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S.1. Weak convergence of Wn(x, t)

We establish the weak convergence of Wn(x, t) for general f1 and f2 that satisfy the fol-

lowing conditions.

Condition 1. There exists some δ > 0 such that {f1(X(t); β,Λ); t ∈ [0, τ ], β ∈ U(β0),Λ ∈

U(Λ0)} is a uniformly bounded P0-Donsker class and {f2(X(t); β,Λ); t ∈ [0, τ ], β ∈ U(β0),Λ ∈

U(Λ0)} is a P0-Donsker class, where U(β0) = {β : |β − β0| < δ} and U(Λ0) = {Λ : supt∈[0,τ ] |Λ(t)−

Λ0(t)| < δ}.

Condition 2. With probability one, there exist constants K1 and K2 such that f1(X(t); β0,

Λ0) has total variation bounded by K1, and I(f2(X(t); β0,Λ0) ≤ x) as a process indexed by t

has total variation bounded by K2 for all x.

Condition 3. suptE|f1(X(t); βn,Λn)− f1(X(t); β0,Λ0)| → 0 and supx,tE|I(f2(X(t); βn,

Λn) ≤ x)− I(f2(X(t); β0,Λ0) ≤ x)| → 0 as βn → β0 and Λn → Λ0 in l∞[0, τ ].

Remark S.1. Conditions 1 and 2, which ensure the uniform weak convergence, are sat-

isfied by all the processes considered in the main paper. Condition 3 pertains to continuity

requirements on the functions f1 and f2. The continuity condition on f1 is satisfied by all

the processes of the main paper. Since f2 does not involve β̂ or Λ̂ in the processes Wo, Wc
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and Wp, the continuity condition on f2 is automatically satisfied. It can be shown that this

condition is satisfied for the processes Wl and Wtr if there is at least one continuous covariate.

In addition, the condition of at least one continuous covariate is necessary for Wl and Wtr.

Suppose, for example, that X in Wl consists of a single discrete covariate and β0 > 0. Then in

Condition 3, E|I(f2(X(t); βn,Λn) ≤ x)− I(f2(X(t); β0,Λ0) ≤ x)| = E|I(X ≤ x/βn)− I(X ≤

x/β0)| ≥ |E{I(X ≤ x/βn)} − E{I(X ≤ x/β0)}|, which may not converge to 0 when x is the

mass point of β0X .

Define

g =

∫ t

0

f(X(u); x, β0,Λ0)dM(u; β0,Λ0),

ĝn =

∫ t

0

f(X(u); x, β̂, Λ̂)dM(u; β̂, Λ̂),

g1n =

∫ t

0

f(X(u); x, β0,Λ0)dM(u; β̂, Λ̂),

g2n =

∫ t

0

f(X(u); x, β̂, Λ̂)dM(u; β0,Λ0).

We first prove two lemmas which will be used in the proof of the weak convergence of

Wn(x, t).

Lemma S.1.
∫
(ĝn − g)2dP0

p→ 0 uniformly for x ∈ Rq and t ∈ [0, τ ].

Proof. For any x ∈ Rq and t ∈ [0, τ ],

E|ĝn − g|

= E

∣∣∣∣
∫ t

0

f(X(u); x, β̂, Λ̂)dM(u; β̂, Λ̂)−
∫ t

0

f(X(u); x, β0,Λ0)dM(u; β0,Λ0)

∣∣∣∣

≤
∫ t

0

[E|f(X(u); x, β̂, Λ̂)− f(X(u); x, β0,Λ0)|2]1/2[E|dM(u; β̂, Λ̂)|2]1/2

+E

∣∣∣∣
1√
n

∫ t

0

f(X(u); x, β0,Λ0)Y (u)d{
√
n(G̃(u; β̂, Λ̂)− G̃(u; β0,Λ0))}

∣∣∣∣ . (S.1)

Under Conditions 2 and 3, supx,u[E|f(X(u); x, β̂, Λ̂)−f(X(u); x, β0,Λ0)|2]1/2
p→ 0. In addition,

E|dM(u; β̂, Λ̂)|2 ≤ K

(
E[dN(u)] + E

[{
G

′

(

∫ u

0

eβ̂
TX(s)dΛ̂(s))eβ̂

TX(s)

}2
]
(dΛ̂(u))2

)
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for some constant K. Thus, the first term on the right-hand side of the inequality in (S.1)

converges uniformly to 0 in probability.

As shown in the above proof, G̃(u; β,Λ) is Hadamard differentiable with respect to (β,Λ).

By the functional delta-method,
√
n{G̃(u; β̂, Λ̂) − G̃(u; β0,Λ0)} converges weakly to a zero-

mean Gaussian process in the metric space l∞(F) for almost every path of X(·). It can be

verified that there exists a constant K such that f(X(u); x, β0,Λ0) has total variation bounded

by K for all x. Thus, the second term on the right-hand side of the inequality in (S.1) converge

uniformly to 0 in probability.

It is easy to show that ĝn and g are uniformly bounded by K(N(τ) + 1) in probability for

some constant K. Thus,

E|ĝn − g|2 ≤ KE[(N(τ) + 1)|ĝn − g|]

≤ 2K2E[I(N(τ) > M)(N(τ) + 1)2] +K(M + 1)E[I(N(τ) ≤M)|ĝn − g|]

for every M > 0. Since E|ĝn − g| converges uniformly to 0 in probability,

lim sup
n

sup
x,t

E|ĝn − g|2 ≤ 2K2E[I(N(τ) > M)(N(τ) + 1)2].

We then obtain the result of Lemma S.1 by letting M go to ∞.

Lemma S.2. Let An(u, x, t) be stochastic processes with supu,x,t |An(u, x, t)|
p→ 0. Then

√
n
∫ τ

0
An(u, x, t)d(Λ̂− Λ0)(u) converges uniformly to 0 in probability.

Proof. Clearly,

sup
x,t

∣∣∣∣
√
n

∫ τ

0

An(u, x, t)d(Λ̂− Λ0)(u)

∣∣∣∣ ≤ sup
u,x,t

|An(u, x, t)|
∫ τ

0

|
√
nd(Λ̂− Λ0)(u)|. (S.2)

Note that supu,x,t |An(u, x, t)| →p 0. In addition,
√
n(Λ̂−Λ0) converges weakly to a zero-mean

Gaussian process with bounded total variation (Zeng and Lin 2006). By Slutsky’s lemma and

Skorohod’s representation theorem, the right-hand side of the inequality in (S.2) converges to

0 in probability. We then obtain the result of the lemma.
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Now we prove the weak convergence of Wn(x, t). Because P0g2n = op(n
−1/2), Wn(x, t) can

be written as

√
n(Pn − P0)(ĝn − g) +

√
n(Pn − P0)g +

√
nP0(g1n − g) +

√
nP0{(ĝn − g2n)− (g1n − g)}. (S.3)

The first term in (S.3) converges uniformly to 0 in probability because, as stated in Lemma

S.1,
∫
(ĝn−g)2dP0

p→ 0 uniformly in x and t and because ĝn and g belong to a P0-Donsker class

under Condition 1 and the conditions on X(·) stated in Section 2 of the main paper, which

is justified as follows. By Lemma 4.1 of Kosorok (2008), {X(t); t ≥ 0} is a P0-Donsker class.

It is also clear that {N(t); t ≥ 0}, {Y (t); t ≥ 0} and {Λ(t); t ≥ 0} are P0-Donsker classes.

Because
∫ t

0
Y (s)eβ̂

TX(s)dΛ̂(s) belongs to F (P,2), where F (P,2) denotes the pointwise and L2(P )

closure of the class
{ m∑
i=1

I(ti ≤ t)Y (ti)e
βTX(ti)(Λ(ti) − Λ(ti−1)); t ∈ [0, τ ], m > 0, 0 = t0 <

t1 < . . . < tm = τ, β ∈ U(β0),Λ ∈ U(Λ0)
}
, the function

∫ t

0
Y (s)eβ̂

TX(s)dΛ̂(s) belongs to a P0-

Donsker class by the preservation properties of P0-Donsker class (van der Vaart and Wellner

1996, ch2.10). Since G has continuous first derivatives, G(
∫ t

0
Y (s)eβ̂

TX(s)dΛ̂(s)) belongs to

a P0-Donsker class. Therefore, M(t, β̂, Λ̂) belongs to a P0-Donsker class and has uniformly

bounded total variation. By the same arguments of the pointwise closure, we then conclude

that ĝn belongs to a P0-Donsker class.

The second term in (S.3) converges weakly to a zero-mean Gaussian process in l∞(Rq ×

[0, τ ]) since g also belongs to a P0-Donsker class.

To study the last two terms in (S.3), we define G̃(t; β,Λ) = G
{∫ t

0
eβ

TX(s)dΛ(s)
}
. Then the

third and fourth terms in (S.3) can be written as

√
nP0

∫ t

0

f(X(u); x, β0,Λ0)Y (u){dG̃(u; β̂, Λ̂)− dG̃(u; β0,Λ0)}, (S.4)

and

√
nP0

∫ t

0

{f(X(u); x, β̂, Λ̂)− f(X(u); x, β0,Λ0)}Y (u){dG̃(u; β̂, Λ̂)− dG̃(u; β0,Λ0)}, (S.5)

respectively. It can be verified that
∫ t

0
eβ

TX(s)dΛ(s) is Hadamard differentiable with respect

to (β,Λ) for almost every path of X(·). By the chain rule, G̃(t; β,Λ) is Hadamard differen-
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tiable. Then the weak convergence of
√
n(β̂ − β0, Λ̂ − Λ0) (Zeng and Lin 2006) implies that

√
n{G̃(t; β̂, Λ̂)− G̃(t; β0,Λ0)}−

√
nG̃

′

β0,Λ0
(β̂− β0, Λ̂−Λ0)(t) converges to 0 in probability uni-

formly in t ∈ [0, τ ], where G̃
′

β0,Λ0
is the Hadamard derivative of G̃(·; β,Λ) at (β0,Λ0). It follows

from Conditions 1-3 and integration by part that
√
nP0

∫ t

0
f(X(u); x, β,Λ)Y (u){dG̃(u; β̂, Λ̂)−

dG̃(u; β0,Λ0)} is asymptotically equivalent to

√
nP0

∫ t

0

f(X(u); x, β,Λ)Y (u)d{G̃′

β0,Λ0
(β̂ − β0, Λ̂− Λ0)}

=
√
n(β̂ − β0)

TP0h1(Y,X ; x, t; β,Λ) +
√
n

∫ τ

0

P0h2(Y,X ; u, x, t; β,Λ)d(Λ̂− Λ0)(u)

uniformly in x ∈ Rq, t ∈ [0, τ ], β ∈ U(β0) and Λ ∈ U(Λ0). Thus, (S.4) and (S.5) are

asymptotically equivalent to

√
n(β̂ − β0)

TP0h1(Y,X ; x, t; β0,Λ0) +
√
n

∫ τ

0

P0h2(Y,X ; u, x, t; β0,Λ0)d(Λ̂− Λ0)(u), (S.6)

and
√
n(β̂ − β0)

TP0(h1(Y,X ; x, t; β̂, Λ̂)− h1(Y,X ; x, t; β0,Λ0))

+
√
n

∫ τ

0

P0(h2(Y,X ; u, x, t; β̂, Λ̂)− h2(Y,X ; u, x, t; β0,Λ0))d(Λ̂− Λ0)(u), (S.7)

respectively. Because
√
n((β̂ − β0)

Th̃1 +
∫ τ

0
h̃2(u)d(Λ̂ − Λ0)(u)) is asymptotically equivalent

to
√
n(Pn − P0)(Sβ0 , SΛ0)I

−1
β0,Λ0

(h̃1, h̃2(·)) for all (h̃1, h̃2(·)) ∈ Rp × F , where F = {w(t) :

‖w‖BV [0,τ ] ≤ 1} and ‖w‖BV [0,τ ] denotes the total variation of w(·) in [0, τ ] (Zeng and Lin

2006), (S.6) is further asymptotically equivalent to

√
n(Pn − P0)(Sβ0, SΛ0)I

−1
β0,Λ0

(P0h1(Y,X ; x, t; β0,Λ0), P0h2(Y,X ; ·, x, t; β0,Λ0)).

Under Condition 3,

sup
x,t

|P0(h1(Y,X ; x, t; β̂, Λ̂)− h1(Y,X ; x, t; β0,Λ0))|
p→ 0,

sup
u,x,t

|P0(h2(Y,X ; u, x, t; β̂, Λ̂)− h2(Y,X ; u, x, t; β0,Λ0))|
p→ 0.

Hence, (S.7) converges uniformly to zero by Lemma S.2.
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Combining the above results, we obtain the weak convergence of Wn(x, t).

S.2. Validity of the Monte Carlo Procedure

In this section, we show that the conditional distribution of Ŵn(x, t) given the observed

data has the same limiting distribution as W̃n(x, t). This result will follow upon verifying the

conditions in Theorem 2.11.1 of van der Vaart and Wellner (1996). In this case, the functional

class F is indexed by x and t, and the semimetric ρ is defined as the Euclidean metric in (x, t).

Define

ψi(x, t) =

∫ t

0

f1(X i(u); β0,Λ0)I(f2(Xi(u); β0,Λ0) ≤ x)dMi(u; β0,Λ0)

+(Sβ0, SΛ0)iI
−1
β0,Λ0

(P0h1(Y,X ; x, t; β0,Λ0), P0h2(Y,X ; ·, x, t; β0,Λ0)),

ψ̂i(x, t) =

∫ t

0

f1(X i(u); β̂, Λ̂)I(f2(Xi(u); β̂, Λ̂) ≤ x)dMi(u; β̂, Λ̂) + Si(x, t),

where (Sβ0 , SΛ0)i is the score operator for β and Λ at (β0,Λ0) from the ith subject, and

Si(x, t) = lTi I
−1
n (hT1n(x, t), h

T
2n(x, t))

T.

Condition 1 in Theorem 2.11.1 of van der Vaart and Wellner (1996) requires that

1

n

n∑

i=1

sup
x,t∈[0,τ ]

|ψ̂i(x, t)|2E
[
Q2

i

{
|Qi| >

√
nη

supx,t∈[0,τ ] |ψ̂i(x, t)|

}]
→p 0 for every η > 0.

This holds since supx,t∈[0,τ ] |ψ̂i(x, t)| is bounded in probability.

Condition 2 in Theorem 2.11.1 of van der Vaart and Wellner (1996) requires that

sup
ρ((x1,t1),(x2,t2))<δn

1

n

n∑

i=1

(ψ̂i(x1, t1)− ψ̂i(x2, t2))
2 → 0 for every δn → 0.

To check this condition, note that the first and second terms of ψ̂i(x, t) converge in probability

to the corresponding first and second terms of ψi(x, t). In addition, the two terms and their

squares belong to a Glivenko-Cantelli class. Thus, the left-hand side converges in probability

to

lim sup
δn→0

sup
ρ((x1,t1),(x2,t2))<δn

E[(ψi(x1, t1)− ψi(x2, t2))
2],
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which can be shown to be zero.

By Theorems 2.6.7 and 2.7.11 of van der Vaart and Wellner (1996), Condition 3 in Theorem

2.11.1 holds since F indexed by x is a VC-class and F indexed by t is a class that is Lipschitz

in parameter.

Finally, we show that the sequence of the covariance functions converges point-wise to the

same limit as that of W̃n(x, t). By the arguments similar to that for checking Condition 2, we

obtain

1

n

n∑

i=1

ψ̂i(x1, t1)ψ̂i(x2, t2) −→p E{ψi(x1, t1)ψi(x2, t2)}.

This verifies the pointwise convergence of the covariance functions.

S.3. Consistency of Supremum Tests

The proofs rely on the convergence of β̂ and Λ̂ under misspecified models, which is given

in Lemma S.3.

Lemma S.3. Assume that Conditions 2-4 of Zeng and Lin (2006) hold. Let pβ,Λ and p0

denote the densities of {N(t), Y (t), X(t); t ∈ [0, τ ]} under the posited transformation model

(1.2) and under the true model, respectively. Assume that the Kullback-Leibler information

between them, i.e., P0 log(pβ,Λ/p0), has a unique maximizer (β∗,Λ∗) with Λ∗ continuously

differentiable in [0, τ ] and (β∗,Λ∗) in the interior of the parameter space. Then the NPMLE

(β̂, Λ̂) under posited transformation model converges to (β∗,Λ∗).

Proof. Using the arguments in Steps 1-2 of Zeng and Lin (2006), we obtain that for every

subsequence, there exists a further subsequence such that β̂ → β̃ and Λ̂ → Λ̃. The theorem is

proved if we can show that β̃ = β∗ and Λ̃(t) = Λ∗(t) for t ∈ [0, τ ].

Define

Λ∗

n(t) = n−1

∫ t

0

n∑

i=1

dNi(s)

|φn(s; Λ∗, β∗)| ,

where φn is defined in Zeng and Lin (2006). Since it is the maximizer of P0 log pβ,Λ and lies in
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the interior of the parameter space, (β∗,Λ∗) is a solution to the score equations and thus

Λ∗(t) =

∫ t

0

EdN(s)

φ(s; Λ∗, β∗)
, (S.8)

where

φ(t; Λ, β) = E

{
Y (t)eβ

TX(t)

[
G

′

(∫ τ

0

Y (s)eβ
TX(s)dΛ

)
−
∫ τ

t

G
′′

G′

{∫ s

0

Y (u)eβ
TX(u)dΛ

}
dN(s)

]}
.

By the Glivenko-Cantelli theorem, Λ∗

n converges to Λ∗ uniformly.

Clearly, Pn(log pβ̂,Λ̂− log pβ∗,Λ∗

n
) ≥ 0. Taking limits on both sides and using the arguments

of Zeng and Lin (2006), we obtain P0 log pβ̃,Λ̃ ≥ P0 log pβ∗,Λ∗ . This result, together with the

condition that (β∗,Λ∗) is the unique maximizer of P0 log(pβ,Λ/p0), implies that β∗ = β̃ and

Λ∗ = Λ̃. The convergence of Λ̂(t) → Λ∗(t) can be strengthened to uniform convergence in

t ∈ [0, τ ] by the continuity of Λ∗.

S.3.1. Omnibus test. It suffices to prove that the limit of supx,t |n−1/2Wo(x, t)| is nonzero

under the alternative hypothesis. By Lemma S.3, β̂ → β∗ and Λ̂(t) → Λ∗(t). Thus,

n−1/2Wo(x, t) converges almost surely to

E

[∫ t

0

I(X ≤ x)Y (u){dΛ(u|X)− dG(eβ
∗TXΛ∗(u))}

]
,

which will be nonzero for some t > 0 and x under the alternative.

S.3.2. Functional forms of covariates. By Lemma S.3, β̂ → β∗, γ̂ → γ∗ and Λ̂(t) → Λ∗(t).

Thus, n−1/2W
(j)
c (x, t) converges almost surely to

E

[∫ t

0

I(X(j) ≤ x)Y (u){dG(Λ0(u)e
βT
0 X(−j)

g(X(j)))− dG(Λ∗(u)eβ
∗TX(−j)+γ∗X(j)

)}
]
, (S.9)

where X(j) is the jth component of X , and X(−j) consists of the other components of X .

Suppose that the limit of supx,t |n−1/2W
(j)
c (x, t)| is zero under the alternative. Then (S.9)

equals zero for all x and t. Taking the derivative of (S.9) with respect to t at t = 0, we have

E
[
I(X(j) ≤ x){G′

(0)λ0(0)e
βT
0 X(−j)

g(X(j))−G
′

(0)λ∗(0)eβ
∗TX(−j)+γ∗X(j)}

]
= 0,
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where λ0 and λ∗ are the derivatives of Λ0 and Λ∗, respectively. Since X(−j) and X(j) are

independent,

g(x) =
λ∗(0)

λ0(0)

Eeβ
∗TX(−j)

Eeβ
T
0 X(−j)

eγ
∗x.

Thus, log g(x) is linear in x, which is a contradiction.

S.3.3. Link function. The limit of n−1/2Wl(x, t) under the alternative is

E

[∫ t

0

I(β∗TX ≤ x)Y (u){dG(Λ0(u)g(e
βT
0 X))− dG(Λ∗(u)eβ

∗TX)}
]
. (S.10)

Suppose that the limit of supx,t |n−1/2Wl(x, t)| is zero under the alternative. Then (S.10)

equals zero for all x and t. Taking the derivative of (S.10) with respect to t at t = 0, we obtain

E
[
I(β∗TX ≤ x){G′

(0)λ0(0)g(e
βT
0 X))−G′

(0)λ∗(0)eβ
∗TX)}

]
= 0.Thus, E

[
g(eβ

T
0 X)|eβ∗TX = x

]
=

λ∗(0)/λ0(0)x. By the condition of the theorem, g(x) = cxα for some constants c and α, which

is a contradiction.

S.3.4. Proportionality. Under the alternative, the limit of n−1/2Wp(t) is

E

∫ t

0
Y (u)X

{
1 +

G
′′
(
eβ

∗XΛ∗(u)
)

G
′ (eβ∗XΛ∗(u))

e
β∗XΛ∗(u)

}{
dG

(∫ u

0
e
θ(s)X

dΛ0(s)

)
− dG

(∫ u

0
e
β∗X

dΛ∗(s)

)}
.

Suppose that the limit is zero for all t. Since X is binary, G(
∫ t

0
eθ(s)dΛ0(s)) = G(

∫ t

0
eβ

∗

dΛ∗(s))

for all t. Thus eθ(t)λ0(t) = eβ
∗

λ∗(t). Let

φ(t; Λ, β) = E

[
Y (t)eβX

{
G

′

(∫ τ

0

Y (s)eβXdΛ(s)

)
−
∫ τ

t

G
′′

G′

(∫ s

0

Y (u)eβXdΛ(u)

)
dN(s)

}]
.

By (A3) of Zeng and Lin (2006) and (S.8) in the proof of Lemma S.3, λ0(t)φ(t; Λ0, θ(t)) =

λ∗(t)φ(t; Λ∗, β∗). This result, combined with the fact that eθ(t)λ0(t) = eβ
∗

λ∗(t), implies that

E{f(s,Λ0)|X = 0}
E{f(s,Λ∗)|X = 0} =

λ∗(t)

λ0(t)
, (S.11)

where

f(t,Λ) = Y (t)

[
G

′

(∫ τ

0

Y (s)dΛ(s)

)
−
∫ τ

t

G
′′

(Λ(s))

G′(Λ(s))
Y (s)dN(s)

]
.

Since Λ0(t) is a solution to the score equation for Λ conditional on X = 0, we obtain

Λ0(t) =
∫ t

0
E{dN(s)|X = 0}/E{f(s,Λ0)|X = 0}. It then follows from (S.11) that Λ∗(t) =
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∫ t

0
E{dN(s)|X = 0}/E{f(s,Λ∗)|X = 0}, so Λ∗(t) is also a solution to the score equation

for Λ conditional on X = 0. Thus, G(Λ0(t)) and G(Λ∗(t)) are the solutions to the same

score equation. Since the score equation has an unique solution given by
∫ t

0
E{dN(s)|X =

0}/E{Y (s)|X = 0}, we obtain G(Λ0(t)) = G(Λ∗(t)). This result, together with the fact that

eθ(t)λ0(t) = eβ
∗

λ∗(t), implies θ(t) = β∗, which is a contradiction.

S.3.5. Transformation function. The limit of n−1/2Wtr(x, t) under the alternative is

E

[∫ t

0

I(Λ∗(u)eβ
∗TX ≤ x)Y (u)

{
dG0(Λ0(u)e

βT
0 X)− dG(Λ∗(u)eβ

∗TX)
}]

. (S.12)

Suppose that (S.12) is zero for all x > 0 and t > 0. By taking the derivative of (S.12) with

respect to t, we have

E
[
I(Λ∗(t)eβ

∗TX ≤ x)Y (t)
{
G

′

0(Λ0(t)e
βT
0 X)λ0(t)e

βT
0 X −G

′

(Λ∗(t)eβ
∗TX)λ∗(t)eβ

∗TX
}]

= 0.

For every y > 0, let x = yΛ∗(t). Then

E
[
I(eβ

∗TX ≤ y)Y (t)
{
G

′

0(Λ0(t)e
βT
0 X)λ0(t)e

βT
0 X −G

′

(Λ∗(t)eβ
∗TX)λ∗(t)eβ

∗TX
}]

= 0. (S.13)

Letting t → 0 and noticing that G
′

(0) = G
′

0(0) and λ
∗(0) = λ0(0), we have E

[
eβ

T
0 X
∣∣eβ∗TX =

y
]
= y. Thus, β0 = β∗. It then follows from (S.13) that for all t > 0 and y > 0,

G
′

0(Λ0(t)y)λ0(t) = G
′

(Λ∗(t)y)λ∗(t),

which entails that Λ∗(t) = cΛ0(t) for some constant c. Since λ∗(0) = λ0(0), the constant c

must be 1. We then conclude that G0(x) = G(x), which is a contradiction.

S.4. Transformation mean models

By extending the arguments of Lin et al. (2000) and Zeng and Lin (2006), we can prove that

the maximum pseduo-likelihood estimators β̂ and µ̂(·) converge to the true parameter values

β0 and µ0(·) under model (1.3). However, the variance estimators for β̂ and µ̂(·) described in

Zeng and Lin (2006) are not consistent when the recurrent event times within the same subject

are dependent. To obtain consistent variance estimators, we establish that
√
n((β̂ − β0)

Th̃1 +

10



∫ τ

0
h̃2(u)d(µ̂ − µ0)(u)) is asymptotically equivalent to

√
n(Pn − P0)(Sβ0 , Sµ0)I

−1
β0,µ0

(h̃1, h̃2(·))

for all (h̃1, h̃2(·)) ∈ Rp × F , where F is defined in Section S.1, Sβ0 and Sµ0 are the pseudo-

likelihood score operators, and Iβ0,µ0 is the pseudo-likelihood information operator. Indeed,

a similar representation is used in Section S.1. for β̂ and Λ̂. In light of this representation,

together with the fact thatE{dM(t; β0, µ0))|X(·)} = 0, we can show that the weak convergence

of Wn(x, t) described in Section 2 of the main paper (with Λ replaced by µ) holds under

model (1.3). Consequently, all the theoretical results we have established for model (1.2) are

applicable to model (1.3).

11



S.5. PBC sequential data

We consider the primary biliary cirrhosis (PBC) sequential database, which is a follow-up of

the PBC study reported in Fleming and Harrington (1991). The PBC study was originally de-

signed to evaluate the effect of the drug D-penicillamine on the survival time of PBC patients.

The drug turned out to be ineffective, and the data were used to build a proportional hazards

model for the natural history of PBC with covariates age, edema, log(bilirubin), log(albumin),

and log(protime) (Fleming and Harrington, 1991). The PBC sequential database contains the

follow-up values on the above five covariates for the 312 patients involved in the randomized

clinical trial. A total of 140 patients had died by the end of follow-up.

We start with the proportional hazards model with five time-dependent covariates: age,

edema, log(bilirubin), log(albumin), and log(pro-time). The supremum tests supx |Wc(x,∞)|

for checking the functional forms of the five covariates have p-values of .360, .447, .037, .011,

and .419, respectively, indicating that the functional forms of bilirubin and albumin may be in-

appropriate. Figure S3 plots the cumulative sums of residuals Wc(·,∞) for log(bilirubin). The

observed pattern resembles the solid curve of Figure 1b, suggesting the addition of square term

of log(bilirubin). The plot of the cumulative sums of residualsWc(·,∞) for log(albumin) (omit-

ted here) suggests adding square and cubic terms of log(albumin). After adding these terms,

the p-values of the supremum tests for the functional forms of log(bilirubin) and log(albumin)

increase to .380 and .075, respectively. The p-values of the supremum tests for the functional

forms of age, edema, and log(protime) become .326, .468, and .581, respectively. The supre-

mum test supx |Wl(x,∞)| for checking the link function has a p-value of .728. The supremum

tests supt |Wp(t)| for checking the proportionality of age, edema, log(bilirubin), log(albumin),

log(protime), square of log(bilirubin), and square and cubic of log(albumin) have p-values of

.759, .048, .657, .553, .450, .220, .327, .200, indicating that the proportional hazards assump-

tion for edema may be problematic. Figure S4 displays the score process Wp(·) for edema.

The observed curve is concave and above zero, and the estimated regression parameter for

edema is positive. According to Figure 2, this pattern indicates that the hazards ratio for two

12



edema values decreases over time. The supremum tests supx |Wtr(x,∞)| and supx,t |Wtr(x, t)|

for checking the transformation function have p-values of .037 and .081. To correct the non-

proportionality of edema, we add the interaction of edema and log t to the model. For the new

model, the supremum tests for the functional forms of age, edema, log(bilirubin), log(albumin),

log(protime), and edema× log t have p-values of .372, .501, .319, .072, .555, and .842, respec-

tively; the supremum test for the link function has a p-value of .736; the supremum tests

for the proportionality of age, edema, log(bilirubin), log(albumin), log(protime), square of

log(bilirubin), and square and cubic of log(albumin) have p-values of .778, .448, .270, .668, .215,

.077, .685, .494, .723, respectively; the supremum tests supx |Wtr(x,∞)| and supx |Wtr(x, t)|

have p-values of .083 and .134, respectively. The above p-values show that the new model is

satisfactory. Table S6 shows the estimation results for the final model. The square term of

log(bilirubin) and the cubic term of log(albumin) are very significant. The interaction between

edema and log t is significant and has a negative coefficient, showing that the hazards ratio

associated with two edema values decreases to 1 over time.
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Figure S1: Plot of the cumulative sum of residuals Wtr(·,∞) in the colon cancer data: the

observed pattern is shown by the solid curve while 20 simulated realizations from the null

distribution are shown in dotted curves.
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Figure S2: Residual plots under the proportional means model for the CGD data: (a) cumu-

lative sum of residuals Wc(·,∞) for the functional form of age; (b) score process Wp(·) for

treatment; (c) score process Wp(·) for age; and (d) cumulative sum of residuals Wtr(·,∞) for

checking the transformation function. In each plot, the observed pattern is shown by the solid

curve while 20 simulated realizations from the null distribution are shown in dotted curves.
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Figure S3: Plot of the cumulative sum of residuals Wc(·,∞) for the functional form of time-

dependent log(bilirubin) in the PBC sequential data: the observed pattern is shown by the

solid curve while 20 simulated realizations from the null distribution are shown in dotted

curves.

17



0 2 4 6 8 10 12 14

−
6

−
4

−
2

0
2

4

Follow−up time (years)

S
c
o

re
 p

ro
c
e

s
s

p−value=.048

Figure S4: Plot of the score process Wp(·) for time-dependent edema in the PBC sequential

data: the observed pattern is shown by the solid curve while 20 simulated realizations from

the null distribution are shown in dotted curves.
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Table S1: Type I error of the supremum tests for survival data and recurrent events with

time-independent covariates at the 5% significance level with n=200 (100)

Survival Data
Box-Cox logarithmic

ρ = .5 1 2 r = .5 1 2
censoring 28% 20% 9% 30% 37% 48%

supx,t |W (2)
c (x, t)| .052 (.056) .042 (.050) .054 (.046) .055 (.056) .055 (.071) .055 (.085)

supx |W
(2)
c (x,∞)| .051 (.056) .046 (.046) .055 (.056) .054 (.065) .053 (.066) .053 (.078)

supx,t |Wl(x, t)| .042 (.066) .042 (.049) .039 (.041) .045 (.062) .054 (.072) .056 (.084)
supx |Wl(x,∞)| .042 (.059) .038 (.057) .040 (.051) .040 (.056) .053 (.076) .059 (.089)

supt |W (1)
p (t)| .052 (.063) .053 (.068) .054 (.068) .054 (.056) .049 (.051) .047 (.053)

supt |W (2)
p (t)| .044 (.049) .049 (.052) .058 (.049) .044 (.048) .049 (.052) .049 (.050)

supx,t |Wtr(x, t)| .054 (.051) .047 (.049) .050 (.056) .050 (.049) .049 (.056) .072 (.077)
supx |Wtr(x,∞)| .045 (.048) .042 (.052) .051 (.055) .047 (.044) .045 (.056) .067 (.078)
supx,t |Wo(x, t)| .056 (.059) .047 (.054) .054 (.047) .054 (.059) .055 (.070) .064 (.079)

Recurrent Event Data
Box-Cox logarithmic

ρ = .5 1 2 r = .5 1 2
# events/subject 1.41 1.97 4.36 1.33 1.04 0.77

supx,t |W (2)
c (x, t)| .048 (.044) .043 (.042) .048 (.040) .048 (.042) .043 (.036) .048 (.039)

supx |W (2)
c (x,∞)| .052 (.036) .038(.044) .045 (.041) .048 (.040) .043 (.040) .049 (.037)

supx,t |Wl(x, t)| .045 (.044) .037 (.035) .043(.038) .055 (.047) .044 (.042) .051 (.048)
supx |Wl(x,∞)| .048 (.046) .036 (.040) .046 (.041) .052 (.040) .046 (.042) .052 (.047)

supt |W (1)
p (t)| .044 (.053) .052 (.051) .050 (.048) .048 (.050) .049 (.064) .056 (.060)

supt |W (2)
p (t)| .054 (.041) .051 (.042) .044 (.036) .036 (.047) .047 (.044) .058 (.037)

supx,t |Wtr(x, t)| .057 (.051) .055 (.051) .045 (.042) .053 (.053) .053 (.060) .062 (.070)
supx |Wtr(x,∞)| .053 (.045) .052 (.051) .040 (.043) .051 (.047) .054 (.058) .057 (.059)
supx,t |Wo(x, t)| .046 (.041) .043 (.041) .047 (.040) .047 (.042) .043 (.035) .047 (.037)

Note: For survival data, Box-Cox with ρ = 1 is the proportional hazards model and logarithmic

with r = 1 is the proportional odds model. Here and in the sequel, the results are based on

2000 replicates.
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Table S2: Type I error of the supremum tests for survival data with time-dependent covariates

at the 5% significance level with n=200 (100)

Box-Cox logarithmic
ρ = .5 1 2 r = .5 1 2

censoring 23% 15% 7% 25% 32% 43%

supx,t |W (2)
c (x, t)| .060 (.066) .065 (.066) .064 (.070) .068 (.069) .064 (.071) .063 (.071)

supx |W
(2)
c (x,∞)| .056 (.055) .062 (.061) .064 (.066) .054 (.067) .060 (.069) .068 (.070)

supx,t |Wl(x, t)| .057 (.055) .050 (.064) .052 (.058) .048 (.059) .058 (.060) .062 (.074)
supx |Wl(x,∞)| .060 (.051) .052 (.060) .066 (.070) .055 (.062) .064 (.062) .069 (.072)

supt |W (1)
p (t)| .054 (.060) .054 (.059) .059 (.067) .051 (.055) .056 (.051) .050 (.053)

supt |W (2)
p (t)| .052 (.047) .064 (.053) .051 (.054) .051 (.056) .046 (.050) .057 (.057)

supx,t |Wtr(x, t)| .050 (.055) .058 (.063) .069 (.070) .051 (.052) .061 (.061) .074 (.086)
supx |Wtr(x,∞)| .048 (.058) .053 (.062) .061 (.066) .049 (.057) .055 (.061) .066 (.082)
supx,t |Wo(x, t)| .060 (.069) .064 (.067) .064 (.071) .066 (.070) .062 (.070) .066 (.070)

Note: Box-Cox with ρ = 1 is the proportional hazards model and logarithmic with r = 1 is

the proportional odds model.

Table S3: Power of the supremum and Wald tests at the 5% significance level against the

omission of a squared term

Survival Data
Box-Cox(n=100) logarithmic(n=200)
ρ = .5 1 2 r = .5 1 2

τ 3.7 2.2 1.2 1.0 1.4 3.0
censoring 53% 58% 65% 77% 74% 68%
supx,t |Wc(x, t)| .651 .692 .695 .717 .687 .598
supx |Wc(x,∞)| .784 .780 .742 .723 .662 .557
Wald .901 .903 .894 .887 .897 .896

Recurrent Events Data
Box-Cox(n=100) logarithmic(n=200)
ρ = .5 1 2 r = .5 1 2

τ 3.7 2.2 1.2 1.0 1.4 3.0
# events/subject 0.94 0.80 0.63 0.31 0.36 0.45
supx,t |Wc(x, t)| .713 .727 .689 .663 .663 .542
supx |Wc(x,∞)| .723 .792 .792 .691 .627 .481
Wald .962 .963 .934 .922 .925 .935

Note: supx,t |Wc(x, t)| is the same as supx,t |Wo(x, t)| when there is only one covariate.
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Table S4: Power of the supremum and Wald tests at the 5% significance level against a logistic

functional form of the covariate

Box-Cox(n=100) logarithmic(n=200)
ρ = .5 1 2 r = .5 1 2

τ 3 3 1 1.5 2 2
censoring 17% 13% 24% 26% 27% 36%
supx,t |Wc(x, t)| .764 .885 .941 .952 .841 .490
supx |Wc(x,∞)| .841 .949 .984 .962 .825 .421
Wald .192 .261 .120 .155 .174 .141

Table S5: Power of the supremum and Wald tests against nonproportionality

Λ(t|X) = G(
∫ t

0
exp(.2X + .2X ∗ log(s))ds)

Box-Cox (n = 100) logarithmic (n = 100)
ρ = .5 1 2 r = .5 1 2

censoring 27% 23% 18% 28% 34% 44%

supt |W (1)
p (t)| .742 .784 .792 .688 .605 .604

Wald .889 .908 .917 .868 .818 .728

Λ(t|X) = G(
∫ t

0
exp(−.1X − .5X ∗ sin(2 ∗ s))ds)

Box-Cox (n = 100) logarithmic (n = 200)
ρ = .5 1 2 r = .5 1 2

censoring 45% 48% 53% 44% 40% 35%

supt |W (1)
p (t)| .900 .944 .949 .993 .959 .752

Wald .369 .460 .512 .499 .345 .192

Table S6: Analysis of the PBC sequential data under the proportional hazards model

Parameter Est SE Est/SE p-value
Age 0.053 0.010 5.573 <.001
Edema 1.382 0.376 3.678 <.001
log(Bilirubin) 0.238 0.239 0.996 .319
log(Albumin) 9.817 6.006 1.635 .102
log(Protime) 2.448 0.673 3.638 <.001
log2(Bilirubin) 0.277 0.076 3.634 <.001
log2(Albumin) −16.360 5.890 −2.778 .005
log3(Albumin) 5.992 1.870 3.205 .001
Edema∗ log t −0.559 0.247 −2.260 .024
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