Supporting Information

Genome-wide Analysis of Nascent Transcription in Saccharomyces cerevisiae

Anastasia McKinlay*^{1,§}, Carlos L. Araya*^{1,2}, and Stanley Fields*,^{§,§§}

* Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

[§] Department of Medicine, University of Washington, Seattle, WA 98195, USA.

^{§§} Howard Hughes Medical Institute.

¹ These authors contributed equally to this work.

² Present address: Department of Genetics, Stanford University, Stanford, CA 94301, USA.

Supplementary References

- 1. Pelechano V, Jimeno-Gonzalez S, Rodriguez-Gil A, Garcia-Martinez J, Perez-Ortin JE, Chavez S: **Regulon-specific** control of transcription elongation across the yeast genome. *PLoS Genet* 2009, **5**(8):e1000614
- 2. Garcia-Martinez J, Aranda A, Perez-Ortin JE: Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. *Mol Cell* 2004, **15**(2):303-313.
- 3. Lefrancois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, Gerstein M, Snyder M: Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. *BMC Genomics* 2009, **10**:37.
- 4. Grigull J, Mnaimneh S, Pootoolal J, Robinson MD, Hughes TR: Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. *Mol Cell Biol* 2004, **24**(12):5534-5547.
- 5. Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. *Science* 2008, **322**(5909):1845-1848.
- 6. Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO: **Precision and functional specificity in mRNA decay**. *Proc Natl Acad Sci U S A* 2002, **99**(9):5860-5865.
- 7. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: **Genomic expression** programs in the response of yeast cells to environmental changes. *Mol Biol Cell* 2000, **11**(12):4241-4257.

Table S1. Specificity of enrichment of nascent biotinylated RNA on Streptavidin beads.

Gene	UTP (average Cp)	B16UTP (average Cp)	Fold enrichment (x)
RDN18-1	17.82	13.26	23.6
ACT1	30.9	26.5	21.1
RPL28	31.13	27.99	8.9

Average Cp values correspond to the average cross-point values from triplicate qPCR reactions.

Table S2. Specificity of enrichment of *in vitro* synthesized biotinylated *Arabidopsis thaliana* RNA on Streptavidin beads.

Transcript	UTP-RNA (Average Cp)	B16UTP-RNA (Average Cp)	Fold enrichment (x)
ELF3 (779-926)	33.39	29.4	15.9
ELF3 (2631-2795)	37.8	32.52	38.8

Average Cp values correspond to the average cross-point values from triplicate qPCR reactions

Table S3. Sequencing data acquisition and mapping statistics.

Library	Reads acquired	Reads mapped	Percent mapped	Unique, non- rRNA reads	Percent unique, non-rRNA reads
NRO	63,688,617	55,409,215	87.00%	2,492,414	4.50%
RNA	83,607,712	83,148,829	99.45%	939,582	1.13%

	Table S4. GO term enrichment ana	lysis for transcripts at to	p of the ranking by	ratios of nascent transcri	ption to transcri	pt abundance (GOrilla).
--	----------------------------------	-----------------------------	---------------------	----------------------------	-------------------	----------------	-----------

	GO Term	Description	P-value	Enrichment	N	в	n	b
ŝ	GO:0015893	drug transport	5.11E-06	8.58	2383	13	171	8
ĕ	GO:0006414	translational elongation	7.02E-06	4.85	2383	172	40	14
2	GO:0010033	response to organic substance	1.06E-05	1.83	2383	50	991	38
-	GO:0006855	drug transmembrane transport	1.25E-05	17.94	2383	8	83	5
	GO:0000296	spermine transport	5.19E-05	238.3	2383	4	5	2
	GO:0015849	organic acid transport	7.35E-05	2.55	2383	44	468	22
	GO:0007165	signal transduction	1.00E-04	1.76	2383	117	578	50
	GO:0030447	filamentous growth	1.51E-04	1.77	2383	50	940	35
	GO:0006468	protein amino acid phosphorylation	1.55E-04	1.69	2383	64	923	42
	GO:0006075	1,3-beta-glucan biosynthetic process	1.64E-04	76.87	2383	2	31	2
	GO:0006074	1,3-beta-glucan metabolic process	1.64E-04	76.87	2383	2	31	2
	GO:0051274	beta-glucan biosynthetic process	1.70E-04	38.44	2383	6	31	3
	GO:0016310	phosphorylation	1.71E-04	1.65	2383	72	923	46
	GO:0051273	beta-glucan metabolic process	3.35E-04	32.94	2383	7	31	3
	GO:0019932	second-messenger-mediated signaling	3.58E-04	4.35	2383	15	329	9
	GO:0016049	cell growth	4.10E-04	1.85	2383	37	940	27
	GO:0015837	amine transport	4.31E-04	2.72	2383	30	468	16
	GO:0055085	transmembrane transport	4.56E-04	1.55	2383	182	575	68
	GO:0019236	response to pheromone	5.31E-04	2.16	2383	21	892	17
	GO:0065009	regulation of molecular function	6.13E-04	2.51	2383	77	259	21
	GO:0023052	signaling	6.69E-04	1.44	2383	137	909	75
	GO:0023033	signaling pathway	6.69E-04	1.44	2383	137	909	75
	GO:0015846	polyamine transport	7.73E-04	105.91	2383	9	5	2
	GO:0070783	growth of unicellular organism as a thread of	8.37E-04	1.8	2383	38	940	27
	GO:0044182	filamentous growth of a population of unicellular	8.37E-04	1.8	2383	38	940	27
	GO:0030811	regulation of nucleotide catabolic process	9.57E-04	5.88	2383	21	135	7
	GO:0033121	regulation of purine nucleotide catabolic process	9.57E-04	5.88	2383	21	135	7
	GO:0007187	G-protein signaling, coupled to cyclic nucleotide	9.63E-04	7.24	2383	4	329	4
	GO:0007188	G-protein signaling, coupled to cAMP nucleotide	9.63E-04	7.24	2383	4	329	4
E	GO:0004871	signal transducer activity	2.85E-07	2.76	2383	35	617	25
Ĕ	GO:0060089	molecular transducer activity	2.85E-07	2.76	2383	35	617	25
Ĕ	GO:0005215	transporter activity	8.30E-06	1.65	2383	180	611	76
цщ,	GO:0004672	protein kinase activity	2.44E-05	1.78	2383	61	923	42
	GO:0003700	sequence-specific DNA binding transcription	2.82E-05	1.71	2383	64	979	45
	GO:0015297	antiporter activity	2.85E-05	74.47	2383	8	12	3
	GO:0000297	spermine transmembrane transporter activity	5.19E-05	238.3	2383	4	5	2
	GO:0022892	substrate-specific transporter activity	6.73E-05	1.65	2383	160	588	65
	GO:0004674	protein serine/threonine kinase activity	6.77E-05	1.77	2383	57	923	39
	GO:0022857	transmembrane transporter activity	7.08E-05	2.37	2383	153	197	30
	GO:0005099	Ras GTPase activator activity	1.80E-04	7.27	2383	17	135	7
	GO:0015238	drug transmembrane transporter activity	2.49E-04	11.96	2383	12	83	5
	GO:0005096	GTPase activator activity	2.85E-04	5.3	2383	30	135	9
	GO:0015203	polyamine transmembrane transporter activity	3.83E-04	136.17	2383	7	5	2
	GO:0016773	phosphotransferase activity, alcohol group as	4.51E-04	1.55	2383	88	923	53
	GO:0005088	Ras guanyl-nucleotide exchange factor activity	4.56E-04	4.56	2383	6	523	6
	GO:0043565	sequence-specific DNA binding	4.63E-04	1.6	2383	120	697	56
	GO:0015291	secondary active transmembrane transporter	5.99E-04	35.04	2383	17	12	3
	GO:0005097	Rab GTPase activator activity	7.62E-04	8.83	2383	10	135	5
	GO:0005275	amine transmembrane transporter activity	8.54E-04	2.53	2383	24	588	15
ġ	GO:0005886	plasma membrane	9.90E-07	3.95	2383	175	69	20
Com	GO:0031224	intrinsic to membrane	3.57E-04	2.09	2383	460	72	29

N: Total number of genes. B: Total number of genes with specific GO term (background). n: Total number of genes in "target" set. b: Total number of genes with specific GO term in "target" set.

	GO Term	Description	P-value	Enrichment	N	В	n	b
v,	GO:0006412	translation	4.45E-09	1.59	2383	177	922	109
e c	GO:0033044	regulation of chromosome organization	3.51E-04	38.23	2383	11	17	3
L L	GO:0006334	nucleosome assembly	3.59E-04	5.02	2383	14	271	8
	GO:0030004	cellular monovalent inorganic cation homeostasis	7.81E-04	4.79	2383	17	234	8
	GO:0003735	structural constituent of ribosome	6.38E-08	2.41	2383	119	366	44
2	GO:0005198	structural molecule activity	9.75E-06	1.89	2383	189	366	55
t	GO:0044444	cytoplasmic part	3.51E-07	1.14	2383	1190	984	559
9	GO:0044445	cytosolic part	4.82E-07	1.61	2383	136	905	83
2	GO:0033279	ribosomal subunit	7.64E-07	1.85	2383	126	623	61
E	GO:0032991	macromolecular complex	1.53E-06	1.45	2383	910	219	121
C	GO:0043228	non-membrane-bounded organelle	8.46E-06	1.29	2383	417	897	202
	GO:0043232	intracellular non-membrane-bounded organelle	8.46E-06	1.29	2383	417	897	202
	GO:0044422	organelle part	3.19E-05	1.16	2383	1177	641	368
	GO:0044446	intracellular organelle part	3.19E-05	1.16	2383	1177	641	368
	GO:0015935	small ribosomal subunit	3.79E-05	3.14	2383	54	267	19
	GO:0022627	cytosolic small ribosomal subunit	4.48E-05	3.48	2383	41	267	16
	GO:0044424	intracellular part	6.52E-05	1.05	2383	2149	688	649
	GO:0005840	ribosome	7.19E-05	1.45	2383	175	875	93
	GO:0030529	ribonucleoprotein complex	9.06E-05	1.31	2383	309	898	152
	GO:0022625	cytosolic large ribosomal subunit	3.13E-04	1.74	2383	55	895	36
	GO:0005737	cytoplasm	8.73E-04	1.12	2383	1034	884	430

Table S5. GO term enrichment analysis for transcripts at bottom of the ranking by ratios of nascent transcription to transcript abundance (GOrilla).

N: Total number of genes. B: Total number of genes with specific GO term (background). n: Total number of genes in "target" set. b: Total number of genes with specific GO term in "target" set.

Table S6. Sequencing data acquisition and mapping statistics of heatshock libraries.

Library	Reads acquired	Reads mapped	Percent mapped	Unique, non- rRNA reads	Percent unique, non-rRNA reads
NRO (HS)	19,918,770	11,423,271	57.35%	378,273	3.31%
Total RNA (HS)	70,159,160	69,502,678	99.07%	656,630	0.94%

Figure S1. Correlation between measurements of nascent transcription in yeast. (A) Correlation between our NRO data and Pelechano et al. (2009) [1] estimates of transcription rate (Spearman's $\rho = 0.53$). (B) Correlation between García-Martínez et al. (2004) [2] and Pelechano et al. (2009) [1] estimates of transcription rate (Spearman's $\rho = 0.61$).

Figure S2. Genome-wide view of nascent transcription in yeast. *Z*-score of NRO read densities in 1 kb bins are shown for each chromosome. Genome-wide analysis of nascent synthesis revealed extensive transcription across the entire yeast genome. No > 3 kb clusters are observed to have read densities >3.1 *z*-scores.

Figure S3. RNA polymerase II density is better correlated with nascent transcription than with transcript abundance. Correlation between NRO (A) and total RNA (B) read densities to RNA polymerase II density from Lefrancois et al. 2009 study [3] within non-overlapping transcript models (Pearson's $R^2 = 0.41$ and $R^2 = 0.37$, respectively).

Figure S4. Nascent transcripts are enriched for intronic sequences and show markedly less splicing activity. (A) The log-transformed ratio of nascent and steady-state transcript levels (x-axis) is plotted against the log-transformed ratio of NRO and total RNA intronic read depths (y-axis) for 48 intron-containing transcripts. Inset: The ratio of intronic read densities in NRO and total RNA libraries was normalized by the fold difference in nascent and steady-state transcript levels. A histogram of these transcript-normalized intronic ratios is shown. (B) For each intron-containing gene (N = 48), a splicing score was calculated in NRO and total RNA libraries as the ratio of the mean intronic read depth over the mean read depth in flanking exons. As such, the splicing score measures the fraction of unspliced transcripts for each gene, where 1 indicates absence of splicing in the transcript and 0 indicates the transcript is fully spliced. To examine gains in unspliced transcript levels, a distribution of the ratios of NRO to total RNA splicing scores is shown.

Figure S5. The NRO to total RNA read depth ratio is drastically increased near TSSs. The average ratio of NRO and total RNA read depth is plotted as a function of distance from TSSs for 2,530 genes that are transcriptionally active in both libraries. Dashed line represents the linear model regressed from positions 100-1000 bp. We observe a relatively constant ratio, beginning about 100 bp downstream of the TSS and continuing to the 3' end. However, this ratio was twice as high within the first 100 bp downstream of the TSS, suggesting that the enrichment of nascent transcription is specific to the promoter-proximal region.

Figure S6. NRO signal controls. (A) We asked whether the promoter-proximal transcription peak could be the result of the increased average read density of short transcripts. We modeled the even distribution of reads within transcripts by computing the mean read depth for each transcript and plotted it as a function of distance from the TSS for the nascent and total RNA populations. This analysis showed similar profiles for the distribution of mean reads between nascent and total RNAs, suggesting that the peak of nascent transcription at the promoter-proximal region is not due to unequal sequencing coverage of transcripts of different length. **(B)** To rule out the possibility that the abundance of the promoter-proximal nascent RNA transcription is due to chance or to sequencing biases, we sorted transcripts into 100 bp-size bins corresponding to where their maximum read depth was observed. This analysis revealed that in nascent RNA libraries, maximum read depth was over two-fold more probable within the promoter-proximal 100 bp region than in any of the downstream 100 bp bins. Similarly, over twice as many genes in the nascent RNA library showed their maximum read depth was comparable between nascent and total RNAs in bins downstream of the promoter-proximal 100 bp. Thus, we conclude that the nascent transcription peak in the promoter-proximal region is not due to chance or sequencing biases.

Figure S7. (A) Distribution of genes in the 'active/not paused,' 'active/paused,' 'inactive/paused' and 'inactive/ not paused' categories as determined from NRO read densities in the promoter-proximal 100 bp and body of the gene (≥101 bp downstream of TSS). To identify genes with promoter-proximal enrichment of RNA polymerase II activity we applied a strategy similar to the one described by Core et al. (2008), which allows a classification of genes by pausing and activity. We calculated for each gene a pausing index consisting of the ratio of read density in the promoter-proximal region (the 100 bp downstream of the TSS) relative to that in the body of the gene (from 101 bp downstream of the TSS to the termination site). We classified genes as 'paused' if the NRO read density within the promoter-proximal region was significantly higher than in the body of the gene (P < 0.001), or 'not paused' if this condition was not met. For both 'paused' and 'not paused' genes, a gene was considered 'active' if the NRO read density from 201 bp downstream of the TSS was significant (P < 0.01), or 'inactive' if it was not. (B) Examples of genes classified by pausing versus activity. IGV genome browser views (http://www.broadinstitute.org/igv) of NRO (red) and total RNA (blue) read density in transcript models for prototypical genes classified as 'active/not paused' (CWC21), 'active/paused' (NIS1), 'inactive/paused' (RAD10), and 'inactive/not paused' (STE6). With the exception of RAD10, the region shown encompasses the transcript model (from TSS to termination site). Normalized read depth is shown in the plus and minus strands as positive and negative values, respectively. Read depth range is indicated between brackets. Transcript models are schematized below each gene with arrows in green indicating the coding region of each gene. (C) Correlation between the modeled promoter-proximal enrichment and pausing

indices. For each gene, read depth from 101 bp downstream of the TSS was used to generate a linear model of read depth throughout the transcript. Expected read density in the promoter-proximal 100 bp was extrapolated from linear models with natural intersects. A promoter-proximal enrichment ratio of the observed over the predicted read density was then estimated and compared to the pausing indices reported in this study. The correlation between promoter-proximal enrichment and pausing indices is shown for 2,578 genes with significant read densities in NRO and total RNA libraries, grey dots. Transcripts with statistically significant pausing indices (P < 0.001) are highlighted in red. The significance of promoter-proximal enrichment was determined by testing for significance of the observed read depths against the expected values using a Poisson test. (D) The overlap between genes with significant (P < 0.001) promoter-proximal enrichments (N =735, dotted purple circle) and genes with significant (P < 0.001) pausing indices (N = 712, solid red line) is shown. (E) Sequencing bias does not drive pausing classification. To examine the effect of sequencing biases on the analysis of pausing, we examined sequencing bias in genes with steady-state transcript levels two-fold above the mean (N = 414). In this set of high-abundance transcripts, we calculated the sequencing bias as the adjustment ratio (ψ) of total RNA library read density in the promoter-proximal 100 bp and the gene body. NRO read density in the promoter-proximal 100 bp was normalized by the derived, transcript-specific adjustment ratio (ψ) for each gene. Transcripts were then analyzed for pausing using the Poisson test described above following corrections. ~70% of the genes determined to be paused in the standard ('uncorrected') analysis remain classified as paused after read density adjustment ('corrected') in the NRO libraries.

Figure S8. Examples of read distribution along transcript models. NRO (red) and total RNA (blue) read densities are shown for genes with 5' accumulated read depths (*SWC4*), the 3' accumulated read depths (*HSP82*), transcripts with read depth peaks at both promoter-proximal region and near transcription termination site (*CLN3*) and for transcripts whose peak of nascent transcription occurs near the middle of the gene (*CCZ1*). For all transcripts, normalized read depth is shown in the plus and minus strands as positive and negative values, respectively. Read depth range is indicated between brackets. Transcript models are schematized below each gene with arrows in green indicating the coding region of each gene.

Figure S9. Antisense transcription in NRO and total RNA samples. (A) Venn diagram showing number of transcript models with significant antisense transcription in NRO (red) and total RNA (blue) samples and their overlap. As for expression analysis, the significance of antisense transcription within these models was calculated against the Poisson distribution of read depth per base expected from the background RNA-seq read depth in intergenic regions. A *P*-value significance cutoff of 0.01 was applied. **(B)** Prevalence of antisense transcription in NRO sample is exemplified by read depth in the *MEP2* gene.

Figure S10. Correlation between estimates of yeast RNA stability. (A) Correlation between mRNA half-life measurements by Grigull et al. (2004) [4] and Wang et al. (2002) [5] (Pearson's $R^2 = 0.174$). (**B**, **C**) Correlations between our calculated nascent transcript stability and Grigull et al. (2004) [4] (**B**) or Wang et al. (2002) [5] (**C**) data sets (Pearson's $R^2 = 0.04$ and $R^2 = 0.07$, respectively).