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A. STOCHASTIC KINETIC NETWORKS

The simplest stochastic kinetic network (SKN, oreaction networkin biochemical
literature) is a stochastic dynamical system involvingtipié species and their interac-
tions. Here we consider only the simplest case (McQuarfi671Zacharof and Butler,
2004) which treats the system as a continuous time Markow ahlaose stateX is an
m-vector giving the number of individuals (units) of each @ps present, with each

reaction/interaction modeled as a transition for the st#te kth interaction is then de-

*To whom correspondence should be addressed.

© The Author . Published by Oxford University Press. All rightserved. For permissions, please e-mail: journalsipsions@oxfordjournals.org.



2 B. CHOlI AND G. REMPALA

termined by a vector of inputg, and outputs/;, specifying, respectively, the number
of units of each species consumed and created, and a furuftitve stateh,(x) that
gives the rate at which the interaction occurs. Specificé#llhe interaction occurs at
time ¢, the new state becomes(t) = X(t—) + v, — v, and the number of times
that thekth interaction occurs by time is given by the counting process satisfying
Ri(t) = Yk(fot hi(X (s))ds) where theY;, are independent unit Poisson processes. Note
that writing R, in this form makes it clear whyi, is referred to as a rate, since it is
indeed a rate of the corresponding Poisson process. Tleeosthie system then satisfies

the following trajectory equation (see, e.g., AnderssahBuitton, 2000, Chapter 5)

X(t)=X(0) + Y Ru(t) (v, —n) = X(0) + ) Yk(/o hi(X (s))ds) (Vg — vi)

= X(0) + (/' — V)R(t), (A1)

wherer' is the matrix with columns given by the, v is the matrix with columns given
by thevy, andR(t) is the vector with components, (¢).

The general law of mass action (see, e.g., Tuamerothers2004) states that the rate
hy is proportional to the number of distinct subsets of the gse@molecules) present
that can form the inputs for the reaction. Intuitively, tlissumption reflects the idea
that the physical system gell-stirred (see, e.g., Gillespie 1992; Kurtz 1981 for more
precise discussions of this intuition). Defining| = > . v, the stochastic form of the
law of mass action (Gillespie, 1992) says therefore thaPibisson rate in such system

should be given by

hﬁ[(x) _9 I vir! ( T ) _ M@kni Vzk'(sz)’ (A.2)

kM‘Vk|_1 Uik ** * Umk M‘Vk‘
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wherel is a scaling parameter usually taken to be the total volumkeeo$ystem (i.e.,
all species count). The valués are reaction-specific kinetic constants referred to as
the network parameterdn molecular biology or population processes modelingséh
are typically the quantities which one would like to estienasing experimental data. In
the sequel, and in the main body of the paper, the full vedtoeetwork parameters is
denoted bys.

Note that if M is the total (or, in some cases, maximal) size of the systeitintogy
T < oo andz gives the number of individuals of each species present,the M~z
gives the concentrations in units per unit volume. With #daling and a large volume
we have

~ MO, H ik = Mhy(c (A.3)

Since the law of large numbers for the Poisson process isplie' Y (Mu) ~ u, (A.3)
impliesC(t) = M~ 'X(t) = C(0)+ >, fot 0x 11, C(s);* (v}, —v)ds, which in the large

volume limit (M — oo) gives the classical law of mass action ODE

Ct) =) bk H C(t)* (v, — ). (A.4)

Recent attempts to model chemical reactions taking plateiogical cells as well in
analyzing early stages of epidemics Batld otherg2006); O’Neill and Roberts (1999),
have led to renewed interest in stochastic models follog) (see, e.g., Wilkinson
2009). In such models the chemical notation for interactiondiscrete population pro-
cesses is often used where ed.;+ B BUNYORT interpreted asa unit of speciesA
combines with a unit of speciésto create a unit of species atrateh = h(A, B,0)”.

In what follows we consider aetworkof interactions (reactions) involving. popula-



4 B. CHOlI AND G. REMPALA

tion speciesAy, ..., A,,.
i=1 =1

where thes;;, andv), are nonnegative integers.

Note that in the above SKN models we tacitly assume that tpalptions of interest
are both spatially and phenotypically homogeneous i.ey tonstitute a well-stirred
physical system (see, e.g., Wilkinson, 2009). Whereasethssumptions are not ex-
pected to be satisfied in realistic scenarios, some recahysas of the US spatial dis-
ease transmission patterns (via the so-called mobilitwort models) have indicated
that e.g., at the onset of the epidemic they frequently magcleptable (Milland oth-
ers 2004; Balcanand others 2009). We also note that it is often possible to reduce
a non-homogenous system to a homogenous one vizothgartmentalizatiomethod,
the technique which is routinely used for modeling stodbagtatial features of complex
biological systems (Gibson and Renshaw, 1998), also indh&egt of spatial epidemic
models (see, e.g., Hoh#sd otherg2005), Streftaris and Gibson (2004) for within-herd
dynamics of disease, or recently Kouyersd otherg2010) for changes in spatial HIV

transmissions in Switzerland).

B. INFERENCE FORCOMPLETE DATA

For completeness, we present here the basic justificatiothé& Bayesian inference

procedure in case when the entire trajectory is observed.cdmplete data inference

step is needed to construct the Gibbs sampler algorithnogilgn 1) in the paper.
Assume that the entire trajectoly = {X(t)}L, of the SKN is observable, that
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is, we know both the timings and types alf the interactions between the species in
the network up to a fixed time poifit < co. Additionally, assume that the SKN has
species and reactions with hazards, (z, ¢,), ..., h,(z,0,) and associated parameters
0 = (01,0,,...,0,). Letry be the number of reactions of types = 1,2,...,v in the
time interval(i, i + 1], setn; = Y __, r,; as well as denote by; andk;;, respectively,
the time and type of the reaction(ifyi + 1], j > 1. To construct the likelihood function,
we consider the (conditional) transition density function;jth event, which, under our
Markov model (in view of the well known result about arrivéilem two independent
Poisson variables), consists of an independent pair ofteviane and type (this repre-
sentation leads to the popular “direct” Gillespie alganthGibson and Bruck 2000). To
simplify notation, assume ' to be an integer. Then, the complete likelihood function for

6 may be written as (cf., e.g., Boysid others2008)

261%) = [ T] et tu o ([ mtett o) @)

i=1 j=1 0

wherehg(z(t),0) = >_._, hs(x, 6;). Since, by the law of mass action, for fixad

hs(x,05) = 0sgs(x) s=1...,v (B.2)

whereg,(-) is a known (rational) function free @f, we note a useful factorization of the
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likelihood (B.1)

L(O)X) = (ﬁﬁ@kgk (t;; )exp( /Zlﬁsgs(x(t))dt)

=1 j=1

x <£[195Z’L'T—1 ) exp ( - ; /O ngs(fv(t))dt)
=£l@f¥“wmp(—e§AT%u@»ﬁ)

~T2.0.1%), (8.3)
s=1

where the last equation defines quantitiegd,| X ). It follows that the likelihood in-
ference may be carried out for eaéh separately, by maximizing the corresponding
Ls(05] X)) quantity which is proportionate to the gamingr, + 1, fOT gs(z(t))) density,
wherer, = ZiTzl rs. By differentiating with respect to eadh, we obtain their unique

MLEs at the modes of the corresponding marginal gamma desisit

Ao Z;TF:N’SZ‘ _ "'s

T ga)dt [ gu(a(t))dt

, s=1,...,0. (B.4)

Note that eacl, may be also interpreted as the method of moments estimatorttie
solution of the estimating equatioﬁaT dN(t) — 0 fO gs(z(t)dt =0, s=1,...,v
whereN;(t) is thes-th reaction counting process (see, e.g., Andersson attdB#A000
Chapter 9, for more details). Due to the form of the likeliddonction (B.3), a family
of independent gamma distributions arrives naturally asta&conjugate priors, that
is, we takef, ~ I'(as,bs), s = 1,...,v. Under this family of priors the application of

Bayes’ theorem produces posterior gamma distributionshmatain independence, i.e.,
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fors=1,...,vwe have

T
Ol ~T (as + 75, by —i—/ gs(:c(t))dt) , s=1,...,. (B.5)
0

Note that the maximum aposteriori (MAP) estimator is sinthly mode of posterior dis-
tribution i.e., an adjusted MLE. In particular, in case d tminformative and improper
priors witha, = 1 andb, = 0, MLE and MAP estimator coincide. The relation (B.5)
was also noted in Boyand otherq2008).

C. COMPARATIVE SIMULATION StuDY: SIRS MODEL

In order to assess the performance of our inference methedhawe conducted exten-
sive simulation studies based on the synthetic data geefiaim the SIRS model with
T = 30,Y(0) = 1, and varyingM and@. The detailed description of the five different
data collection schemes is given in the main body of the papexddition to summa-
rizing the results of the inference via the uniformizatimased Gibbs sampler, we have
also included for comparison the summary of the resultsiodtavia the MHA-based
Gibbs sampler, as described in Baysd otherg2008) and implemented in ti&tochinf
software (see, Wilkinson 2006, Chapter 10.3).

C.1 Comparisons with Completely Observed Species

In the main body of the paper we have presented the results tgvical trajectory of
the SIRS model with\/ = 25. In Table C.I we present a more extensive set of results,
for the SIRS trajectories with/ = 50 and M = 100. These results are selected as a

representative sample of the results of both inference odegblerformances across the
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Table C.I. Posterior means (standard deviations) of the SIRS modalpeaters with\/ = 50, 100 for the
uniformization Gibbs sampler (U) and the Gibbs sampler witsted Metropolis-Hastings step (MH) for

different data collection scenarios and data interval lérgy(mn).

Sampler Type 61 () 03
M =50
First 10 pts(m = 1) U 0.006(0.002) 0.115(0.067) 0.001(0.012)
MH 0.006(0.002) 0.109(0.064) 0.001(0.006)
First 20 pts fn = 1) U 0.009(0.002) 0.169(0.042) 0.056(0.039)
MH 0.008(0.002) 0.157(0.039) 0.045(0.032)
All 30 pts (m = 1) U 0.008(0.001) 0.194(0.038) 0.095(0.027)
MH 0.008(0.001) 0.181(0.033) 0.081(0.023)
Sparse 10 ptsf, = 3) U 0.008(0.002) 0.181(0.045) 0.092(0.038)
MH 0.022(0.004) 0.49(0.107) 0.226(0.087)
Sparse 15 ptsf = 2) u 0.008(0.002) 0.19(0.045) 0.095(0.035)
MH 0.015(0.003) 0.352(0.078) 0.167(0.061)
M =100
First 10 pts(r = 1) U 0.01(0.001) 0.197(0.032) 0.062(0.042)
MH 0.009(0.001) 0.187(0.029) 0.044(0.034)
First 20 pts fn = 1) U 0.009(0.001) 0.215(0.026) 0.074(0.015)
MH 0.009(0.001) 0.211(0.024) 0.071(0.015)
All 30 pts (m = 1) u 0.009(0.001) 0.211(0.023) 0.094(0.013)
MH 0.008(0.001) 0.182(0.02) 0.069(0.011)
Sparse 10 ptsf, = 3) U 0.009(0.001) 0.196(0.023) 0.085(0.013)
MH 0.018(0.002) 0.429(0.05) 0.136(0.025)
Sparse 15 ptsf = 2) U 0.01(0.001) 0.215(0.025) 0.095(0.014)
MH 0.013(0.002) 0.306(0.038) 0.099(0.023)
True Values 0.01 0.2 0.1

multiple simulations we have conducted. The reported wahre based on the 5000
steps of the Gibbs samplers after 1000 burn-in period, vi¢ghsamplers convergence
assessed via the usual Gelman-Rubin statigtig as given in Gelman and Rubin (1992)
with the standard stopping criterion takenfasi < 1.1. Whereas this criterion seemed
appropriate most of the time, in some cases the comparispiiregl a more restrictive
criterion and a larger number of iterations, as detailedhénrtext subsection. The non-
informative, improper priora, = 0.1 andb, = 0.1 were used for albs, in which case
the posterior means of the marginals coincided approximatgh the MLEs. As we
may see, similarly to the caseg = 25 discussed in the paper, the overall performance

of the samplers is similar to each other when the observafiimhis dense = 1)



Supplementary Material to Inference for Stochastic Kimdletworks 9

and quite satisfactory (estimates have low bias and vag)amben the grid is uniformly
distributed across the time interv@, 7']. When the observed data are too concentrated
in the particular trajectory segment, the effect of a terapbias is clearly visible. This
may be seen, for instance, in the significant shrinkage ofvitleesds; for the data
collected from the early trajectory (bin one in Figure 2 ircts®n 4 of the paper), where
the conversions of removed into susceptibles are happeaiaty, if at all.

When the data is collected on the sparse time grid, the umifation method is seen
to have a distinct edge over the MHA-based method based oeatte sampler 6000
iterations. This seems to be primarily due to the fact thagmthe hidden state space is
large, the MHA-based samplers converge at a noticeablyeslmate then the ones based

on the uniformization. We illustrate this with an examplehe next section.

C.2 Convergence Rates

The convergence assessment for all the chains considettegléarrent paper is based on
the so-called Gelman and Rubin method (Gelman and Rubir2; B3®oks and Roberts,
1998) which analyzes multiple simulated MCMC chains by carmg the variances
within each chain and the variance between chains. Largatitav between these two
variances indicates nonconvergence and hence the valigaltypcomputed for moni-
toring convergence is Gelman and Rubin statitig; equal to the square root of the
variances ratio.

Since in all simulated examples under sparse data scelise®she main paper’s Ta-
ble 1 and Table C.I) the large inferential discrepancy betwie uniformization-based
(U) and the MHA-basedH M) samplers was clearly visible, we have performed some

additional analysis based on a side-by-side comparisdmeafgspectivei ; statistics.
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Fig. C.I. Convergence diagnostics for the Gibbs samplexgltein Table 1 in the main body of the paper, under the
sparsef: = 3, 10 data points) scenario. Top panel: The approximate wafiibe Rubin-GelmamR ¢ statistics

as functions of number of iterations for the MHA-based (topve) and the uniformization (bottom curve) Gibbs
samplers. Bottom panel: the values of the moving averadj@ pf(with the window size of 1000 steps) as a function
of the number of iterations. The vertical line is drawn at®@8rations, the cut-off value used to derive éhestimates
reported in Table 1 of the paper. The comparisons in botls glaggest the slow-convergence bias of the MHA-based

sampler.

The value of Rz was computed based dnchains initialized from various parts of
the target distribution. If all chains have reached thedadjstribution, the posterior

variance estimate should be very close to the within-chamance and, consequently,
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Rar = 1.

The results are summarizrd in Figure C.l with the data froetthjectory in Figure 2
in the main body of the article and the sparse data scenarabe@ dataset withn =
3). In the upper panel of the figure, the trajectory of fhg., statistic in each sampler
is plotted against the number of sampler’s iterations. Téreesponding values of the
moving average of|@|| from two single-trajectory samplers are plotted in the lowe
panel. As may be seen from the plots the MHA-based sampletsn@enuch larger
number of iterations to converge and henceVat= 6000 iterations (the value used
in Table 1) will typically give biased results. In contradite uniformization sampler
converges faster and gives reliable resultsXore= 6000. Both samplers seem to give

results which are very close to each other only alfer 12000 iterations.

C.3 Imputation for Partially Missing Species

Since the Algorithm 2 in Section 3.2 of the paper only estemahe number of unob-
served species, the resulting uniformization Gibbs santpleverges to an approximate
posterior distribution and, consequently, the inferereggeld on combining Algorithms
1, 2 from Sections 2.1 and 3.5 of the paper is no longer exaet effect of the approx-
imation on the quality of the posterior estimates in the amifization Gibbs sampler
(U) is, of course, of interest. In order to illustrate the pariance of the BOP-based
algorithm for approximate inference in case when only pHytiobserved species are
available we have conducted additional simulation studfédee SIRS model. In these
simulation scenarios we assumed that, beyond the first dattd gttt = 0, the empiri-
cal counts were available only for removed, and not for itifes or susceptibles. The

results of are summarized in Table C.II below for large-toderate stochastic noise
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scenariosVl = 25, 50. As may be seen from the table, the approximate samplsy (s
seen to accrue additional bias and variance due to missioigriation, at least in some
parts of the posterior distribution. However, the effe@ras to be alleviated with more
timepoints added (30 in our simulation), indicating thesistency of the BOP approxi-
mation method. The convergence criteria used in reportiagimulation results are the
same as those applied earliéf & 6000), with the rate of convergence comparable to

that illustrated in Figure C.1.

Table C.II. Posterior means (standard deviations) of the SIRS modalmpaters with\/ = 25, 50 for the
uniformization Gibbs sampler with BOP imputation of Aldlbm 2 in Section 3.2 (UB) for different data
collection scenarios and between-data interval length}. Lower bias and variability is achieved with

larger number of observed timepoints (results in bold)jdating the approximation consistency.

Sampler Type 61 ) 03
M =25
First 10 pts(r = 1) UB 0.015(0.009) 0.338(0.192) 0.002(0.025)
First 20 ptsfn = 1) uB 0.017(0.006) 0.342(0.114) 0.019(0.019)
All 30 pts (m = 1) UB 0.018(0.001) 0.194(0.038) 0.095(0.027)
Sparse 10 ptsf, = 3) UB 0.012(0.003) 0.169(0.052) 0.035(0.016)
Sparse 15 ptsf = 2) uB 0.015(0.004) 0.215(0.067) 0.032(0.017)
True Values 0.02 0.2 0.1
M =50
First 10 pts(m = 1) uB 0.007(0.004) 0.335(0.201) 0.001(0.012)
First 20 pts fn = 1) UB 0.011(0.004) 0.219(0.131) 0.013(0.018)
All 30 pts (m = 1) uB 0.011(0.004) 0.219(0.134) 0.13(0.018)
Sparse 10 pts{ = 3) uB 0.006(0.001) 0.182(0.046) 0.019(0.01)
Sparse 15 ptsf = 2) UB 0.008(0.002) 0.254(0.059) 0.014(0.012)
True Values 0.01 0.2 0.1

C.4 Marginal Plots and Diagnostics

The marginal posterior distributions of tifevariables of interest may be obtained by
considering the marginal empirical samples from the caye@isamplers. In our simu-
lation experiments, in order to alleviate the effect of aotoelation, the samples were

thinned in the 5:1 proportion (after discarding the burpd@aving the marginal samples
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Fig. C.II. Top two rows: the trace and autocorrelation pfotsthe uniformization-based Gibbs sampler in the SIRS
model for the sparse data (10 points,= 3, M = 50) before and after the 5:1 thinning process. Bottom row: the

marginal posterior density plots 6k, 02, 5.

of size 1000 to be used for the density estimation. For iligin purposes, we present
some of the diagnostic plots of the trace and autocorraldtioctions before and after
the thinning procedure (Figure C.II, top panels) as welhasnarginal posterior density

plots of the SIRS parametefs, 6, 65 (Figure C.II, bottom panels).
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C.5 Computational Considerations

For M = 100 the computations for Algorithm 1 for the SIRS model took sal/bours

to complete on the desktop computer running OS X with 3.2 QDack Intel Xeon
processor. In general, in our simulations with SIR, SIRS atietr models, we have
seen that, as expected, with the increasing state space M@V C models the CPU
requirements increased exponentially, both with the ggatimber and the population
size. For partially observed species, the use of the appiae imputation algorithm
(Algorithm 2 in the main body of the paper) allowed us to royghktain the same order
of magnitude in the number the sampler steps needed for genvee, despite sampling
in the extended hidden space of unobserved species. Dafifilte reductions brought
by the approximation, the computational cost for @B, U and M H samplers was
seen as relatively high, although in general the converyefic andU B samplers with
sparse data was achieved much faster then With samplers (see, Figure C.I). Albeit
this is outside the scope of our current discussions, ongillesvay of decreasing the
computational overhead fdr andU B samplers, would be to appropriately adjust the
value of given in the formula (3.1) in Section 3 of the paper, so asfioiehtly reduce
the size of the hidden state space which needs to be samptéeé BYCMC algorithm.
The appropriate adaptive algorithm farselection could be developed, for instance,
by establishing the required exponential bounds on a junopgss trajectory (given
observed values) and identifying the envelopes of “higtbphility” trajectories along
the lines of the “large deviation” principles for Markov pesses (see, e.g., Kurtz and

Feng 2006).
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