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1 Technical Details for Asymptotic Bias

Let Yk,o, Yk,c, Qk,o, Qk,c, lk,o, lk,c, and Σ be as defined in the manuscript. Define Vk,o to be the design
matrix corresponding to the non-censored observations under censoring pattern k., If we let Σ(k,c),(k,c) to be
the rows and columns of Σ corresponding to qk,c and similarly define Σ(k,o),(k,o) and Σ(k,c),(k,o), then we can

define Σ∗
(k,c),(k,c) = Σ(k,c),(k,c) − Σ(k,c),(k,o)Σ

−1
(k,o),(k,o)Σ(k,o),(k,c), V

∗
k,c = Vk,c − Σ(k,c),(k,o)Σ

−1
(k,o),(k,o)Vk,o, and

Q∗
k,c = Qk,c − Σ(k,c),(k,o)Σ

−1
(k,o),(k,o)Qk,o.

If we set the expectation of the partial derivative with respect to δ of the log likelihood equal to zero, we
obtain

0 = EQ|V

[
I(Q > l)

∂

∂δ
{log fY (Q; δ, V )}

]
(1)

+

2n−2∑
k=1

EQ|V

[
I(Qk,c = lk,c, Qk,o > lk,o)

∂

∂δ

{
log fYk,o

(Qk,o; δ, Vk,o)
}]

+
2n−2∑
k=1

EQ|V

[
I(Qk,c = lk,c, Qk,o > lk,o)

∂

∂δ

{
logFYk,c|Yk,o

(lk,c|Qk,o; δ, V )
}]

+ EQ|V

[
I(Q = l)

∂

∂δ
{logFY (l; δ, V )}

}
.

The first term in (1) can be re-written as

EQ|V

[
I(Q > l)

∂

∂δ
{log fY (Q; δ, V )}

]
(2)

=

∫ ∞

l

V TΣ−1(q − V δ)gY (q, δ
∗, V )dq

= P (Q > l)V TΣ−1(V δ∗ − V δ) +

∫ ∞

l

V TΣ−1(q − V δ∗)gY (q, δ
∗, V )dq,

where P (·) is the probability of the given event under the true random effects density.
Similarly if fY (q; δ, V ) is the multivariate normal density, the last term of (1) can be written as

EQ|V

[
I(Q = l)

∂

∂δ
{logFY (l; δ, V )}

}
(3)

= GY (l; δ
∗, V )

∂
∂δFY (l; δ, V )

FY (l; δ, V )

=
GY (l; δ

∗, V )

FY (l; δ, V )

∂

∂δ

{∫ l

−∞
fY (q; δ, V )dq

}
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=
GY (l; δ

∗, V )

FY (l; δ, V )

∫ l

−∞

∂

∂δ
{fY (q; δ, V )} dq

=
GY (l; δ

∗, V )

FY (l; δ, V )

∫ l

−∞

∂

∂δ
{log fY (q; δ, V )} fY (q; δ, V )dq

=
GY (l; δ

∗, V )

FY (l; δ, V )

∫ l

−∞
V TΣ−1(q − V δ)fY (q; δ, V )dq

Let c0(δ; q, V ) = GY (l;δ∗,V )
FY (l;δ,V ) V TΣ−1(q − V δ)fY (q; δ, V ). Then if we take the first-order Taylor expansion

of c0(δ; q, V ) about δ = δ∗, then (3) can be written as∫ l

−∞

G(l; δ∗, V )

FY (l; δ∗, V )
V TΣ−1(q − V δ∗)fY (q; δ

∗, V )dq +

∫ l

−∞

∂

∂δ
{c0(δ; q, V )}

∣∣∣∣
δ=δ0

(δ − δ∗)dq (4)

=

∫ l

−∞
V TΣ−1(q − V δ∗)

{
GY (l; δ

∗, V )

FY (l; δ∗, V )
fY (q; δ

∗, V )− gY (q; δ
∗, V )

}
dq

+

∫ l

−∞

∂

∂δ
{c0(δ; q, V )}

∣∣∣∣
δ=δ0

(δ − δ∗)dq +

∫ l

−∞
V TΣ−1(q − V δ∗)gY (q, δ

∗, V )dq,

for some δ0 interior to the line segment joining δ and δ∗.
The summand in the third term of equation (1) can be simplified as follows:

EQ|V

[
I(Qk,c = lk,c, Qk,o > lk,o)

∂

∂δ

{
logFYk,c|Yk,o

(lk,c|Qk,o; δ, V )
}]

(5)

= EQ|V

{
I(Qk,c = lk,c, Qk,o > lk,o)

∂
∂δFYk,c|Yk,o

(lk,c|Qk,o; δ, V )

FYk,c|Yk,o
(lk,c|Qk,o; δ, V )

}

= EQk,o|V EQk,c|Qk,o,V

{
I(Qk,c = lk,c, Qk,o > lk,o)

∂
∂δFYk,c|Yk,o

(lk,c|Qk,o; δ, V )

FYk,c|Yk,o
(lk,c|Qk,o; δ, V )

}

= EQk,o|V

{
I(Qk,o > lk,o)GYk,c|Yk,o

(lk,c|Qk,o; δ
∗, V )

∂
∂δFYk,c|Yk,o

(lk,c|Qk,o; δ, V )

FYk,c|Yk,o
(lk,c|Qk,o; δ, V )

}

=

∫ ∞

lk,o

{
GYk,c|Yk,o

(lk,c|qk,o; δ∗, V )
∂
∂δFYk,c|Yk,o

(lk,c|qk,o; δ, V )

FYk,c|Yk,o
(lk,c|qk,o; δ, V )

}
gYk,o

(qk,o; δ
∗, Vk,o)dqk,o

=

∫ ∞

lk,o

∫ lk,c

−∞

GYk,c|Yk,o
(lk,c|qk,o; δ∗, V )

FYk,c|Yk,o
(lk,c|qk,o; δ, V )

∂

∂δ

{
log fYk,c|Yk,o

(qk,c|qk,o; δ, V )
}
×

fYk,c|Yk,o
(qk,c|qk,o; δ, V )dqk,cgYk,o

(qk,o; δ
∗, Vk,o)dqk,o

We can also write the summand in the second term of (1) as

EQ|V

[
I(Qk,c = lk,c, Qk,o > lk,o)

∂

∂δ
log

{
fYk,o

(Qk,o, δ, Vk,o)
}]

(6)

=

∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ
log

{
fYk,o

(Qk,o, δ, Vk,o)
}
gY (q; δ

∗, V )dq

Therefore, if we subtract∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ

{
log fYk,c|Yk,o

(qk,c|qk,o; δ, V )
}
gY (q; δ

∗, V )dq (7)

=

∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ

{
log fYk,c|Yk,o

(qk,c|qk,o; δ, V )
}
gYk,c|Yk,o

(qk,c|qk,o; δ∗, V )dqk,cgYk,o
(qk,o; δ

∗, Vk,o)dqk,o
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from (5) and add the same quantity to (6) then we obtain the following.
The summand for the second term with adding (7) is now∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ

[
log

{
fYk,o

(qk,o, δ, Vk,o)
}
+ log

{
fYk,c|Yk,o

(qk,c|qk,o; δ, V )
}]

gY (q; δ
∗, V )dq (8)

=

∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ
{log fY (q, δ, V )} gY (q; δ∗, V )dq

=

∫ ∞

lk,o

∫ lk,c

−∞
V TΣ−1(q − V δ)gY (q; δ

∗, V )dq

= V TΣ−1(V δ∗ − V δ)P (Qk,c = lk,c, Qk,o > lk,o) +

∫ ∞

lk,o

∫ lk,c

−∞
V TΣ−1(q − V δ∗)gY (q; δ

∗, V )dq.

The summand for the third term (with subtracting 7) is∫ ∞

lk,o

∫ lk,c

−∞
V ∗T
k,c Σ

∗−1
(k,c),(k,c)

{q∗k,c − V ∗
k,cδ} × (9){

GYk,c|Yk,o
(lk,c|qk,o; δ∗, V )

FYk,c|Yk,o
(lk,c|qk,o; δ, V )

fYk,c|Yk,o
(qk,c|qk,o; δ, V )− gYk,c|Yk,o

(qk,c|qk,o; δ∗, V )

}
dqk,cgYk,o

(qk,o; δ
∗, Vk,o)dqk,o

If we let ck(δ; q, V ) be the integrand in (9) and then take the first-order Taylor expansion about δ = δ∗

of ck(δ; q, V ), then (9) can be written as

∫ ∞

lk,o

∫ lk,c

−∞
V ∗T
k,c Σ

∗−1
(k,c),(k,c)(q

∗
k,c − V ∗

k,cδ
∗)× (10){

GYk,c|Yk,o
(lk,c|qk,o; δ∗, V )

FYk,c|Yk,o
(lk,c|qk,o; δ∗, V )

fYk,c|Yk,o
(qk,c|qk,o; δ∗, V )− gYk,c|Yk,o

(qk,c|qk,o; δ∗, V )

}
dqk,cgYk,o

(qk,o; δ
∗, Vk,o)dqk,o

+

∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ
{ck(δ; q, V )}

∣∣∣∣
δ=δ0

(δ − δ∗)dq.

There is a slight abuse of notation here since the d0 here need not be the same one in (4) nor the same for
each k.

Combining (2), (4), (8), and (10) and doing a small amount of simplification gives

0 = {1−GY (l; δ
∗, V )}V TΣ−1V (δ∗ − δ) (11)

−
∫ l

−∞

∂

∂δ
{c0(δ; q, V )}

∣∣∣∣
δ=δ0

(δ∗ − δ)dq

−
2n−2∑
k=1

∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ
{ck(δ; q, V )}

∣∣∣∣
δ=δ0

(δ∗ − δ)dq

+

∫ l

−∞
V TΣ−1(q − V δ∗)

{
GY (l; δ

∗, V )

FY (l, δ∗, V )
fY (q; δ

∗, V )− gY (q; δ
∗, V )

}
dq

+
2n−2∑
k=1

[∫ ∞

lk,o

∫ lk,c

−∞
V ∗T
k,c Σ

∗−1
k,c (q∗k,c − V ∗

k,cδ
∗) ×{

GYk,c|Yk,o
(lk,c|qk,o; δ∗, V )

FYk,c|Yk,o
(lk,c|qk,o, δ∗, V )

fYk,c|Yk,o
(qk,c|qk,o; δ∗, V )− gYk,c|Yk,o

(qk,c|qk,o; δ∗, V )

}
dqk,cgYk,o

(qk,o; δ
∗, Vk,o)dqk,o

]
.
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Thus, D(δ∗, V ) is given by

D(δ∗, V ) = {1−GY (l; δ
∗, V )}V TΣ−1V

−
∫ l

−∞

∂

∂δ
{c0(δ; q, V )}

∣∣∣∣
δ=δ0

dq

−
2n−2∑
k=1

∫ ∞

lk,o

∫ lk,c

−∞

∂

∂δ
{ck(δ; q, V )}

∣∣∣∣
δ=δ0

dq.

2 SAS Code

Here we show how PROC NLMIXED can be used to to obtain the SNP estimates for q = 1 and q = 2
(K = 1 and K = 2 for each). For q = 1 we fit a random intercept model and q = 2 we fit a random
slope and intercept model. Gaussian quadrature was used to approximate the integral in equation(4.1)in
the manuscript where the quadrature points are centered on the empirical Bayes estimates from assuming
Gaussian random effects and scaled using the square root of the estimated variance matrix of the empirical
Bayes estimates.

In the following code we make two calls to NLMIXED. The first call is used to obtain the empirical Bayes
estimates. The second implements SNP estimation.

Prior to running NLMIXED, three data sets must be created. Two of those data sets should contain
the starting values for the two calls to NLMIXED while the other should contain the data. The data set,
referred to as start value1 in the code below, should contain the starting values for the call to NLMIXED to
obtain the empirical Bayes estimates. The data set start value2 should have starting values for the call to
NLMIXED to obtain the SNP estimates. Rather than pre-specifying starting values for the second call the
NLMIXED, we show below how one can derive starting values for µ and r using the parameter estimates
from the first call to NLMIXED and a grid of starting values for ξ.

In general, data sets for starting values should have a different variable for each parameter. If there are
multiple observations in this data set, NLMIXED evaluates the log likelihood at each one, and then uses the
starting value set with the largest log likelihood for optimization. The parameters that will need starting
values, in addition to any parameters associated with additional covariates in the model, are indicated above
the example code for the model. The other data set, referred to as data set in the code, should contain the
following variables:

• cresponse = The response value if not censored and the limit of quantification if the response is censored.

• censored = An indicator variable if the response is censored.

• subject = Subject ID.

• last obs = An indicator variable if the observation is the last in the data set for the corresponding
subject.

• time = The random slope variable.

• Any additional covariates to be included in the mean model should also be included in this data set.

2.1 q = 2 Code

We provide code for the following subject-specific intercept and slope semiparametric model, which is a
specific example of model (2.1) in the main text:

Yij = b1i + b2itij + ϵij , (12)
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where Yij is the response of interest for subject i at the jth time; tij is the time; xij is null; sij = (1, tij)
T ;

ϵij
iid∼ N(0, σ2); and bi = (b1i, b2i)

T is the vector of subject specific intercept and slope which we assume can
be written as bi = µ + RZi with Zi = (Z1i, Z2i)

T , µ = (µ1, µ2)
T , and R a (2 × 2) lower triangular matrix.

We assume that Zi follows the SNP density for the K described below. We do not observe Yij but instead
observe Qij which equals Yij if Yij is larger than the lower limit of quantification and equal to the lower
limit of quantification otherwise. The code here is easily adapted for cases when xij contains additional
covariates.

In the following SAS code, we use following notation for variable names and parameters.

Parameter or Variable SAS Notation
Qij cresponse
tij time
E(b1i) b1mean
E(b2i) b2mean
var(b1i) D11
var(b2i) D22
cov(b1i, b2i) D12
µT = (µ1, µ2) (mu 1,mu 2)
ξT = (ξ1, . . . , ξd) (xi 1,...,xi d)
rT = (R11, R21, R22) (R 11,R 21,R 22)
ZT
i = (Z1i, Z2i) (z 1,z 2)

σ2 sigma sq

2.1.1 Obtain Empirical Bayes Estimates

The following obtains the empirical Bayes estimates of bi from assuming the density of bi is Gaussian. Note
that this code also gives the K = 0 estimates as well. For this optimization, start value1 should contain
parameter estimates for the mean of the subject-specific intercept (b1mean) and slope (b2mean), the variance
of those random effects (D11 and D22, respectively), the correlation between those random effects (Dcor),
the variance of the intra-subject error (sigma sq), as well as parameters for any other covariates included in
the mean model.

proc nlmixed data=simdataset;

parms / data=start_value1;

bounds -1<Dcor<1, D11 D22 sigma_sq>=0;

pi=2*arsin(1);

/* Any additional covariates used to describe the mean trajectory

should be included here */

mu=b1mean+b2mean*time+z_1+time*z_2;

if censored=0 then loglik=log((1/(sqrt(2*pi*sigma_sq)))*exp(-(cresponse-mu)**2/(2*sigma_sq)));

if censored=1 then loglik=log(probnorm((cresponse-mu)/sqrt(sigma_sq)));

D12=(D11*D22)**0.5*Dcor;

model response ~ general(loglik);

random z_1 z_2 ~ normal([0,0], [D11,D12,D22]) subject=subject;

estimate "D12" (D11*D22)**0.5*Dcor;

predict z_1 out=int_data;

predict z_2 out=slope_data;
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predict z_1+z_2 out=add_data;

ods output ParameterEstimates=parm_k0 AdditionalEstimates=ae_k0;

run;

The subsequent code is used to merge all the empirical Bayes estimates together into one data set, take
the square root of the estimated variance matrix of the empirical Bayes estimate, and then combine with
the data set.

proc transpose data=parm_k0 out=tparm_k0;

var Estimate;

id Parameter;

run;

proc transpose data=ae_k0 out=tae_k0;

var Estimate;

id Label;

run;

data tparm_k0;

merge tparm_k0 tae_k0;

test=1;

run;

data int_data2;

set int_data (keep=subject Pred StdErrPred last_obs);

/* Only keep one observation per subject */

where last_obs=1;

rename Pred=blup_1;

blup_var1=StdErrPred**2;

drop StdErrPred;

run;

data slope_data2;

set slope_data (keep=subject Pred StdErrPred last_obs);

/* Only keep one observation per subject */

where last_obs=1;

rename Pred=blup_2;

blup_var2=StdErrPred**2;

drop StdErrPred;

run;

data add_data2;

set add_data (keep=subject Pred StdErrPred last_obs);

/* Only keep one observation per subject */

where last_obs=1;

rename Pred=blup_add;

blup_var_add=StdErrPred**2;

drop StdErrPred;

run;

data subjspec;

merge int_data2 slope_data2 add_data2;
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by subject;

test = 1;

run;

data subjspec;

merge subjspec tparm_k0;

by test;

run;

data subjspec;

set subjspec;

/*Obtain the covariance between the empirical Bayes estimates */

blup_cov = (blup_var_add-blup_var1-blup_var2)/2;

drop last_obs _NAME_;

run;

data subjspec;

set subjspec;

lambda1 = ((blup_var1+blup_var2)+sqrt((blup_var2-blup_var1)**2+4*blup_cov**2))/2;

lambda2 = ((blup_var1+blup_var2)-sqrt((blup_var2-blup_var1)**2+4*blup_cov**2))/2;

Q11 = sqrt(1/(1+(blup_var1-lambda1)**2/blup_cov**2));

Q21 = -(blup_var1-lambda1)*Q11/blup_cov;

Q12 = sqrt(1/(1+(blup_var1-lambda2)**2/blup_cov**2));

Q22 = -(blup_var1-lambda2)*Q12/blup_cov;

/* Note: Gij is the (i,j)th element of the square root matrix */

G11 = sqrt(lambda1)*Q11**2+sqrt(lambda2)*Q12*Q21;

G12 = sqrt(lambda1)*Q11*Q12+sqrt(lambda2)*Q12*Q22;

G21 = sqrt(lambda1)*Q11*Q21+sqrt(lambda2)*Q21*Q22;

G22 = sqrt(lambda1)*Q12*Q21+sqrt(lambda2)*Q22**2;

beta_hat_1 = blup_1+b1mean;

beta_hat_2 = blup_2+b2mean;

run;

data subjspec2;

set subjspec (keep=subject G11 G12 G21 G22 beta_hat_1 beta_hat_2);

run;

data data_set2;

merge data_set subjspec2;

by subject;

run;

2.1.2 Obtain Grid of Starting Values

For the SNP estimation, start value2 must contain starting values for µ, r, ξ, and σ2. In many instances we
may wish to consider a grid of values for ξ, use starting values for µ and r that give the same estimate of
the mean and variance of the random effects as the estimates when K = 0, and then use the same starting
value for σ2 and any additional starting values for additional covariates as the estimates computed above.
If the data set xi matrix contains the grid of starting values for ξ and start value1 contains just one set of
starting values the following code can be used to obtain the corresponding estimates for µ and r.

Code for K = 1.
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data xi_matrix;

set xi_matrix;

test=1;

run;

data start_value2;

merge tparm_k0 xi_matrix;

by test;

run;

data start_value2;

set start_value2;

a00=sin(xi_1);

a10=cos(xi_1)*sin(xi_2);

a01=cos(xi_1)*cos(xi_2);

z1mean = 2*a00*a10;

z2mean = 2*a00*a01;

z11var = a00**2+3*a10**2+a01**2;

z12var = 2*a10*a01;

z22var = a00**2+a10**2+3*a01**2;

A=(z11var-z1mean**2);

B=(z12var-z1mean*z2mean);

D=(z22var-z2mean**2);

R_11 = sqrt(D11/A);

B_q = 2*B*D12/(A*R_11)-2*D12*B/(A*R_11);

A_q = (B/A)**2-2*B**2/A+D;

C_q = A*(D12/(A*R_11))**2-D22;

R_22 = (-B_q+sqrt(B_q**2-4*A_q*C_q))/(2*A_q);

R_21 = (D12-B*R_11*R_22)/(A*R_11);

mu_1 = b1mean-R_11*z1mean;

mu_2 = b2mean-R_21*z1mean-R_22*z2mean;

run;

data start_value2;

/* Any other parameters for additional covariates should also be kept here*/

set start_value2 (keep=mu_1 mu_2 R_11 R_21 R_22 xi_1 xi_2 sigma_sq);

run;

Code for K = 2.

data xi_matrix;

set xi_matrix;

test=1;

run;

data start_value2;

merge tparm_k0 xi_matrix;

by test;

run;

data start_value2;

set start_value2;

c1=sin(xi_1);
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c2=cos(xi_1)*sin(xi_2);

c3=cos(xi_1)*cos(xi_2)*sin(xi_3);

c4=cos(xi_1)*cos(xi_2)*cos(xi_3)*sin(xi_4);

c5=cos(xi_1)*cos(xi_2)*cos(xi_3)*cos(xi_4)*sin(xi_5);

c6=cos(xi_1)*cos(xi_2)*cos(xi_3)*cos(xi_4)*cos(xi_5);

a00=1.3683057*c1-0.25272473*c4-0.25272473*c6;

a10=c2;

a01=c3;

a20=-0.25272473*c1+0.65861913*c4-0.04848765*c6;

a11=c5;

a02=-0.25272473*c1+0.65861913*c6-0.04848765*c4;

z1mean = 2*a00*a10+2*a11*a01+2*a10*a02+6*a20*a10;

z2mean = 2*a00*a01+2*a10*a11+2*a01*a20+6*a01*a02;

z11var = a00**2+3*a10**2+a01**2+15*a20**2+3*a11**2+3*a02**2+6*a00*a20+6*a20*a02+2*a00*a02;

z12var = 2*a10*a01+2*a00*a11+6*a20*a11+6*a11*a02;

z22var = a00**2+a10**2+3*a01**2+3*a20**2+3*a11**2+15*a02**2+2*a00*a20+6*a00*a02+6*a20*a02;

A=(z11var-z1mean**2);

B=(z12var-z1mean*z2mean);

D=(z22var-z2mean**2);

R_11 = sqrt(D11/A);

B_q = 2*B*D12/(A*R_11)-2*D12*B/(A*R_11);

A_q = (B/A)**2-2*B**2/A+D;

C_q = A*(D12/(A*R_11))**2-D22;

R_22 = (-B_q+sqrt(B_q**2-4*A_q*C_q))/(2*A_q);

R_21 = (D12-B*R_11*R_22)/(A*R_11);

mu_1 = b1mean-R_11*z1mean;

mu_2 = b2mean-R_21*z1mean-R_22*z2mean;

run;

data start_value2;

/* Any other parameters for additional covariates should also be kept here*/

set start_value2 (keep=mu_1 mu_2 R_11 R_21 R_22 xi_1 xi_2 xi_3 xi_4 xi_5 sigma_sq);

run;

2.1.3 SNP Estimation

The following gives the code for the implementation of SNP. The code for K = 1 will be given first followed
by K = 2.

proc nlmixed data=data_set2 noad;

parms / data=start_value2;

pi = 2*arsin(1);

bounds -1.5707<= xi_1 <= 1.5707,-1.5707 <= xi_2 <= 1.5707;

J = beta_hat_1-mu_1+G11*q_1+G12*q_2;

K = beta_hat_2-mu_2+G21*q_1+G22*q_2;

z_1 = J/R_11;

z_2 =-R_21/(R_11*R_22)*J+K/R_22;

a00=sin(xi_1);

a10=cos(xi_1)*sin(xi_2);

a01=cos(xi_1)*cos(xi_2);

p_k=(a00+a10*z_1+a01*z_2);

logden = log((p_k)**2);

9



re.dens = -0.5*(z_1**2+z_2**2);

q.norm = 0.5*(q_1**2+q_2**2);

log.det.iG = log((G11*G22-G12*G21));

log.det.R.inv = log(1/(R_11*R_22));

/* Any additional covariates used to describe the mean trajectory

should be included here */

mu=mu_1+(R_11*z_1)+mu_2*time+(R_21*z_1+R_22*z_2)*time;

if censored=0 then loglik=log((1/(sqrt(2*pi*sigma_sq)))*exp(-(cresponse-mu)**2/(2*sigma_sq)));

if censored=1 then loglik=log(probnorm((cresponse-mu)/sqrt(sigma_sq)));

if last_obs=1 then loglik=loglik+logden+re.dens+q.norm+log.det.iG+log.det.R.inv;

model cresponse ~ general(loglik);

random q_1 q_2 ~ normal([0,0],[1,0,1]) subject=subject;

z1mean = 2*a00*a10;

z2mean = 2*a00*a01;

z11var = a00**2+3*a10**2+a01**2;

z12var = 2*a10*a01;

z22var = a00**2+a10**2+3*a01**2;

A=(z11var-z1mean**2);

B=(z12var-z1mean*z2mean);

D=(z22var-z2mean**2);

estimate "b1mean" mu_1+R_11*z1mean;

estimate "b2mean" mu_2+R_21*z1mean+R_22*z2mean;

estimate "D11" R_11**2*A;

estimate "D12" A*R_11*R_21+B*R_11*R_22;

estimate "D22" A*R_21**2+2*B*R_21*R_22+D*R_22**2;

run;

SNP estimation for K = 2.

proc nlmixed data=data_set2 noad;

parms / data=start_value2;

pi = 2*arsin(1);

bounds -1.5707<= xi_1 <= 1.5707,-1.5707 <= xi_2 <= 1.5707, -1.5707 <= xi_3 <= 1.5707,

-1.5707 <= xi_4 <= 1.5707, -1.5707 <= xi_5 <= 1.5707;

J = beta_hat_1-mu_1+G11*q_1+G12*q_2;

K = beta_hat_2-mu_2+G21*q_1+G22*q_2;

z_1 = J/R_11;

z_2 =-R_21/(R_11*R_22)*J+K/R_22;

c1=sin(xi_1);

c2=cos(xi_1)*sin(xi_2);

c3=cos(xi_1)*cos(xi_2)*sin(xi_3);

c4=cos(xi_1)*cos(xi_2)*cos(xi_3)*sin(xi_4);

c5=cos(xi_1)*cos(xi_2)*cos(xi_3)*cos(xi_4)*sin(xi_5);

c6=cos(xi_1)*cos(xi_2)*cos(xi_3)*cos(xi_4)*cos(xi_5);

a00=1.3683057*c1-0.25272473*c4-0.25272473*c6;

a10=c2;

a01=c3;

a20=-0.25272473*c1+0.65861913*c4-0.04848765*c6;

a11=c5;

a02=-0.25272473*c1+0.65861913*c6-0.04848765*c4;
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p_k=(a00+a10*z_1+a01*z_2+a20*z_1**2+a11*z_1*z_2+a02*z_2**2);

logden = log((p_k)**2);

re.dens = -0.5*(z_1**2+z_2**2);

q.norm = 0.5*(q_1**2+q_2**2);

log.det.iG = log((G11*G22-G12*G21));

log.det.R.inv = log(1/(R_11*R_22));

/* Any additional covariates used to describe the mean trajectory

should be included here */

mu=mu_1+(R_11*z_1)+mu_2*time+(R_21*z_1+R_22*z_2)*time;

if censored=0 then loglik=log((1/(sqrt(2*pi*sigma_sq)))*exp(-(cresponse-mu)**2/(2*sigma_sq)));

if censored=1 then loglik=log(probnorm((cresponse-mu)/sqrt(sigma_sq)));

if last_obs=1 then loglik=loglik+logden+re.dens+q.norm+log.det.iG+log.det.R.inv;

model cresponse ~ general(loglik);

random q_1 q_2 ~ normal([0,0],[1,0,1]) subject=subject;

z1mean = 2*a00*a10+2*a11*a01+2*a10*a02+6*a20*a10;

z2mean = 2*a00*a01+2*a10*a11+2*a01*a20+6*a01*a02;

z11var = a00**2+3*a10**2+a01**2+15*a20**2+3*a11**2+3*a02**2+6*a00*a20+6*a20*a02+2*a00*a02;

z12var = 2*a10*a01+2*a00*a11+6*a20*a11+6*a11*a02;

z22var = a00**2+a10**2+3*a01**2+3*a20**2+3*a11**2+15*a02**2+2*a00*a20+6*a00*a02+6*a20*a02;

A=(z11var-z1mean**2);

B=(z12var-z1mean*z2mean);

D=(z22var-z2mean**2);

estimate "b1mean" mu_1+R_11*z1mean;

estimate "b2mean" mu_2+R_21*z1mean+R_22*z2mean;

estimate "D11" R_11**2*A;

estimate "D12" A*R_11*R_21+B*R_11*R_22;

estimate "D22" A*R_21**2+2*B*R_21*R_22+D*R_22**2;

run;

2.2 q = 1 Code

We provide code for the following random intercept semiparametric model, which is a specific example of
model (2.1) in the main text:

Yij = b1i + β2tij + ϵij , (13)

where Yij is the response of interest for subject i at the jth time; tij is the time; xij = tij ; sij = 1;

ϵij
iid∼ N(0, σ2); and bi = b1i is the subject-specific intercept which we assume can be written as bi = µ+RZi.

We assume that Zi follows the SNP density for the K described below. We do not observe Yij but instead
observe Qij which equals Yij if Yij is larger than the lower limit of quantification and equal to the lower
limit of quantification otherwise. The code here is easily adapted for cases when xij contains additional
covariates.

In the following SAS code, we use following notation for variable names and parameters.

2.2.1 Obtain Empirical Bayes Estimates

proc nlmixed data=data_set;

parms /data=start_value1;

bounds D11 sigma_sq>=0;

pi=2*arsin(1);
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Parameter or Variable SAS Notation
Qij cresponse
tij time
E(b1i) b1mean
β2 b2mean
var(b1i) D11
µ mu 1
ξT = (ξ1, . . . , ξd) (xi 1,...,xi d)
R R
Zi z
σ2 sigma sq

/* Any additional covariates used to describe the mean trajectory

should be included here */

mu=b1mean+z+b2mean*time;

if censored=0 then loglik=log((1/(sqrt(2*pi*sigma_sq)))*exp(-(cresponse-mu)**2/(2*sigma_sq)));

if censored=1 then loglik=log(probnorm((cresponse-mu)/sqrt(sigma_sq)));

model response ~ general(loglik);

random z ~ normal(0,1) subject=subject;

predict z out=int_data;

ods output ParameterEstimates=parm_k0;

run;

proc transpose data=parm_k0 out=tparm_k0;

var Estimate;

id Parameter;

run;

data tparm_k0;

set tparm_k0;

test=1;

run;

data subjspec;

set int_data (keep=subject Pred StdErrPred last_obs);

where last_obs=1;

rename Pred=blup_1;

blup_var1=StdErrPred**2;

drop StdErrPred;

test = 1;

run;

data subjspec;

merge subjspec tparm_k0;

by test;

run;
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data subjspec;

set subjspec;

G11 = sqrt(blup_var1);

beta_hat_1 = blup_1+b1mean;

run;

data subjspec2;

set subjspec (keep=subject G11 beta_hat_1);

run;

data data_set2;

merge data_set subjspec2;

by subject;

run;

2.2.2 Obtain Grid of Starting Values

Obtain starting values for mu 1 and R that give the same estimate of the mean and variance of the random
effect as estimated with K = 0 over a grid of ξ values contained in the data set xi matrix.

Starting values for K = 1.

data xi_matrix;

set xi_matrix;

test=1;

run;

data start_value2;

merge tparm_k0 xi_matrix;

by test;

run;

data start_value2;

set start_value2;

a0=sin(xi_1);

a1=cos(xi_1);

z1mean = 2*a0*a1;

z11var = a0**2+3*a1**2;

A=(z11var-z1mean**2);

R = sqrt(D11/A);

mu_1 = b1mean-R*z1mean;

run;

data start_value2;

/* Any other parameters for additional covariates should also be kept here*/

set start_value2 (keep=mu_1 b2mean R xi_1 sigma_sq);

run;

Starting values for K = 2.

data xi_matrix;

set xi_matrix;

test=1;

run;

13



data start_value2;

merge tparm_k0 xi_matrix;

by test;

run;

data start_value2;

set start_value2;

c1 = sin(xi_1);

c2 = cos(xi_1)*sin(xi_2);

c3 = cos(xi_1)*cos(xi_2);

a0=1.1944776*c1+-0.2705981*c3;

a1=c2;

a2=-0.2705981*c1+0.6532815*c3;

z1mean = 2*a0*a1+6*a1*a2;

z11var = a0**2+3*a1**2+15*a2**2+6*a0*a2;

A=(z11var-z1mean**2);

R = sqrt(D11/A);

mu_1 = b1mean-R*z1mean;

run;

data start_value2;

/* Any other parameters for additional covariates should also be kept here*/

set start_value2 (keep=mu_1 b2mean R xi_1 xi_2 sigma_sq);

run;

2.2.3 SNP Estimation

SNP Estimates with K = 1.

proc nlmixed data=data_set2 noad;

parms /data=start_value2;

pi = 2*arsin(1);

bounds -1.5707<= xi_1 <= 1.5707;

J = beta_hat_1-mu_1+G11*q;

z = J/R;

a0=sin(xi_1);

a1=cos(xi_1);

p_k=(a0+a1*z);

logden = log((p_k)**2);

re.dens = -0.5*(z**2);

q.norm = 0.5*(q**2);

log.det.iG = log(G11);

log.det.R.inv = log(1/R);

/* Any additional covariates used to describe the mean trajectory

should be included here */

mu=mu_1+b2mean*time+R*z;

if censored=0 then loglik=log((1/(sqrt(2*pi*sigma_sq)))*exp(-(cresponse-mu)**2/(2*sigma_sq)));

if censored=1 then loglik=log(probnorm((cresponse-mu)/sqrt(sigma_sq)));
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if last_obs=1 then loglik=loglik+logden+re.dens+q.norm+log.det.iG+log.det.R.inv;

model cresponse ~ general(loglik);

random q ~ normal(0,1) subject=subject;

z1mean = 2*a0*a1;

z11var = a0**2+3*a1**2;

A=(z11var-z1mean**2);

estimate "b1mean" mu_1+R*z1mean;

estimate "D11" R**2*A;

run;

SNP Estimates with K = 2.

proc nlmixed data=data_set2 noad;

parms /data=start_value2;

pi = 2*arsin(1);

bounds -1.5707<= xi_1 <= 1.5707, -1.5707 <= xi_2 <= 1.5707;

J = beta_hat_1-mu_1+G11*q;

z = J/R;

c1 = sin(xi_1);

c2 = cos(xi_1)*sin(xi_2);

c3 = cos(xi_1)*cos(xi_2);

a0=1.1944776*c1+-0.2705981*c3;

a1=c2;

a2=-0.2705981*c1+0.6532815*c3;

p_k=(a0+a1*z+a2*z**2);

logden = log((p_k)**2);

re.dens = -0.5*(z**2);

q.norm = 0.5*(q**2);

log.det.iG = log(G11);

log.det.R.inv = log(1/R);

/* Any additional covariates used to describe the mean trajectory

should be included here */

mu=mu_1+b2mean*time+R*z;

if censored=0 then loglik=log((1/(sqrt(2*pi*sigma_sq)))*exp(-(cresponse-mu)**2/(2*sigma_sq)));

if censored=1 then loglik=log(probnorm((cresponse-mu)/sqrt(sigma_sq)));

if last_obs=1 then loglik=loglik+logden+re.dens+q.norm+log.det.iG+log.det.R.inv;

model cresponse ~ general(loglik);

random q ~ normal(0,1) subject=subject;

z1mean = 2*a0*a1+6*a1*a2;

z11var = a0**2+3*a1**2+15*a2**2+6*a0*a2;

A=(z11var-z1mean**2);

estimate "b1mean" mu_1+R*z1mean;

estimate "D11" R**2*A;

run;
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3 Additional Results from Simulations

Table 1: Proportion of subjects by number of non-censored observation for the four random effects densities
consider in the simulation described in the text.

Distribution 0 1 2 3 4 5
Normal 0.001 0.086 0.239 0.146 0.094 0.434
t5 0.002 0.077 0.225 0.162 0.111 0.423
Skewed 0.001 0.090 0.220 0.110 0.084 0.496
Bimodal 0.001 0.097 0.203 0.058 0.065 0.576

Table 2: Proportion of subjects by number of non-censored observation when the true random effects
density was bimodal and the time points where data was collected was varied. tA = (0, 1, 2, 3, 4)T ;
tB = (0, 1, 2, 3, 3.5, 4, 4.5)T ; tC = (−2,−1, 0, 1, 2, 3, 4)T ;

Time Points 0 1 2 3 4 5 6 7
tA 0.001 0.097 0.203 0.058 0.065 0.576 0.000 0.000
tB 0.001 0.096 0.203 0.049 0.029 0.033 0.052 0.538
tC 0.000 0.000 0.001 0.096 0.205 0.066 0.091 0.541

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

4.0 4.5 5.0 5.5 6.0 6.5 7.0

−3

−2

−1

0

1

Skewed Random Effects

Random Intercept

R
an

do
m

 S
lo

pe

0.0

0.1

0.2

0.3

0.4

0.5

4.0 4.5 5.0 5.5 6.0 6.5 7.0

−3

−2

−1

0

1

Bimodal Random Effects

Random Intercept

R
an

do
m

 S
lo

pe

Figure 1: Contour plot of the random effects densities from the “skewed” and “bimodal” scenarios. In each
case, the densities were a 70-30 mixture of two normals as described in the text.

16



Table 3: Proportion of time K was selected using AIC, HQIC, and BIC when SNP was used to estimate the
random effects. The simulation included 500 data sets with 500 subjects each.

Distribution Fit Criterion K=0 K=1 K=2
Normal AIC 0.562 0.134 0.304
Normal HQIC 0.948 0.038 0.014
Normal BIC 0.984 0.012 0.004
Skewed AIC 0.000 0.020 0.980
Skewed HQIC 0.002 0.046 0.952
Skewed BIC 0.169 0.175 0.655
Bimodal AIC 0.000 0.230 0.770
Bimodal HQIC 0.000 0.636 0.364
Bimodal BIC 0.000 0.900 0.100
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Figure 2: Average estimated contour and marginal density plots from fitting 500 data sets with “skewed”
random effects where the density was assumed to follow the SNP density with K selected by HQIC. The
blue dotted lines on the marginal density plots are the true marginal density.
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Figure 3: Average estimated contour and marginal density plots from fitting 500 data sets with “bimodal”
random effects where the density was assumed to follow the SNP density with K selected by HQIC. The
blue dotted lines on the marginal density plots are the true marginal density.
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4 Additional Results from IDEAL Study

Table 4: Proportion of responses censored at each time point for the 811 patients with CT genotype in the
IDEAL trial

Time (weeks) 0 2 4 12 Overall
Proportion 0.000 0.020 0.053 0.352 0.105

Table 5: Proportion of subjects by number of uncensored viral load measurements obtain for the 811 patients
with the CT genotype in the IDEAL trial.

Uncensored Measurements 1 2 3 4
Proportion 0.045 0.083 0.312 0.551

Table 6: Parameter estimates, standard errors, and a 95 percent Wald-type confidence limits from fitting
model (6.1) assuming the random effects followed the SNP density with K = 2.

Parameter Estimate Std Error Lower Bound Upper Bound
µ1 5.940 0.035 5.872 6.008
µ2 -0.758 0.019 -0.795 -0.722
ξ1 -0.179 0.030 -0.237 -0.120
ξ2 0.169 0.040 0.090 0.249
ξ3 0.676 0.031 0.615 0.737
ξ4 0.092 0.072 -0.050 0.234
ξ5 0.594 0.069 0.459 0.729
R11 0.422 0.019 0.385 0.459
R21 0.096 0.011 0.074 0.117
R22 0.229 0.009 0.212 0.246
σ2 0.186 0.007 0.172 0.201
E(b0i) 6.186 0.020 6.147 6.225
E(b1i) -0.393 0.014 -0.419 -0.366
var(b0i) 0.200 0.017 0.167 0.233
cov(b0i, b1i) 0.080 0.009 0.061 0.098
var(b1i) 0.135 0.011 0.114 0.155
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5 Additional Simulations

For the q = 1 simulations we considered the random-intercept model

Yij = β1tij + β0gi + b0i + ϵij , (14)

where xij = (tij , gi)
T , sij = 1, gi is equal to 0 or 1 with equal probability, ti = (ti1, . . . , ti5)

T = (0, 1, 2, 3, 4)T is

the same for all i = 1, . . . ,m, ϵij
iid∼ N(0, σ2), and b0i are the subject-specific random intercepts, independent

of ϵij . For all simulations considered here, β0 = 0.5, β1 = −0.6, σ2 = 0.5625, and b0i were generated from
distributions that were shifted and scaled so that E(b0i) = 5.75 and var(b0i) = 3.0.

The shifted and scaled random effects densities considered were: (1) normal; (2) t5 distribution; (3) a
70-30 mixture of normal densities with mean components 6.61 (70 percent component) and 3.75, which gives
a skewed density for b0i; and (4) a 70-30 mixture of normal densities with mean components 4.75 (70 percent
component) and 8.08, which produces a bimodal density for b0i. Plots of these random effects densities are
given in Figure (4). For the random effects densities that were a mixture of normal densities, the variance
of each component were equal to each other. For each of the random effects distributions considered, 500
Monte Carlo data sets were generated with 500 subjects each and the lower limit of quantification was equal
to 4 for all subjects and time points.

The proportion of subjects by number of non-censored observations for each of the random effects densities
considered is given in Table (5). Across all scenarios, a majority of subjects had at least one censored
observation. A fairly large percentage of subjects, approximately 10 percent in each scenario, had no observed
responses.

For each data set, we obtained maximum likelihood parameter estimates using SAS Proc NLMIXED
assuming that the random effects were normally distributed and assuming that they belonged to the class
of SNP densities with K = 0, 1, or 2 and K selected using information criteria. When the random effects
were assumed to be Gaussian (i.e. K = 0 for the SNP density), adaptive Gaussian quadrature was used
to approximate the likelihood. When the random effects were assumed to follow the SNP density with
K > 0, we used non-adaptive Gaussian quadrature to approximate the likelihood with the quadrature points
centered at the empirical Bayes estimates of bi derived from assuming the random effects were Gaussian. In
all models fit, the number of quadrature points was selected adaptively to achieve a tolerance of 10−5 and
dual quasi-Newton was used for optimization.

The results when Gaussian random effects were assumed are given in Table (8). When the random effects
were normally distributed, parameter estimators are unbiased and, with the exception of the estimator for
E(b0i), attain the stated level of confidence. However, when the random effects were non-normal, parameter
estimators for E(b0i), var(b0i) , and β0 are all biased. The bias was largest when the random effects were
bimodal, which, of the random effects densities considered, deviates most from normality. In spite of the
the bias, coverage probabilities for E(b0i) and β0 are adequate when the random effects were skewed and
distributed as t5.

The proportion of data sets that selected K = 0, 1, and 2 by information criteria is given in Table (9).
When the random effects were Gaussian, K = 0 was selected for the vast majority of data sets for all three
information criteria considered. When the random effects strongly departed from normality (skewed and
bimodal random effects), K = 0 was rarely selected indicating the method’s ability to detect departures from
normality. Even when the random effects were distributed as t5, which only slightly deviates from normality,
HQIC selected K = 0 only 14.0 percent of the time. HQIC strikes a good balance between selecting K = 0
when the random effects are Gaussian and detecting subtle departures from normality.

Table (10) gives the parameter estimates and Figure (4) gives the estimated random effects density from
fitting the SNP model with K selected by HQIC. For the skewed and bimodal random effects, parameter
estimators are no longer biased. As a results of reducing the bias, coverage probabilities are closer to their
stated level of confidence, and the SNP estimators are much more efficient. Because K = 0 is selected so
frequently when the random effects are Gaussian, there is little loss in efficiency from considering a more
flexible class of random effects under this scenario. However, because of the sizeable amount of subjects
with no observed responses, SNP density estimation has a difficult time detecting the “fatter” tails in the t5
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density. For many data sets, the SNP density estimate of the random intercept places a second mode below
the limit of quantification where there is little information to estimate that part of the density (Figure 5). As
a result, the SNP estimator for var(b0i) is much less efficient. To avoid the loss of efficiency, we recommend
against relying solely on information criteria to select K. In addition to considering the information criteria,
we suggest visually inspecting the density estimate for each K considered to avoid selecting values of K that
have substantial mass where there is little information in the data set to estimate the density.

Table 7: Proportion of subjects by number of non-censored observation for q = 1 simulations.
Distribution 0 1 2 3 4 5
Normal 0.115 0.100 0.115 0.136 0.167 0.367
t5 0.095 0.089 0.119 0.156 0.192 0.348
Skewed 0.134 0.090 0.089 0.111 0.167 0.408
Bimodal 0.085 0.147 0.176 0.156 0.111 0.325

Table 8: Simulation results when Gaussian random effects were assumed for all models regardless of the
true distribution of the random effects. The simulation included 500 data sets with 500 subjects each and
q = 1. MC Avg: Monte Carlo average of the parameter estimates; MC SD: Monte Carlo standard deviation
of the parameter estimates; Avg SE: Average of the standard error estimates; CP: Monte Carlo coverage
probability of the 95 percent Wald-type confidence intervals.

criteria Distribution E(b0i) β1 β0 var(b0i)
Truth 5.750 -0.600 0.500 3.000
MC Avg Normal 5.749 -0.600 0.498 2.991
MC Avg t5 5.763 -0.601 0.521 2.734
MC Avg Skewed 5.778 -0.595 0.480 2.887
MC Avg Bimodal 5.682 -0.609 0.529 3.387
MC SD Normal 0.120 0.013 0.160 0.224
MC SD t5 0.110 0.013 0.155 0.318
MC SD Skewed 0.117 0.012 0.157 0.218
MC SD Bimodal 0.122 0.014 0.166 0.193
Avg SE Normal 0.116 0.013 0.161 0.222
Avg SE t5 0.111 0.013 0.153 0.200
Avg SE Skewed 0.114 0.013 0.158 0.219
Avg SE Bimodal 0.123 0.014 0.170 0.242
CP Normal 0.926 0.952 0.954 0.940
CP t5 0.954 0.950 0.950 0.618
CP Skewed 0.930 0.932 0.960 0.896
CP Bimodal 0.908 0.908 0.954 0.694
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Table 9: Proportion of time K was selected using AIC, HQIC, and BIC for q = 1 simulations when SNP
was used to estimate the random effects.

Distribution Fit Criterion K=0 K=1 K=2
Normal AIC 0.786 0.121 0.093
Normal HQIC 0.936 0.044 0.020
Normal BIC 0.988 0.006 0.006
t5 AIC 0.060 0.048 0.892
t5 HQIC 0.140 0.096 0.764
t5 BIC 0.292 0.131 0.577
Skewed AIC 0.000 0.004 0.996
Skewed HQIC 0.006 0.006 0.988
Skewed BIC 0.030 0.010 0.960
Bimodal AIC 0.000 0.056 0.944
Bimodal HQIC 0.000 0.110 0.890
Bimodal BIC 0.000 0.194 0.806

Table 10: Simulation results when SNP was used to estimate the random effects for q = 1 simulations.
Models with K = 0, K = 1, and K = 2 were fit and K was selected using the HQIC. The simulation
included 500 data sets with 500 subjects each. MC Avg: Monte Carlo average of the parameter estimates;
MC SD: Monte Carlo standard deviation of the parameter estimates; Avg SE: Average of the standard error
estimates; Ratio MSE: Ratio of the Monte Carlo mean square error between K = 0 and K selected by the
HQIC.

criteria Distribution E(b0i) β1 β0 var(b0i)
Truth 5.750 -0.600 0.500 3.000
MC Avg Normal 5.749 -0.600 0.499 2.989
MC Avg t5 5.764 -0.599 0.513 2.771
MC Avg Skewed 5.757 -0.600 0.493 3.012
MC Avg Bimodal 5.745 -0.600 0.500 3.005
MC SD Normal 0.120 0.013 0.161 0.230
MC SD t5 0.118 0.013 0.151 0.427
MC SD Skewed 0.114 0.013 0.143 0.259
MC SD Bimodal 0.098 0.014 0.097 0.163
Avg SE Normal 0.116 0.013 0.159 0.222
Avg SE other 0.108 0.013 0.143 0.266
Avg SE other 0.113 0.013 0.145 0.242
Avg SE other 0.096 0.014 0.097 0.169
CP Normal 0.922 0.946 0.948 0.934
CP t5 0.920 0.940 0.932 0.668
CP Skewed 0.942 0.946 0.960 0.914
CP Bimodal 0.952 0.938 0.944 0.966
Ratio MSE Normal 0.994 0.975 0.992 0.951
Ratio MSE t5 0.867 1.017 1.078 0.733
Ratio MSE Skewed 1.112 1.140 1.225 0.899
Ratio MSE Bimodal 2.015 1.401 3.005 7.023
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Figure 4: Estimated random effects density for each of the four random effect densities considered (clockwise
from upper left: normal, t5, bimodal, and skewed) when SNP was used to estimate the random effects and K
was selected using HQIC. The estimated density is plotted for 100 randomly selected Monte Carlo data sets.
The truth is superimposed in red, and the average of all 500 Monte Carlo data sets is superimposed in blue.
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Figure 5: Histogram of the estimated variance of the random effect when SNP was used to estimate the random
effects density and the true random effect density was t5 (left). The estimated random effects densities for
those data sets where the estimate of var(b0i) is greater than 4 are also plotted (right).
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