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APPENDIX

Throughout, we drop the superscriptw in the manuscript for ease of presentation. Define
Ni(t) = I(Xi 6 t)δi, N̄ (t) = N−1

∑N
i=1Ni(t), π̄(t) = N−1

∑N
i=1 I(Xi > t), N̂ (t) =

N−1
∑N

i=1 ŵiNi(t), π(t) = P (Xi > t), ANCC(t) = E{Ni(t)},

ΛNCC(t) =

∫ t

0

dANCC(u)

π(u)
, and G(t) = exp {−mΛNCC(t)}

We assume that the censoring time C has a finite support [0, τ ], which is shorter than
that of the event time T with P (T > τ) > 0. The marker Y is assumed to be continuous
and bounded with |Y | 6 Y0 < ∞ and the true parameter value β0 is assumed to be an
interior point of a compact parameter space Ω. Without loss of generality, we assume
that Y > 0. Throughout, unless noted otherwise, the sup over time t is taken over [0, τ ]
and the sup over β is taken over Ω. We use the notation . to denote bounded up to
a constant and ' to denote equivalence up to op(1). In addition, we assume the joint
density of Y , T and C has continuous derivatives.

For sampling probabilities, we note that from similar arguments for the consistency
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of the product limit Kaplan-Meier estimator that

sup
t
|Ĝ(t)−G(t)| = Op(N

− 1
2 ) (A.1)

and thus maxi |p̂i − pi| = Op(N
1
2 ), where pi = δi + (1− δi){1−G(Xi)}.

A. ASYMPTOTIC VARIANCE WITH FINITE POPULATION SAMPLING

Under a finite population sampling of a NCC design, let U(·) be any given function
of Di such that Ui = U(Di) has mean 0 and finite variance, and the total variation
of U(Di) is bounded by a constant. We first derive a generic form of the asymptotic
variance of N−

1
2

∑N
i=1 ŵiUi, where ŵi = Vi/pi. We note that the NCC sampling vari-

ables {V1, · · · , Vn} are weakly correlated and thus the asymptotic variance of weighted
estimators needs to account for such a correlation. We have

var

{
N−

1
2

N∑
i=1

ŵiUi

}

= E

[
var

{
N−

1
2

N∑
i=1

wiUi | D

}]
+ var

[
E

{
N−

1
2

N∑
i=1

ŵiUi | D

}]

= E

[
N−1

N∑
i=1

1− p̃i
p̃i

U2
i +N−1

∑
i 6=j

cov(ŵi, ŵj | D)UiUj

]
+ σ2

0U

where σ2
0U = E(U2

i ). Following from the arguments given in Samuelsen (1997), it can
be shown that

cov {ŵiUi, ŵjUj | D} = −m
n

∫
ηu(t;Xi, δi)ηu(t;Xj, δj)

dΛNCC(t)

π(t)
+Op(n

−3/2),

where ηu(t;Xi, δi) = E{UiI(Xi > t)(1 − pi)/pi}. Therefore, N−
1
2

∑N
i=1 ŵiUi has

asymptotic variance

σ2
U = E

{
U2
i

pi

}
−m

∫
ηU(t)2dΛNCC(t)

π(t)
(A.1)

When the controls are selected based on an additional matching variable Z with L
strata, we may obtain ρ̂ij accordingly. Following some algebraic manipulation, it can be
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shown that adjustment for variance would be

−m
L∑
l=1

∫
E{I(Xi > t, Zi = zl)Ui}2

π(l)(t)℘l
dΛ

(l)
NCC(t)

= −m
L∑
l=1

℘l

∫
E{I(Xi > t)Ui | Zi = zl}2

π(l)(t)
dΛ

(l)
NCC(t),

where A(l)
NCC(t)s = E{I(Xk 6 t)δk | Zk = zl}, Λ

(l)
NCC(t) =

∫ t
0
dA

(l)
NCC(u)/π(l)(u),

π(l)(t) = P (Xk > t | Zk = zl) and {z1, · · · zL} are the unique values of Z among the
cases and ℘l = P (Zi = zl).

B. CONSISTENCY AND ASYMPTOTIC NORMALITY FOR A GENERIC IPW
ESTIMATOR

To derive the asymptotic properties of our IPW estimators, we first note that since the
NCC sampling variables {V1, · · · , Vn} are weakly correlated, and thus the standard con-
vergence theory derived for independent identically distributed (i.i.d.) case does not ap-
ply. Here we use the results on the strong and weak convergence of weighted sums of
negative associated (NegA) dependent variables (Liang and others, 2004; Liang and
Baek, 2006) , to establish the consistency and asympotitic normality of the IPW pro-
cess for NCC design with finite population sampling. The key is to show that Û =
N−1

∑N
i=1 ŵiUi can be viewed as weighted sums of NegA dependent variables, and it

satisfies the conditions required for tightness and weak convergence of the NegA pro-
cess.

If we let V0ji denote whether the ith subject was selected as a control for the jth
failure time in the NCC sample, then {V0ji} are NegA random variables and thus {V0i =
I(
∑n

j=1 V0ji > 0), i = 1, · · ·n} and {aiV0i, i = 1, ..., n} are also NegA for ai > 0 (Joag-
Dev and Proschan, 1983). This indicates that conditional on D , {ŵi−1, i = 1, ..., n} are
negatively associated random variables with mean 0. For simplicity, we focus the setting
with no additional matching variables but note that the same arguments can be used to
justify the case with additional matching on Z.

We next provide justifications for the convergence of Û = N−1
∑N

i=1 ŵiUi → 0

in probability and N
1
2 Û → N(0, σ2

U). To this end, we write Û = Ũ + Ûw, where
Ũ = N−1

∑N
i=1 Ui and Ûw = N−1

∑N
i=1(ŵi − 1)Ui. Obviously, Ũ and Ûw are indepen-

dent given D . By the standard law of large numbers and central limit theorem, Ũ → 0

almost surely and N
1
2 Ũ → N(0, σ2

0U). On the other hand, conditional on D , Ûw is a
weighted sum of negatively associated random variables. Since Ui’s are bounded and p̂i
are bounded away from 0, it is straightforward to see that lim supN→∞N

−1
∑N

i=1 U
2
i <
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∞. On the other hand, |ŵi − 1| ≺ ĉw = 2 + 1/{1 − Ĝ(τ)} and P{exp(hĉw) <
exp(2hcw) < ∞} → 1 as n → ∞ for any positive constant h < ∞, where cw =

2 + 1/{1 − Ĝ(τ)}. This implies that conditions (2) and (4) of Liang and Baek (2006)
are satisfied. Thus, by Corollary 2.2 of Liang and Baek (2006), Ûw → 0 almost surely
and thus Û → 0 almost surely. On the other hand, by Theorem 3.1 of Liang and oth-
ers (2004), a central limit theorem for NegA random variables (CLTNegA), along with
the variance calculation given in Appendix A, N

1
2 Ûw, conditional on D , converges in

distribution to N(0, σ2
U − σ2

0U). It follows that N
1
2 Û → N(0, σ2

U).

C. ASYMPTOTIC PROPERTIES OF PROPOSED ESTIMATORS

C·1 Asymptotic Properties of β̂

We first establish the consistency of β̂. To this end, we note that N−1L̂(β) is a concave
function and the limiting partial likelihood function, L0(β), is uniquely maximized at
β0. Thus, from Theorem 2.7 of Newey and McFadden (1994), the consistency of β̂
can be established if N−1L̂(β) → L0(β) in probability for any given β. To show this
convergence, we write

N−1L̂(β) = N−1

N∑
i=1

ŵi

{
βYi − log Π̂(0)(Xi, β)

}
where Π̂(k)(t, β) = N−1

∑N
i=1 ŵiI(Xi > t)eβYiY k

i . We next show that for any given
β ∈ Ω,

sup
t
|Π̂(k)(t, β)− Π(k)(t, β)| → 0, in probability. (C.1)

where Π(k)(t, β) = E{I(Xi > t)eβYiY k
i }. To this end, we note that |Π̂(k)(t, β) −

Π(k)(t, β)| 6 |Π̂(k)(t, β) − Π̃(k)(t, β)| + |Π̃(k)(t, β) − Π(k)(t, β)|, where Π̃(k)(t, β) =

N−1
∑N

i=1 I(Xi > t)eβYiY k
i . From a uniform law of large numbers (Pollard, 1990),

supt |Π̃(k)(t, β)−Π(k)(t, β)| → 0 in probability. Thus it remains to show that Π̂(k)(t, β)−
Π̃(k)(t, β) = N−1

∑N
i=1(ŵi − 1)I(Xi > t)eβYiY k

i → 0 in probability, uniformly in t.
Noticing that conditional on D , {(ŵi − 1)eβYiY k

i , i = 1, ..., N} is a sequence of NegA
random variables and E(ŵi − 1 | D) = 0, we may sort the sequence based on the order
Xi such that {(ŵ(i) − 1)eβY(i)Y k

(i), X(1) 6 X(2) 6 ... 6 X(n)} remains a sequence of
mean zero NegA random variables. This sorting will allow us to use the maximum in-
equality for partial sums of NegA random variables given in Theorem 2 of Shao (2000)
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and obtain

E sup
t

∣∣∣∣∣N−1

N∑
i=1

I(Xi 6 t)(ŵi − 1)eβYiY k
i

∣∣∣∣∣ 6 E max
16k6n

∣∣∣∣∣N−1

N∑
i=1

(ŵ(i) − 1)eβY(i)Y k
(i)

∣∣∣∣∣
62E

∣∣∣∣∣N−1

N∑
i=1

(ŵ∗(i) − 1)eβY(i)Y k
(i)

∣∣∣∣∣ = 2E

∣∣∣∣∣N−1

N∑
i=1

(ŵ∗i − 1)eβYiY k
i

∣∣∣∣∣
where {ŵ∗(i), i = 1, ..., N} is a sequence of independent random variables conditional on
D such that ŵ∗(i) and ŵi have the same distribution given D . The independence among
{ŵ∗(i), i = 1, ..., N} allows us to invoke the standard law of large numbers and the domi-

nated convergence theorem to show thatE
∣∣∣N−1

∑N
i=1(ŵ∗i − 1)eβYiY k

i

∣∣∣→ 0. Therefore,

supt |Π̂(k)(t, β)− Π̃(k)(t, β)| → 0 in probability and hence (C.1) holds.
To derive the large sample distribution for β̂, by Taylor series expansion we have

N
1
2 (β̂ − β0) = N−

1
2

N∑
i=1

ŵiUβi + op(1), (C.2)

where

Uβi = A(β0)−1

∫ {
Yi −

Π(1)(t)

Π(0)(t)

}
dMi(t), (C.3)

Â(β) = −∂Û(β)
∂β

= N−1
∑N

i=1 ŵiδi

{
Π̂(2)(Xi,β)Π̂(0)(Xi,β)−Π̂(1)(Xi,β)2

Π̂(0)(Xi,β)2

}
, Mi(t) = Ni(t) −

Ai(t) and Ai(t) =
∫ t

0
I(Xi > u)eβ0YidΛ0(u). Here and in the sequel, for the ease of

notation, we let Π(k)(t) = Π(k)(t, β0) and Π̂(k)(t) = Π̂(k)(t, β0). We next show that
Ŵ(t) = N−

1
2

∑N
i=1 ŵiMi(t) converges weakly to a zero-mean Gaussian process. To

this end, we first note that the finite dimensional weak convergence follows directly
from CLTNegA. To establish the tightness of the process Ŵ(t), we write Ŵ(t) = W̃(t) +

Ŵw1(t)−Ŵw2(t), where W̃(t) = N−
1
2

∑N
i=1Mi(t), Ŵw1(t) = N−

1
2

∑N
i=1(ŵi−1)Ni(t),

and Ŵw2(t) = N−
1
2

∑N
i=1(ŵi − 1)Ai(t). The functional central limit theorem (Pollard,

1990) ensures that the process W̃(t) is tight. By Theorem 8.4 of Billingsley (1962) along
with the fact that {(ŵ(i) − 1)δ(i), X(1) 6 X(2) 6 ... 6 X(n)} is a sequence of mean zero
NegA random variables, the tightness of Ŵw1(t) holds if for any ε > 0, there exists a
constant c0 and an integer N0 such that for every N > N0,

P

{
max
16k6n

∣∣∣∣∣
k∑
i=1

(ŵ(i) − 1)δ(i)

∣∣∣∣∣ > c0N
1
2

}
6 εc−2

0 .
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The above inequality can be established with (1.10) of Theorem 3 of Shao (2000) by
setting x = c0N

1
2 and a = c0N

1
2/48. The same argument can be used to show that

N−
1
2

∑N
i=1(ŵi − 1)I(Xi > t)eβ0Yi is tight, which implies the tightness of Ŵw2(t) =∫ t

0
{N− 1

2

∑N
i=1(ŵi− 1)I(Xi > u)eβ0Yi}dΛ0(u). It follows that the process Ŵ(t) is tight

and thus in view of Theorem 15.1 of Billingsley (1962), we have the weak convergence
of Ŵ(t) to a zero-mean Gaussian process. It then follows from a CLTNegA that N

1
2 (β̂ −

β0) is asymptotically normal with mean 0 and variance

σ2
β = E(U2

βi/pi) + E{Ncov(ŵi, ŵj | D)UβiUβj} = E(U2
βi/pi)−mR2

Uβ

where for any random variable U ,

R2
U =

∫
E{ηU(t,X, δ)}2dΛNCC(t)

π(t)
(C.4)

C·2 Asymptotic Properties of Ŝ(t | y)

We first obtain asymptotic properties for the baseline cumulative hazard estimator Λ̂0(t) =∫ t
0

dN̂ (t)

Π̂(0)(t,β̂)
. It follows from Corollary 2.2 of Liang and Baek (2006) and the monotonicity

of N̂ (t) that N̂ (t)→ E{Ni(t)} in probability. On the other hand, from the consistency
of β̂ and (C.1), we have supt |Π̂(0)(t, β̂) − Π(0)(t, β0)| 6 |β̂ − β0| + supt |Π̂(0)(t, β0) −
Π(0)(t, β0)| = op(1). This, together with Lemma A1 of Bilias and others (1997) , implies
the uniform consistency of Λ̂0.

To derive the limiting distribution of ÛΛ(t) = N
1
2{Λ̂0(t)− Λ0(t)}, we note that

ÛΛ(t) ' N−
1
2

N∑
i=1

ŵi

∫ t

0

dMi(u)

Π(0)(u)
+N

1
2

∫ t

0

Π̂(0)(u, β0)− Π̂(0)(u, β̂)

Π(0)(u)
dΛ0(u)

' N−
1
2

N∑
i=1

ŵiUΛi(t)

where UΛi(t) =
∫ t

0

dMi(u)−UβiΠ(1)(u)dΛ0(u)

Π(0)(u)
. It then follows from the same arguments as

given in C·1 that ÛΛ(t) is asymptotically normal with mean 0 and varianceE{U2
Λi/pi}−

mR2
UΛ

.

We next derive the asymptotic properties of Ŝ(t | y) = e−Λ̂0(t)eβ̂y . The uniform
consistency of Λ̂0(t) and the consistency of β̂ implies that supt,|y|6Y0

| log Ŝ(t | y) −
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logS(t | y)| is bounded by

sup
t

∣∣∣Λ̂0(t)− Λ0(t)
∣∣∣ e|β̂|Y0 + Λ0(τ) sup

|y|6Y0

|eβ̂y − eβ0y| = op(1).

Now, by a taylor series expansion and the asymptotic expansions given above, we have

N
1
2

{
Ŝ(t | y)− S(t | y)

}
' N−

1
2

N∑
i=1

ŵiUSi(t | y) (C.5)

where
USi(t | y) = −S(t | y)

{
eβ0yUΛi(t) + Λ0(t)eβ0yyUβi

}
. (C.6)

It follows from the CLTNegA that N
1
2{Ŝ(t | y)−S(t | y)} is asymptotically normal with

mean 0 and variance E{USi(t | y)2/pi} −mR2
US(t|y).

C·3 Asymptotic Properties of Ŝ(t, c)

To derive large sample properties for Ŝ(t, c), we write Ŝ(t, c) =
∫ Y0

c
Ŝ(t | y)dF̂Y (y).

By Corollary 2.2 of Liang and Baek (2006) and the monotonicity of F̂Y , we obtain the
uniform consistency of F̂Y (y) for FY (y). This, together with the uniform consistency of
Ŝ(t | y) and Lemma A1 of Bilias and others (1997), implies the consistency of Ŝ(t, c).

To derive the asymptotic distribution for Ŝ(t, c), we first note that similar arguments
as given in Appendix C·1 for the weak convergence of Ŵ(t) can be used to establish the
weak convergence of

ÛF(y) = N
1
2{F̂Y (y)− FY (y)} = N−

1
2

N∑
i=1

ŵi{I(Yi 6 y)− FY (y)}

to a zero-mean Gaussian process. This, together with (C.5), implies that ÛS(t, c) =

N
1
2{Ŝ(t, c)− S(t, c)} is asymptotically equivalent to∫ Y0

c

N
1
2

{
Ŝ(t | y)− S(t | y)

}
dFY (y) +

∫ Y0

c

S(t | y)d
[
N

1
2{F̂Y (y)− FY (y)}

]
and thus ÛS(t, c) = N−

1
2

∑N
i=1 ŵiUSi(t, c) + op(1), where

USi(t, c) =

∫ Y0

c

USi(t | y)dFY (y) + S(t | Yi)I(Yi > c)− S(t, c) (C.7)
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It follows from the CLTNegA that ÛS(t, c) is asymptotically normal with mean 0 and vari-
ance E{USi(t, c)2/pi} −mR2

US(t,c). The asymptotic properties of the accuracy measure

estimates follow directly from the above approximations to N
1
2{F̂Y (y) − FY (y)} and

ÛS(t, c) as well as applications of delta method.

C·4 Asymptotic Properties of Estimators for ROC Summary Measures

Furthermore, it is not difficult to show that the weak convergence of ÛS(c, t) and ÛF(c)
holds jointly. The asymptotic distribution of the accuracy estimators follows directly
from the joint distribution of ÛS(c, t) and ÛF(c). This, together with a functional delta
theorem, implies the following approximations for ÛFPRt(c) = N

1
2{F̂PRt(c)−FPRt(c)},

ÛTPRt(c) = N
1
2{T̂PRt(c) − TPRt(c)}, ÛPPVt(c) = N

1
2{N̂PVt(c) − NPVt(c)}, and

ÛNPVt(c) = N
1
2{P̂PVt(c)− PPVt(c)},

ÛFPRt
(c) ' ÛS(c, t)− FPRt(c)ÛS(cl, t)

S(t) , ÛTPRt
(c) ' TPRt(c)ÛS(cl, t)− ÛF (c)− ÛS(c, t)

1− S(t) ,

ÛNPVt
(c) ' {PPVt(c)− 1}ÛF (c)− ÛS(c, t)

1−F(c) , ÛPPVt
(c) ' ÛS(t)− ÛS(c, t)− NPVt(c)ÛF (c)

F(c) .

The same arguments as given above can then be used to establish the weak convergence
for these processes and obtain the asymptotic variance. For example, since ÛFPRt(c) '
N−

1
2

∑N
i=1 ŵiUFPRti(c) withUFPRti(c) = S(t)−1{USi(c, t)−FPRt(c)USi(cl, t)}, ÛFPRt(c)

converges in distribution to N(0, σ2
FPRt(c)), where

σ2
FPRt(c) = E{U2

FPRti(c)/pi} −m
∫
η2
UFPRt

(c, u)dΛNCC(u)/π(u),

and ηUFPRt
(c, u) = E{UFPRti(c)I(Xi > u)(1− pi)/pi}.

To establish the weak convergence of the ROC curve estimator, we first note that the
arguments above can be extended to show that the weak convergences of the two pro-
cesses, ÛFPRt(c) and ÛTPRt(c), hold jointly. This, together with the stochastic equiconti-
nuity of these processes, implies that for u ∈ [ul, ur] ⊂ (0, 1),

N
1
2{R̂OCt(u)− ROCt(u)} ' ÛTPRt{FPR−1

t (u)} − ˙ROCt(u)ÛFPRt{FPR−1
t (u)},

'N−
1
2

N∑
i=1

ŵiUROCti{FPR−1
t (u)},

where UROCti = UTPRti{FPR−1
t (u)} − ˙ROCt(u)UFPRti{FPR−1

t (u)} and ˙ROCt(u) =

∂ROCt(u)/∂u. It follows that N
1
2{R̂OCt(u) − ROCt(u)} converges weakly to a zero-
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mean Gaussian process,N(0, σ2
ROCt) in distribution, where σ2

ROCt(u) = E{U2
ROCti/pi}−

m
∫
η2
UROCt

(u)dΛNCC(u)/π(u).
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