69629                    | 2.45639<br>80.11526                   | 1.5976<br>98.4024  |      |          |           |
| Totals :                                                                                                                       |                    | 5896.90508                                | 82.57165                              |                    |      |          |           |
|                                                                                                                                |                    |                                           |                                       |                    |      |          |           |

![](_page_53_Figure_2.jpeg)

![](_page_54_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

![](_page_56_Figure_3.jpeg)

![](_page_57_Figure_2.jpeg)

![](_page_58_Figure_3.jpeg)

![](_page_59_Figure_2.jpeg)

![](_page_60_Figure_2.jpeg)

![](_page_61_Figure_2.jpeg)

![](_page_62_Figure_2.jpeg)

#### DAD1 C, Sig=210,8 Ref=360,100 (DTC\DC2\_204.D) ALA mAU 3 8 300-84.84 10 A 8 250-200-150-100 -50 -0 15 17.5 20 22.5 25 27.5 30 32.5 12.5 mi -----Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 C, Sig=210,8 Ref=360,100 Peak RetTime Type Width Height Area Area [min] [mAU\*s] [mAU] # [min] \* 1 16.686 MM 0.7058 1.22129e4 288.40906 49.9659 2 28.416 MM 1.3164 1.22296e4 154.84006 50.0341 Totals : 2.44424e4 443.24911 **Enantioenriched 20** DAD1 C, Sig=210,8 Ref=360,100 (DTC\DC2\_254.D) , ANABS mAU 3 28.00 350-300-250-200 5,835 150-100-50 0 22.5 25 27.5 32.5 15 17.5 20 12.5 30 \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted Bv Sional : Multiplier 1.0000 :

• Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Dilution

| Peak  | RetTime | Type | Width  | Area      | Height    | Area    |
|-------|---------|------|--------|-----------|-----------|---------|
| #     | 「minl   |      | 「minl  | [mAU*s]   | [mAU]     | *       |
|       |         |      |        |           |           |         |
| 1     | 16.672  | MM   | 0.6819 | 518.35059 | 12.66867  | 2.1016  |
| 2     | 28.000  | MM   | 1.2475 | 2.41465e4 | 322.60889 | 97.8984 |
|       |         |      |        |           |           |         |
| Total | ls :    |      |        | 2.46649e4 | 335.27755 |         |

1.0000

![](_page_64_Figure_3.jpeg)

#### DAD1 C, Sig=210,8 Ref=360,100 (DTC\DC2\_2432.D) ART.PO mAU-Khoa Hilaga 120 8 œ́,s<sup>¢</sup> 100-3 80 -60 -40 20 0 -20 🖯 16 20 22 26 18 24 Area Percent Report Sorted Bv Sional : Multiplier 1.0000 : Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 C, Sig=210,8 Ref=360,100 Peak RetTime Type Width Area Height Area [min] [mAU\*s] [mAU] \* # ſminl ----I ----I 1 18.359 MM 0.8126 4021.78052 2 24.395 MM 1.0936 4019.97705 82.48543 50.0112 61.26331 49.9888 Totals : 8041.75757 143.74874 **Enantioenriched 22** DAD1 C, Sig=210,8 Ref=360,100 (DTC\DC2\_2502.D) 20019.0 mAU 25.947 350 300 250 200-150 3138 $100-\frac{1}{2}$ 췅 50 0 16 40 20 $2^{\prime}$ 26 Area Percent Report Sorted Bv : Sional Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 C, Sig=210,8 Ref=360,100 Peak RetTime Type Width Height Area Area # ſminl ſminl [mAU\*s] 「mAUl ÷ ----|-----|-----|-----| 1 18.430 MM 0.7665 313.64005 6.81946 1.5380 2 24.347 MM 1.0983 2.00796e4 304.70801 98.4620 1.5380 Totals : 2.03932e4 311.52747

![](_page_66_Figure_2.jpeg)

| LCOV 1 | Keciime | TAbe | WIGGU  | ALCO      | nerduc    | ALCO    |
|--------|---------|------|--------|-----------|-----------|---------|
| #      | 「minl   |      | 「minl  | [mAU*s]   | [mAU]     | *       |
|        |         |      |        |           |           |         |
| 1      | 14.735  | MM   | 0.6665 | 504.29297 | 12.60953  | 2.1547  |
| 2      | 18.652  | MM   | 0.8314 | 2.28997e4 | 459.04889 | 97.8453 |
|        |         |      |        |           |           |         |
| Total: | s :     |      |        | 2.34040e4 | 471.65842 |         |

#### DAD1 C, Sig=210,8 Ref=360,100 (DTC\DC2\_228.D) Carlow And mAU 8 10.50 marks ₽ 150 125-100-75 50 25 0 -25 -16 18 20 22 24 26 14 Area Percent Report \_\_\_\_\_ Sorted Bv Sional : Multiplier : 1.0000 : 1.0000 Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 C, Sig=210,8 Ref=360,100 Peak RetTime Type Width Area Height Area ſminl ſminl [mAU\*s] [mAU] ÷ # ----|-----|----|-----|-----|-----| 1 17.132 MM 0.7522 6511.87793 144.28413 49.9527 2 22.612 MM 1.1124 6524.20947 97.74577 50.0473 Totals : 1.30361e4 242.02991 **Enantioenriched 24** DAD1 C, Sig=210,8 Ref=360,100 (DTC\DC2\_236.D) mAU 3

![](_page_67_Figure_3.jpeg)

| Totals : | 2.33741e4 | 344.18432 |
|----------|-----------|-----------|

### **Determination of Absolute Stereochemistry of 4**

The absolute stereochemistry of **4** was determined by the X-ray diffraction. Pure material was obtained by recrystallization from hexanes.

![](_page_68_Figure_4.jpeg)

X-ray crystal structure of (1R, 2S, 3R, 4R)-diisopropyl 4-(4-chlorophenyl)-1-hydroxy-3-phenylcyclopentane-1,2-dicarboxylate:

X-ray diffraction was performed at -120 °C and raw frame data were processed using SAINT. Molecular structure was solved using direct methods and refined by F2 by full-matrix least-squares techniques. The GOF = 0.80 for 285 variables refined to R1 = 0.04 for 3272 reflections with I>2 $\alpha$ (I). There was no absorption correction. The flack parameter was -0.11. Further information is contained in the CCDC file 793381.

### **Determination of Relative Stereochemistry of the Minor Diastereomer (29)**

The relative stereochemistry of **29** (the minor diastereomer from the reaction) was determined by the X-ray diffraction. Pure material was obtained by recrystallization from hexanes.

![](_page_68_Figure_9.jpeg)

X-ray crystal structure of Diisopropyl 4-(4-chlorophenyl)-1-hydroxy-3-phenylcyclopentane-1,2-dicarboxylate:

X-ray diffraction was performed at -120 °C and raw frame data were processed using SAINT. Molecular structure was solved using direct methods and refined by F2 by full-matrix least-squares techniques. The GOF = 1.03 for 285 variables refined to R1 = 0.04 for 2679 reflections with I>2 $\alpha$ (I). There was no absorption correction. The flack parameter was 0.0. Further information is contained in the CCDC file 793382.