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A. STOCHASTIC K INETIC NETWORKS

The simplest stochastic kinetic network (SKN, or areaction networkin biochemical

literature) is a stochastic dynamical system involving multiple species and their interac-

tions. Here we consider only the simplest case (McQuarrie, 1967; Zacharof and Butler,

2004) which treats the system as a continuous time Markov chain whose stateX is an

m-vector giving the number of individuals (units) of each species present, with each

reaction/interaction modeled as a transition for the state. Thekth interaction is then de-
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termined by a vector of inputsνk and outputsν ′
k, specifying, respectively, the number

of units of each species consumed and created, and a functionof the statehk(x) that

gives the rate at which the interaction occurs. Specifically, if the interaction occurs at

time t, the new state becomesX(t) = X(t−) + ν ′
k − νk, and the number of times

that thekth interaction occurs by timet is given by the counting process satisfying

Rk(t) = Yk(
∫ t

0
hk(X(s))ds) where theYk are independent unit Poisson processes. Note

that writingRk in this form makes it clear whyhk is referred to as a rate, since it is

indeed a rate of the corresponding Poisson process. The state of the system then satisfies

the following trajectory equation (see, e.g., Andersson and Britton, 2000, Chapter 5)

X(t) =X(0) +
∑

k

Rk(t)(ν
′
k − νk) = X(0) +

∑

k

Yk(

∫ t

0

hk(X(s))ds)(ν ′
k − νk)

=X(0) + (ν ′ − ν)R(t), (A.1)

whereν ′ is the matrix with columns given by theν ′
k, ν is the matrix with columns given

by theνk, andR(t) is the vector with componentsRk(t).

The general law of mass action (see, e.g., Turnerand others, 2004) states that the rate

hk is proportional to the number of distinct subsets of the species (molecules) present

that can form the inputs for the reaction. Intuitively, thisassumption reflects the idea

that the physical system iswell-stirred (see, e.g., Gillespie 1992; Kurtz 1981 for more

precise discussions of this intuition). Defining|νk| =
∑

i νik, the stochastic form of the

law of mass action (Gillespie, 1992) says therefore that thePoisson rate in such system

should be given by

hM
k (x) = θk

∏

i νik!

M |νk|−1

(

x

ν1k · · · νmk

)

= M θk

∏

i νik!
(

xi

νik

)

M |νk |
, (A.2)
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whereM is a scaling parameter usually taken to be the total volume ofthe system (i.e.,

all species count). The valuesθk are reaction-specific kinetic constants referred to as

thenetwork parameters. In molecular biology or population processes modeling, these

are typically the quantities which one would like to estimate using experimental data. In

the sequel, and in the main body of the paper, the full vector of network parameters is

denoted byθ.

Note that ifM is the total (or, in some cases, maximal) size of the system bytime

T < ∞ andx gives the number of individuals of each species present, then c = M−1x

gives the concentrations in units per unit volume. With thisscaling and a large volume

we have

hM
k (x) ≈ Mθk

∏

i

cνiki ≡ Mh̃k(c). (A.3)

Since the law of large numbers for the Poisson process impliesM−1Y (Mu) ≈ u, (A.3)

impliesC(t) = M−1X(t) ≈ C(0)+
∑

k

∫ t

0
θk

∏

i C(s)νiki (ν ′
k−νk)ds, which in the large

volume limit (M → ∞) gives the classical law of mass action ODE

Ċ(t) =
∑

k

θk
∏

i

C(t)νiki (ν ′
k − νk). (A.4)

Recent attempts to model chemical reactions taking place inbiological cells as well in

analyzing early stages of epidemics Balland others(2006); O’Neill and Roberts (1999),

have led to renewed interest in stochastic models following(A.1) (see, e.g., Wilkinson

2009). In such models the chemical notation for interactions in discrete population pro-

cesses is often used where e.g.,A + B
h

−→ C is interpreted as“a unit of speciesA

combines with a unit of speciesB to create a unit of speciesC at rateh = h(A,B, θ)”.

In what follows we consider anetworkof interactions (reactions) involvingm popula-
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tion species,A1, . . . , Am.

m
∑

i=1

νikAi
hk−→

m
∑

i=1

ν ′
ikAi k = 1, 2, . . . (A.5)

where theνik andν ′
ik are nonnegative integers.

Note that in the above SKN models we tacitly assume that the populations of interest

are both spatially and phenotypically homogeneous i.e., they constitute a well-stirred

physical system (see, e.g., Wilkinson, 2009). Whereas these assumptions are not ex-

pected to be satisfied in realistic scenarios, some recent analysis of the US spatial dis-

ease transmission patterns (via the so-called mobility network models) have indicated

that e.g., at the onset of the epidemic they frequently may beacceptable (Millsand oth-

ers, 2004; Balcanand others, 2009). We also note that it is often possible to reduce

a non-homogenous system to a homogenous one via thecompartmentalizationmethod,

the technique which is routinely used for modeling stochastic spatial features of complex

biological systems (Gibson and Renshaw, 1998), also in the context of spatial epidemic

models (see, e.g., Hohleand others(2005), Streftaris and Gibson (2004) for within-herd

dynamics of disease, or recently Kouyosand others(2010) for changes in spatial HIV

transmissions in Switzerland).

B. INFERENCE FORCOMPLETE DATA

For completeness, we present here the basic justification for the Bayesian inference

procedure in case when the entire trajectory is observed. This complete data inference

step is needed to construct the Gibbs sampler algorithm (Algorithm 1) in the paper.

Assume that the entire trajectoryX = {X(t)}Tt=0 of the SKN is observable, that
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is, we know both the timings and types ofall the interactions between the species in

the network up to a fixed time pointT < ∞. Additionally, assume that the SKN hasu

species andv reactions with hazardsh1(x, θ1), . . . , hv(x, θv) and associated parameters

θ = (θ1, θ2, . . . , θv). Let rsi be the number of reactions of types, s = 1, 2, . . . , v in the

time interval(i, i + 1], setni =
∑

s=1 rsi as well as denote bytij andkij , respectively,

the time and type of the reaction in(i, i+1], j > 1. To construct the likelihood function,

we consider the (conditional) transition density functionfor jth event, which, under our

Markov model (in view of the well known result about arrivalsfrom two independent

Poisson variables), consists of an independent pair of event’s time and type (this repre-

sentation leads to the popular “direct” Gillespie algorithm, Gibson and Bruck 2000). To

simplify notation, assumeT to be an integer. Then, the complete likelihood function for

θ may be written as (cf., e.g., Boysand others, 2008)

L(θ|X) =
T
∏

i=1

ni
∏

j=1

hkij(x(tij), θkij) exp

(
∫ T

0

h0(x(t), θ)dt

)

(B.1)

whereh0(x(t), θ) =
∑v

s=1 hs(x, θs). Since, by the law of mass action, for fixedM

hs(x, θs) = θsgs(x) s = 1 . . . , v (B.2)

wheregs(·) is a known (rational) function free ofθ, we note a useful factorization of the
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likelihood (B.1)

L(θ|X) =

( T
∏

i=1

ni
∏

j=1

θkijgkij(x(tij))

)

exp

(

−

∫ T

0

v
∑

s=1

θsgs(x(t))dt

)

∝

( v
∏

s=1

θ
∑T

i=1
rsi

s

)

exp

(

−
v

∑

s=1

∫ T

0

θsgs(x(t))dt

)

=

v
∏

s=1

θ
∑T

i=1
rsi

s exp

(

− θs

∫ T

0

gs(x(t))dt

)

=

v
∏

s=1

Ls(θs|X), (B.3)

where the last equation defines quantitiesLs(θs|X). It follows that the likelihood in-

ference may be carried out for eachθs separately, by maximizing the corresponding

Ls(θs|X) quantity which is proportionate to the gammaΓ(rs + 1,
∫ T

0
gs(x(t))) density,

wherers =
∑T

i=1 rsi. By differentiating with respect to eachθs, we obtain their unique

MLEs at the modes of the corresponding marginal gamma densities

θ̂s =

∑T

i=1 rsi
∫ T

0
gs(x(t))dt

=
rs

∫ T

0
gs(x(t))dt

, s = 1, . . . , v. (B.4)

Note that eacĥθs may be also interpreted as the method of moments estimator, i.e., the

solution of the estimating equation
∫ T

0
dNs(t) − θs

∫ T

0
gs(x(t))dt = 0, s = 1, . . . , v

whereNs(t) is thes-th reaction counting process (see, e.g., Andersson and Britton 2000

Chapter 9, for more details). Due to the form of the likelihood function (B.3), a family

of independent gamma distributions arrives naturally as a set of conjugate priors, that

is, we takeθs ∼ Γ (as, bs), s = 1, . . . , v. Under this family of priors the application of

Bayes’ theorem produces posterior gamma distributions which retain independence, i.e.,
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for s = 1, . . . , v we have

θs|x ∼ Γ

(

as + rs, bs +

∫ T

0

gs(x(t))dt

)

, s = 1, . . . , v. (B.5)

Note that the maximum aposteriori (MAP) estimator is simplythe mode of posterior dis-

tribution i.e., an adjusted MLE. In particular, in case of theuninformative and improper

priors withas = 1 andbs = 0, MLE and MAP estimator coincide. The relation (B.5)

was also noted in Boysand others(2008).

C. COMPARATIVE SIMULATION STUDY: SIRS MODEL

In order to assess the performance of our inference method, we have conducted exten-

sive simulation studies based on the synthetic data generated from the SIRS model with

T = 30, Y (0) = 1, and varyingM andθ. The detailed description of the five different

data collection schemes is given in the main body of the paper. In addition to summa-

rizing the results of the inference via the uniformization-based Gibbs sampler, we have

also included for comparison the summary of the results obtained via the MHA-based

Gibbs sampler, as described in Boysand others(2008) and implemented in theStochInf

software (see, Wilkinson 2006, Chapter 10.3).

C.1 Comparisons with Completely Observed Species

In the main body of the paper we have presented the results fora typical trajectory of

the SIRS model withM = 25. In Table C.I we present a more extensive set of results,

for the SIRS trajectories withM = 50 andM = 100. These results are selected as a

representative sample of the results of both inference method performances across the
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Table C.I. Posterior means (standard deviations) of the SIRS model parameters withM = 50, 100 for the

uniformization Gibbs sampler (U) and the Gibbs sampler withnested Metropolis-Hastings step (MH) for

different data collection scenarios and data interval lengths (m).

Sampler Type θ̂1 θ̂2 θ̂3

M = 50

First 10 pts(m = 1) U 0.006(0.002) 0.115(0.067) 0.001(0.012)
MH 0.006(0.002) 0.109(0.064) 0.001(0.006)

First 20 pts (m = 1) U 0.009(0.002) 0.169(0.042) 0.056(0.039)
MH 0.008(0.002) 0.157(0.039) 0.045(0.032)

All 30 pts (m = 1) U 0.008(0.001) 0.194(0.038) 0.095(0.027)
MH 0.008(0.001) 0.181(0.033) 0.081(0.023)

Sparse 10 pts (m = 3) U 0.008(0.002) 0.181(0.045) 0.092(0.038)
MH 0.022(0.004) 0.49(0.107) 0.226(0.087)

Sparse 15 pts (m = 2) U 0.008(0.002) 0.19(0.045) 0.095(0.035)
MH 0.015(0.003) 0.352(0.078) 0.167(0.061)

M = 100

First 10 pts(m = 1) U 0.01(0.001) 0.197(0.032) 0.062(0.042)
MH 0.009(0.001) 0.187(0.029) 0.044(0.034)

First 20 pts (m = 1) U 0.009(0.001) 0.215(0.026) 0.074(0.015)
MH 0.009(0.001) 0.211(0.024) 0.071(0.015)

All 30 pts (m = 1) U 0.009(0.001) 0.211(0.023) 0.094(0.013)
MH 0.008(0.001) 0.182(0.02) 0.069(0.011)

Sparse 10 pts (m = 3) U 0.009(0.001) 0.196(0.023) 0.085(0.013)
MH 0.018(0.002) 0.429(0.05) 0.136(0.025)

Sparse 15 pts (m = 2) U 0.01(0.001) 0.215(0.025) 0.095(0.014)
MH 0.013(0.002) 0.306(0.038) 0.099(0.023)

True Values 0.01 0.2 0.1

multiple simulations we have conducted. The reported values are based on the 5000

steps of the Gibbs samplers after 1000 burn-in period, with the samplers convergence

assessed via the usual Gelman-Rubin statisticRGR as given in Gelman and Rubin (1992)

with the standard stopping criterion taken asRGR 6 1.1. Whereas this criterion seemed

appropriate most of the time, in some cases the comparison required a more restrictive

criterion and a larger number of iterations, as detailed in the next subsection. The non-

informative, improper priorsas = 0.1 andbs = 0.1 were used for allθs, in which case

the posterior means of the marginals coincided approximately with the MLEs. As we

may see, similarly to the caseM = 25 discussed in the paper, the overall performance

of the samplers is similar to each other when the observationgrid is dense (m = 1)
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and quite satisfactory (estimates have low bias and variance) when the grid is uniformly

distributed across the time interval(0, T ]. When the observed data are too concentrated

in the particular trajectory segment, the effect of a temporal bias is clearly visible. This

may be seen, for instance, in the significant shrinkage of thevaluesθ̂3 for the data

collected from the early trajectory (bin one in Figure 2 in Section 4 of the paper), where

the conversions of removed into susceptibles are happeningrarely, if at all.

When the data is collected on the sparse time grid, the uniformization method is seen

to have a distinct edge over the MHA-based method based on theeach sampler 6000

iterations. This seems to be primarily due to the fact that, when the hidden state space is

large, the MHA-based samplers converge at a noticeably slower rate then the ones based

on the uniformization. We illustrate this with an example inthe next section.

C.2 Convergence Rates

The convergence assessment for all the chains considered inthe current paper is based on

the so-called Gelman and Rubin method (Gelman and Rubin, 1992; Brooks and Roberts,

1998) which analyzes multiple simulated MCMC chains by comparing the variances

within each chain and the variance between chains. Large deviation between these two

variances indicates nonconvergence and hence the value typically computed for moni-

toring convergence is Gelman and Rubin statisticRGR equal to the square root of the

variances ratio.

Since in all simulated examples under sparse data scenarios(see, the main paper’s Ta-

ble 1 and Table C.I) the large inferential discrepancy between the uniformization-based

(U) and the MHA-based (HM) samplers was clearly visible, we have performed some

additional analysis based on a side-by-side comparison of the respectiveRGR statistics.
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Fig. C.I. Convergence diagnostics for the Gibbs samplers results in Table 1 in the main body of the paper, under the

sparse (m = 3, 10 data points) scenario. Top panel: The approximate valueof the Rubin-GelmanRRG statistics

as functions of number of iterations for the MHA-based (top curve) and the uniformization (bottom curve) Gibbs

samplers. Bottom panel: the values of the moving average of||θ|| (with the window size of 1000 steps) as a function

of the number of iterations. The vertical line is drawn at 6000 iterations, the cut-off value used to derive theθ estimates

reported in Table 1 of the paper. The comparisons in both plots suggest the slow-convergence bias of the MHA-based

sampler.

The value ofRGR was computed based on5 chains initialized from various parts of

the target distribution. If all chains have reached the target distribution, the posterior

variance estimate should be very close to the within-chain variance and, consequently,
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RGR ≈ 1.

The results are summarizrd in Figure C.I with the data from the trajectory in Figure 2

in the main body of the article and the sparse data scenario (circled dataset withm =

3). In the upper panel of the figure, the trajectory of theRRG statistic in each sampler

is plotted against the number of sampler’s iterations. The corresponding values of the

moving average of||θ|| from two single-trajectory samplers are plotted in the lower

panel. As may be seen from the plots the MHA-based sampler needs a much larger

number of iterations to converge and hence atN = 6000 iterations (the value used

in Table 1) will typically give biased results. In contrast,the uniformization sampler

converges faster and gives reliable results forN = 6000. Both samplers seem to give

results which are very close to each other only afterN > 12000 iterations.

C.3 Imputation for Partially Missing Species

Since the Algorithm 2 in Section 3.2 of the paper only estimates the number of unob-

served species, the resulting uniformization Gibbs sampler converges to an approximate

posterior distribution and, consequently, the inference based on combining Algorithms

1, 2 from Sections 2.1 and 3.5 of the paper is no longer exact. The effect of the approx-

imation on the quality of the posterior estimates in the uniformization Gibbs sampler

(U) is, of course, of interest. In order to illustrate the performance of the BOP-based

algorithm for approximate inference in case when only partially observed species are

available we have conducted additional simulation studiesof the SIRS model. In these

simulation scenarios we assumed that, beyond the first data point at t = 0, the empiri-

cal counts were available only for removed, and not for infectives or susceptibles. The

results of are summarized in Table C.II below for large-to-moderate stochastic noise
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scenariosM = 25, 50. As may be seen from the table, the approximate sampler (UB) is

seen to accrue additional bias and variance due to missing information, at least in some

parts of the posterior distribution. However, the effect seems to be alleviated with more

timepoints added (30 in our simulation), indicating the consistency of the BOP approxi-

mation method. The convergence criteria used in reporting the simulation results are the

same as those applied earlier (N = 6000), with the rate of convergence comparable to

that illustrated in Figure C.I.

Table C.II. Posterior means (standard deviations) of the SIRS model parameters withM = 25, 50 for the

uniformization Gibbs sampler with BOP imputation of Algorithm 2 in Section 3.2 (UB) for different data

collection scenarios and between-data interval lengths (m). Lower bias and variability is achieved with

larger number of observed timepoints (results in bold), indicating the approximation consistency.

Sampler Type θ̂1 θ̂2 θ̂3

M = 25

First 10 pts(m = 1) UB 0.015(0.009) 0.338(0.192) 0.002(0.025)
First 20 pts (m = 1) UB 0.017(0.006) 0.342(0.114) 0.019(0.019)
All 30 pts (m = 1) UB 0.018(0.001) 0.194(0.038) 0.095(0.027)
Sparse 10 pts (m = 3) UB 0.012(0.003) 0.169(0.052) 0.035(0.016)
Sparse 15 pts (m = 2) UB 0.015(0.004) 0.215(0.067) 0.032(0.017)
True Values 0.02 0.2 0.1

M = 50

First 10 pts(m = 1) UB 0.007(0.004) 0.335(0.201) 0.001(0.012)
First 20 pts (m = 1) UB 0.011(0.004) 0.219(0.131) 0.013(0.018)
All 30 pts (m = 1) UB 0.011(0.004) 0.219(0.134) 0.13(0.018)
Sparse 10 pts (m = 3) UB 0.006(0.001) 0.182(0.046) 0.019(0.01)
Sparse 15 pts (m = 2) UB 0.008(0.002) 0.254(0.059) 0.014(0.012)
True Values 0.01 0.2 0.1

C.4 Marginal Plots and Diagnostics

The marginal posterior distributions of theθ variables of interest may be obtained by

considering the marginal empirical samples from the converged samplers. In our simu-

lation experiments, in order to alleviate the effect of autocorrelation, the samples were

thinned in the 5:1 proportion (after discarding the burn-in), leaving the marginal samples
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Fig. C.II. Top two rows: the trace and autocorrelation plotsfor the uniformization-based Gibbs sampler in the SIRS

model for the sparse data (10 points,m = 3, M = 50) before and after the 5:1 thinning process. Bottom row: the

marginal posterior density plots forθ1, θ2, θ3.

of size 1000 to be used for the density estimation. For illustration purposes, we present

some of the diagnostic plots of the trace and autocorrelation functions before and after

the thinning procedure (Figure C.II, top panels) as well as the marginal posterior density

plots of the SIRS parametersθ1, θ2, θ3 (Figure C.II, bottom panels).
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C.5 Computational Considerations

ForM = 100 the computations for Algorithm 1 for the SIRS model took several hours

to complete on the desktop computer running OS X with 3.2 QuadCore Intel Xeon

processor. In general, in our simulations with SIR, SIRS andother models, we have

seen that, as expected, with the increasing state space of the MCMC models the CPU

requirements increased exponentially, both with the species number and the population

size. For partially observed species, the use of the approximate imputation algorithm

(Algorithm 2 in the main body of the paper) allowed us to roughly retain the same order

of magnitude in the number the sampler steps needed for convergence, despite sampling

in the extended hidden space of unobserved species. Despiteall the reductions brought

by the approximation, the computational cost for allUB, U andMH samplers was

seen as relatively high, although in general the convergence ofU andUB samplers with

sparse data was achieved much faster then withMH samplers (see, Figure C.I). Albeit

this is outside the scope of our current discussions, one possible way of decreasing the

computational overhead forU andUB samplers, would be to appropriately adjust the

value ofµ given in the formula (3.1) in Section 3 of the paper, so as to efficiently reduce

the size of the hidden state space which needs to be sampled bythe MCMC algorithm.

The appropriate adaptive algorithm forµ selection could be developed, for instance,

by establishing the required exponential bounds on a jump process trajectory (given

observed values) and identifying the envelopes of “high probability” trajectories along

the lines of the “large deviation” principles for Markov processes (see, e.g., Kurtz and

Feng 2006).
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