
WEB APPENDIX 

Lagging exposure information in cumulative exposure-response analyses 

 

Assume that we have data set, DS, which is an analytical data structure for a matched 

case-control analysis as in our empirical example.  Up to 40 controls are sampled for each 

case. The data set consists of one record for the case and associated controls. The variable 

age_rs specifies the age at which the risk set is enumerated (the age of case occurrence 

for the case or control selection). The variable _ntot specifies the total number of people 

in a risk set.  The exposure histories are represented by the variables, z1, z2, … denoting 

the exposure accrued at each year of age through age 86.  

 

Estimation of the ‘best fitting’ lag interval assuming this is a fixed constant. 

The SAS code below can be used to fit a linear excess rate ratio model estimating the 

cumulative exposure-response trend, b1, and the ‘best’ fitting lag value, lag.  A typical lag 

may be implemented as a time-varying binary exposure weighting function (i.e., a step 

function); since this implies a discontinuous function that creates estimation problems, 

we facilitate estimation by means of a continuous, S-shaped exposure weighting function 

that closely approximates a step function.  The inflection point for the function, lag, is 

directly estimated from the data, while the shape parameter for the weight function is 

fixed at a value that implies a steep S-shaped curve (in this example, 25).  The 

conditional likelihood contribution for each risk set is given in (1). 
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proc nlmixed data=DS;     
  parms b1=1, lag=7;   
  array z{87,41} z1-z3567; 
  sum=0;  
   do i=_ntot to 1 by -1;  
    age_rs=z{87,i};  
    cumexp=0; 
    do j=1 to age_ ; rs 
     tse=age_rs-j+0.5;   
     wt=((tse/lag)**25)/(((tse/lag)**25)+(tse/lag));  
     if j <=86 then cumexp=cumexp+(z{j,i}*wt/100);  
    end;   
    phi=1+cumexp*b1;  
    sum=sum+phi; 
   end;  
   cc=1;  
 model cc~binary(phi/sum);run;       
 
 
 
 
The ‘parms’ statement tells SAS that the cumulative exposure effect and inflection point 

for the S-shaped exposure weighting function, b1 and lag, respectively, are to be 

estimated and sets initial values for these parameters. The array z{87,41} specifies the 

exposure information for each member of the risk set (in this example 87 explanatory 

variables for up to 41 members of each risk set.  The variable ‘sum’ is used in the 

calculation of the likelihood contribution for each risk set.  The ‘do i’ loop indexes over 

the _ntot members of each risk set.   The ‘do j’ loop indexes over the ‘age_rs’ years of 

observation for members of the risk set. For each year of observation, the variable ‘tse’ 

represents the time-since-exposure (i.e., the time interval between the index ‘j’ and the 

risk set age) and the variable ‘wt’ is a time-varying exposure weighting function that 

varies with ‘tse’ and is bounded by 0, 1. The variable ‘cumexp’ is the cumulative 

exposure for person i accrued up to age ‘age_rs’ weighted by the time-varying exposure 

weighting function ‘wt’.  The variable ‘phi’ specifies the model for the rate ratio; and, the 

variable ‘sum’ integrates the rate ratios over the members of a risk set.  Each risk set 
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includes a case failure, hence the variable cc=1, and the ‘model’ statement specifies that 

we use binomial model with probability (phi/sum).  This example concerns a 1:m 

matched case control study. We have previously described how to fit models to risk set 

data with multiple cases in the case-control set using SAS (1).   

 

 

Estimation of mode and coefficient of variation of an assumed lognormal population 

distribution of induction/latency periods.  

A population distribution of induction/latency periods may be estimated as a time-

varying exposure weighting function which conforms to the cumulative density function 

for the underlying distribution of induction periods.  We facilitate estimation by positing 

that the underlying distribution is lognormal.  An exposure weighting function is defined 

as the cumulative density function for the lognormal distribution specified by two 

parameters, lnmode and lncv, which are directly estimated from the data and represent the 

natural log of the mode and coefficient of variation of the distribution, respectively.   

 

proc nlmixed data=DS;       
  array z{80,5} z1-z400;   
  parms b1=1, lncv=-1.2, lnmode=1.6;  
  LN_B1=log( (exp(lncv)*exp(lncv))+1 ); LN_A1=lnmode+LN_B1;   
  sum=0; 
    do i=_ntot to 1 by -1;  
      cumexp=0;    
      do j=1 to floor(_rstime); 
        tse=_rstime-j + 0.5;  
        wt= cdf('NORMAL',(log(tse)-LN_A1)/sqrt(LN_B1));  
   if j <= 80 then cumexp=cumexp+z{j,i}*wt/100;  
 end;   
      phi=1+cumexp*b1; sum=sum+phi; 
    end;  
  L=phi/sum; cc=1;   
  model cc~general(log(L)); run; 
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Note that the induction period, L, is said to follow a lognormal distribution if log(L) is 

normally distributed (mu, sigma2).  The mode of this lognormal variate is given by 

exp(mu-sigma2) and coefficient of variation=sqrt(exp(sigma2)-1).  We derive the terms 

needed for the exposure weight function, wt, from the free parameters, lnmode and lncv. 

Estimation of these parameters may be facilitated by first estimating the mode of the 

distribution of induction times by fitting a model in which the induction/latency interval 

is assumed to be a fixed constant (as described above).  The natural log of this value can 

then be used as a starting value for parameter lnmode. 

 

Log linear models 

Suppose that the observed outcomes were generated by an underlying log-linear model.  

We can define an expression of the expectation of the excess rate ratio at time t, given an 

exposure increment at time j, allowing for a population distribution of induction/latency 

intervals, L, as follows 
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The impact of a series of exposure increments under a log-linear model is the product of 

the rate ratios (i.e., exposure effects are multiplicative), implying that the expected rate 

ratio at time t, given a protracted history of exposures up time t allowing for 

induction/latency interval, L, is 
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RR(t, Di(t))= = .  The code below provides an 

example of SAS code to fit such a model by maximum likelihood methods.  The 

exposure weighting function, wt, is the cumulative density function for the lognormal 

distribution specified by two parameters, lnmode and lncv. 
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proc nlmixed data=DS;       
  array z{80,5} z1-z400; 
  parms b1=1, lncv=-1.2, lnmode=1.6;  
  cv=exp(lncv); 
  LN_B1=log((CV*CV)+1); LN_A1=lnmode+LN_B1;  
  cc=1; sum=0; 
   do i=_ntot to 1 by -1;  
     exp_index=floor(_rstime);   
     aexp=0;phi=1; 
     do j=1 to exp_index; 
       tse=_rstime-j+0.5;  
       wt=cdf('NORMAL',(log(tse)-LN_A1)/sqrt(LN_B1));  
   if j <=80 then aexp=z{j,i}/100;   
       phi=phi*(1+(exp(aexp*b{1})-1)*wt); 
     end;   
   sum=sum+phi; 
   end;    
 L=phi/sum; 
 model cc~general(log(L)); run; 
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