Synthesis and Anticancer Activity of Sclerophytin-Inspired Isobenzofurans

T. David Bateman, Aarti L. Joshi, Kwangyul Moon, Elena N. Galitovskaya, Meenakshi Upreti, Timothy C. Chambers, and Matthias C. McIntosh

Supporting Information

Contents

Materials and Instrumentation	S1
Experimental Procedures and Characerization Data	S2-S10
Biological Assays	S10-11
¹ H and ¹³ C NMR Spectra	S12-S79
NCI 60-cell line data	S79-S86

Materials and Instrumentation. All commercially available compounds were purchased from Aldrich Chemical Co., Alfa Aesar Organics, or TCI and used as received unless otherwise noted. Ether, THF, CH_3CN , and CH_2Cl_2 were dried over alumina using the Solv-Tec[®] ST-002 solvent purification system. Microwave reactions were carried out using a CEM Discover[®] series reactor. Bruker 300 and 400 MHz spectrometers and a JEOL 270 MHz spectrometer were employed for NMR data collection.

Experimental Procedures

Anti-alcohol 3a. To a solution of diisopropylamine (49.9 mmol, 1.5 eq) in dry THF (200 mL) was added n-BuLi (3.20 g, 49.9 mmol, 1.5 eq, 2.81 M in hexane) dropwise at -78 °C. After 15 min, (S)-(+)-carvone (5.00 g, 33.3 mmol, 1 eq) was added dropwise, followed after 30 min by slow addition of 2-bromobenzaldehyde (7.4 g, 39.9 mmol, 1.2 eq) over 45 min. The mixture was allowed to stir at -78 °C until no starting material was observed by TLC (~ 6 h). Glacial HOAc (3.00 g, 49.9 mmol, 1.5 eq) was then added to the reaction mixture at -78 °C. After ~5 min the reaction mixture was warmed to rt and diluted with ether (100 mL), washed with water (150 mL) and extracted with ether (3 x 100 mL). The combined organic extracts were then washed with brine, dried over MgSO₄, and concentrated in vacuo. The crude product was purified via flash chromatography over silica gel (10:90 EtOAc/hexanes) to deliver the desired anti-alcohol **3a** as a colorless oil in 77 % yield (8.56 g, 28.6 mmol). ¹H-NMR (270 MHz, CDCl₂) § 7.74–7.62 (d, J=7.55 Hz, 1H), 7.60–7.47 (d, J=7.99 Hz, 1H), 7.36-7.34 (t, J=7.55 Hz, 1H), 7.14-7.11 (t, 1H), 6.70 (s, 1H), 5.22-5.18 (t, J=6.15 Hz, 1H), 4.85 (s, 1H), 4.80 (s, 1H), 3.20-3.18 (d, J=5.93 Hz, 1H), 3.00-2.98 (m, 1H), 2.64-2.68 (m, 2H), 1.77 (s, 3H), 1.67 (s, 3H). ¹³C-NMR (67 MHz, CDCl₃) δ 200.7, 145.1, 143.7, 141.3, 135.3, 132.7, 129.3, 129.1, 127.6, 113.1, 72.5, 55.1, 44.3, 29.4, 20.9, 15.8. IR (film) 3435, 1659 cm⁻¹. HRMS calculated for C₁₇H₁₉BrO₂Na 357.0466, found 357.0466.

Anti-alcohol 3b. Prepared as for 3a. The desired alcohol 3b was obtained as a colorless oil in 58% yield (3.89 g, 11.6 mmol) from 3.00 g (20.0 mmol) of (*S*)-(+)-carvone. ¹H-NMR (270 MHz, CDCl₃) δ 7.51 (s, 1 H), 7.35–7.31 (m, 1H), 7.23-7.20 (t, *J*=7.79 Hz, 1H), 6.71-6.68 (m, 1H), 4.91-4.89 (d, *J*=6.38 Hz, 2H), 4.81-4.76 (dd, *J*=8.60, 3.50 Hz, 1H), 3.22 (d, *J*=8.86 Hz, 1H), 2.94-2.85 (m, 2H), 2.40-2.43 (m, 2H), 1.74 (s, 3H), 1.53 (s, 3H). ¹³C- NMR (67 MHz, CDCl₃) δ 202.50, 145.91, 144.64, 143.92, 135.95, 130.90, 130.50, 129.83, 129.61, 126.20, 122.04, 114.66, 77.34, 77.02, 76.71, 73.94, 53.62, 44.35, 31.26, 19.05, 15.63. Anal. (C₁₇H₁₉BrO₂) C 60.94, H 5.66.

Anti-alcohol 3c. Prepared as for 3a. The desired alcohol 3c was obtained as a colorless oil in 75% yield (8.17 g, 25.1 mmol) from 5.00 g (33.2 mmol) of (*S*)-(+)-carvone. ¹H-NMR (270 MHz, CDCl₃) δ 7.66–7.63 (d, 1H), 7.38-7.36 (d, 1H), 7.28-7.25 (t, 1H), 6.71-6.69 (m, 1H), 5.24-5.21 (dd, J=7.32 Hz, 4.55 Hz, 1H), 4.89-4.87 (m, 2H), 3.28-3.25 (d, J=7.32 Hz, 1H), 3.05-3.00 (dd, J=9.20, 4.55 Hz, 2H), 2.87-2.79 (m, 1H), 2.53-2.52 (m, 1H), 1.74 (s, 1H), 1.39 (s, 3H). ¹³C-NMR (67 MHz, CDCl₃) δ 202.50, 145.91, 144.64, 143.92, 135.95, 130.90, 130.50, 129.83, 129.61, 126.20, 122.04, 114.66, 77.34, 77.02, 76.71, 73.94, 53.62, 44.35, 31.26, 19.05, 15.63. Anal. (C₁₇H₁₈Cl₂O₂) C 62.65, H 5.64.

Anti-alcohol 3d. Prepared as for 3a. The desired alcohol 3d was obtained as a white solid in 66% yield (7.13 g, 21.9 mmol) from 5.00 g (33.2 mmol) of (*S*)-(+)-carvone; mp 110-112 °C; ¹H-NMR (300 MHz, CDCl3) δ 7.65 (d, 1H), 7.31-7.24 (m, 2H), 6.74-6.65 (m, 1H), 5.15-5.08 (dd, *J*=7.32, 4.75 Hz, 1H), 4.88 (s, 1H), 3.26 (d, J=7.32 Hz, 1H), 3.01-2.95 (dd, J=4.75, 9.3Hz, 1H), 2.89-2.79 (m, 1H), 2.49 (m, 2H), 1.74 (s, 6H). ¹³C-NMR (75 MHz, CDCl₃) δ 200.65, 145.04, 144.81, 138.07, 135.55, 133.51, 133.15, 130.29, 128.92, 126.66, 113.62, 77.46, 77.04, 76.61, 69.46, 52.83, 43.19, 30.52, 19.12, 16.07.

Anti-alcohol 3e. Prepared as above for 3a. The desired alcohol 3e was obtained in 65% yield as a solid (2.22 g, 7.25 mmol) from 1.96 g (13.1 mmol) of (*S*)-(+)-carvone; mp 123-124 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.27 (d, J = 7.6 Hz, 1H), 8.13 (d, J = 7.5 Hz, 0H), 7.94 – 7.78 (m, 3H), 7.62 (d, J = 7.2 Hz, 1H), 7.60 – 7.41 (m, 5H), 6.72 (s, 1H), 5.58 (t, J = 6.1 Hz, 1H), 5.16 (s, 1H), 4.82 (d, J = 18.7 Hz, 2H), 3.38 (d, J = 6.5 Hz, 1H), 3.30 – 3.20 (m, 1H), 2.72 – 2.61 (m, 1H), 2.61 – 2.32 (m, 2H), 1.84 (d, J = 1.4 Hz, 3H), 1.61 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 201.86, 145.62, 143.77, 137.80, 135.55, 131.34, 128.85, 128.75, 126.52, 126.05, 125.59, 125.50, 123.84, 113.38, 71.11, 63.87, 44.66, 29.39, 21.09, 16.16. Anal. (C₂₁H₂₂O₂) C 82.23, H, 7.36.

Anti -alcohol 3f. Prepared as above for 3a. The desired alcohol 3f was obtained in 28 % yield as an oil (1.92 g, 7.5 mmol) from 4.00 g (26.6 mmol) of (*S*)-(+)-carvone. ¹H NMR (300 MHz, CDCl₃) δ 8.50 (d, J = 4.8 Hz, 1H), 7.68 (td, J = 1.7, 7.7 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.13 (dd, J = 4.9, 7.4 Hz, 1H), 6.74 – 6.65 (m, 1H), 4.94 (dd, J = 10.4, 11.8 Hz, 2H), 4.84 (d, J = 7.9 Hz, 1H), 3.90 (d, J = 9.1 Hz, 1H), 3.50 (dd, J = 2.1, 12.4 Hz, 1H), 3.13 (ddd, J = 5.1, 10.5, 12.4 Hz, 1H), 2.65 – 2.47 (m, 1H), 2.39 (dt, J = 5.2, 9.5 Hz, 1H), 1.85 (s, 3H), 1.68 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 200.91, 163.01, 148.18, 145.60, 144.46, 136.58, 135.88, 121.65, 119.69, 114.48, 72.07, 54.52, 46.27, 31.26, 19.12, 15.84. Anal. (C₁₆H₁₉NO₂) C 74.45, H, 7.50.

Anti-alcohol 3g. Prepared as for 3a. The desired alcohol 3g was obtained as an oil in 47% yield (1.15 g, 4.7 mmol) from 1.5 g (10.0 mmol) of (*S*)-(+)-carvone. ¹H-NMR (300 MHz, CDCl₃) δ 7.30 (dd, J = 0.8, 1.8 Hz, 1H), 6.78 (ddd, J = 1.3, 2.4, 6.1 Hz, 1H), 6.29 (dd, J = 1.8, 3.2 Hz, 1H), 6.16 (d, J = 3.3 Hz, 1H), 5.20 (d, J = 10.9 Hz, 1H), 4.91 – 4.83 (m, 1H), 4.75 (dd, J = 4.5, 11.0 Hz, 2H), 2.95 (dd, J = 4.4, 12.8 Hz, 1H), 2.64 – 2.50 (m, 1H), 2.50 – 2.34 (m, 1H), 2.33 – 2.19 (m, 1H), 1.81 (dt, J = 1.3, 2.4 Hz, 3H), 1.74 (s, 4H). ¹³C-NMR (75 MHz, CDCl₃) δ 202.69,154.94, 154.81, 144.03, 141.68, 135.78, 114.37, 110.23, 108.17, 68.24, 52.10, 45.29, 31.17, 18.74, 15.74. Anal. (C₁₅H₁₈O₃) C 73.39, H, 7.43.

Anti-alcohol 3h. Prepared as for 3a. The desired alcohol 3h was obtained in 50% yield as an oil (1.79 g, 6.52 mmol) from 1.96 g (13.1 mmol) of (*S*)-(+)-carvone. ¹H-NMR (300 MHz, CDCl₃) δ 7.35 (td, J = 1.7, 7.6 Hz, 1H), 7.30-7.14 (m, 1H), 7.07 (dt, J = 3.8, 7.5 Hz, 1H), 6.96 (ddd, J = 1.2, 8.2, 10.6 Hz, 1H), 6.72 (ddd, J = 1.4, 3.6, 4.9 Hz, 1H), 5.39 (dd, J = 5.1, 8.1 Hz, 1H), 4.71 (dd, J = 12.7, 14.1 Hz, 2H), 4.12 (d, J = 8.2 Hz, 1H), 3.03 (dd, J = 5.1, 9.8 Hz, 1H), 2.84 - 2.68 (m, 1H), 2.51 - 2.25 (m, 2H), 1.77 (s, 3H), 1.58 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 202.01, 161.92, 158.66, 145.11, 135.90, 129.28, 129.16, 129.11, 128.99, 124.07, 115.49, 115.19, 113.26, 67.87, 53.89, 43.54, 30.52, 19.83, 16.04. Anal. (C₁₇H₁₉FO₂) C 74.70, H 7.03.

Glycolate 4a. To a stirring solution of alcohol **3a** (8.65 g, 25.80 mmol) in anhydrous DMF (75mL) was added Ag₂O (9.00 g, 38.7 mmol, 1.5 eq), followed by dropwise addition of ethyl bromoacetate (6.46 g, 38.7 mmol, 1.5 eq) at rt. After stirring ~10 min, 2,6-lutidine (4.15 g, 38.7 mmol) was added via syringe pump (~2 mL/h) and stirring was continued for 24 h at rt. The crude mixture was then filtered through a short silica gel column eluted with diethyl ether (100 mL). The filtrate was washed with 3N HCl (100 mL) and extracted with hexane (3x60 mL). The combined extracts were washed sequentially with saturated aqueous NaHCO₃ and brine, then dried over MgSO₄, and concentrated in vacuo. The crude product was purified via flash chromatography over silica gel (20:80 EtOAc/hexanes) to deliver glycolate **4a** as a yellow oil in 77 % yield (8.47 g, 20.1 mmol). ¹H NMR (300 MHz, CDCl₃) δ 7.57 (dd, J = 1.7, 7.8 Hz, 1H),

7.48 (dd, J = 1.1, 8.0 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.23 – 7.10 (m, 1H), 6.69 (s, 1H), 5.45 (d, J = 7.0 Hz, 1H), 4.71 (dd, J = 8.1, 9.3 Hz, 3H), 4.33 – 4.14 (m, 3H), 4.02 (d, J = 16.4 Hz, 1H), 3.84 (d, J = 16.4 Hz, 1H), 3.33 (s, 1H), 3.08 – 2.89 (m, 2H), 2.45 (d, J = 19.3 Hz, 1H), 1.75 (d, J = 1.4 Hz, 3H), 1.57 (s, 3H), 1.37 – 1.21 (m, 3H). ¹³C-NMR (75 MHz, CDCl₃) 198.3, 169.9, 141.7, 129.8, 129.0, 128.8, 128.1, 127.6, 112.2, 80.7, 77.6, 77.1, 76.6, 65.6, 64.9, 60.7, 55.4, 43.5, 28.4, 21.4, 16.3, 14.2. IR (film) 1750, 1671 cm⁻¹. HRMS Calcd for $C_{21}H_{25}BrNaO_4$: 443.0834, found 443.0830.

Glycolate 4b. Prepared as for **4a.** Glycolate **4b** was obtained as a colorless oil in 77% yield (1.56 g, 3.70 mmol) from 1.61 g (4.80 mmol) of alcohol **3b**. ¹H-NMR (400 MHz, CDCl₃) δ 7.44 – 7.34 (m, 2H), 7.20 (q, J = 7.7 Hz, 2H), 6.69 (s, 1H), 4.89 (d, J = 7.0 Hz, 1H), 4.74 (s, 1H), 4.67 (s, 1H), 4.26 – 4.13 (m, 2H), 4.08 (d, J = 16.6 Hz, 1H), 3.84 (d, J = 16.6 Hz, 1H), 3.25 (s, 1H), 3.04 – 2.90 (m, 1H), 2.80 (dd, J = 4.0, 7.0 Hz, 1H), 2.44 (d, J = 19.6 Hz, 1H), 1.71 (s, 4H), 1.58 (d, J = 14.2 Hz, 6H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C-NMR (75 MHz, CDCl₃) 197.8, 170.1, 146.1, 143.4, 138.0, 135.5, 132.6, 129.6, 129.4, 127.6, 112.3, 79.4, 72.6, 68.0, 66.2, 61.0, 55.7, 41.5, 28.2, 21.2, 16.3, 14.3.

Glycolate 4c. Prepared as for **4a**. Glycolate **4c** was obtained as a colorless oil in 83% yield (7.41 g, 18.0 mmol) from 7.06 g of alcohol **3c** (21.7 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 1.5, 7.9 Hz, 1H), 7.45 (dd, J = 1.6, 7.9 Hz, 1H), 7.30 (dd, J = 4.7, 12.7 Hz, 2H), 6.67 (s, 1H), 5.22 (d, J = 5.7 Hz, 1H), 4.83 (dd, J = 7.9, 9.2 Hz, 2H), 4.28 – 4.10 (m, 2H), 4.03 (d, J = 16.3 Hz, 1H), 3.73 (d, J = 16.3 Hz, 1H), 2.99 (t, J = 5.6 Hz, 1H), 2.89 – 2.69 (m, 2H), 2.43 (d, J = 18.5 Hz, 1H), 1.82 (s, 3H), 1.73 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.71, 169.62, 145.56, 142.22, 139.41, 135.71, 132.88, 131.37, 129.87, 127.68, 127.47, 112.89, 79.45, 77.35, 77.03, 76.71, 66.40, 60.83, 54.26, 44.36, 28.82, 20.74, 16.19, 14.18.

Glycolate 4d. Prepared as for **4a.** Glycolate **4d** was obtained as a colorless oil in 80% yield (9.60 g, 23.3 mmol) from 9.48 g (29.2 mmol) of alcohol **3d**. ¹H-NMR (270 MHz, CDCl₃) δ 7.53–7.49 (d, 1H), 7.44-7.40 (d, 1H), 7.30-7.26 (m, 1H), 6.64 (s, 1H), 5.20-5.18 (d, 1H), 4.81-4.76 (d, 2H) 4.20-4.11 (m, 2H), 4.03-3.97 (d, J=16.03 Hz, 1H), 3.72-3.66 (d, J=16.03 Hz, 1H), 3.31-3.25 (m, 1H), 2.94-2.90 (m, 2H), 2.44-2.34 (m, 1H), 1.72, (s, 3H), 1.48 (s, 3H), 1.31-1.26 (t, J=7.07 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 198.12, 170.14, 145.91, 143.38, 141.50, 135.24, 131.18, 130.27, 129.96, 125.78, 122.56, 112.21, 80.74, 77.33, 77.01, 76.70, 66.00, 60.85, 57.54, 41.25, 29.71, 28.11, 21.23, 16.14, 14.16.

Glycolate 4e. Prepared as for **4a.** Glycolate **4e** was obtained as an oil in 25% yield (8.17 g, 25.13 mmol) from *anti* alcohol **1g** (3.27 mmol). ¹H-NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 7.6 Hz, 1H), 7.91 – 7.83 (m, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 7.0 Hz, 1H), 7.56 – 7.41 (m, 3H), 6.75 (s, 1H), 5.86 (d, J = 5.1 Hz, 1H), 4.59 (s, 2H), 4.13 (d, J = 16.4 Hz, 1H), 3.92 (d, J = 10.3 Hz, 1H), 3.70 (s, 3H), 3.28 (dd, J = 4.4, 9.8 Hz, 1H), 3.09 – 2.90 (m, 2H), 2.47 – 2.31 (m, 1H), 1.72 (s, 3H), 1.27 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 198.92, 170.89, 146.63, 144.20, 135.41, 134.25, 133.96, 131.11, 129.22, 128.72, 126.54, 125.73, 125.26, 125.22, 122.98, 112.11, 79.47, 66.40, 55.66, 51.85, 41.25, 29.00, 20.97, 16.37. HRMS Calcd for C₂₄H₂₆O₄Na: 401.1729, found: 401.1719.

Glycolate 4f. Prepared as for **4a.** Glycolate **4f** was obtained as an oil in 86% yield (1.43 g, 4.34 mmol) from 1.3g (5.05 mmol) of alcohol **3f**. ¹H-NMR (300 MHz, CDCl₃) δ 8.50 (d, J = 4.8, 1H), 7.70 (dt, J = 7.0, 20.6 Hz, 2H), 7.23 – 7.10 (m, 1H), 6.63 (s, 1H), 4.83 (s, 1H), 4.75 (d, J = 5.2 Hz, 1H), 4.20 (d, J = 16.2 Hz, 1H), 3.93 (d, J = 16.2 Hz, 1H), 3.69 (s, 3H), 3.17 (dd, J = 5.2, 8.0 Hz, 1H), 2.89 – 2.70 (m, 1H), 2.50 (m, 2H), 1.80 – 1.71 (m, 6H). ¹³C-NMR (75 MHz, CDCl₃) δ 197.99, 170.30, 160.59, 148.74 145.81, 142.32, 136.52, 135.60, 122.39, 121.32, 113.28, 83.42, 67.59, 55.15, 51.80, 44.20, 29.28, 20.03, 16.15. Anal. (C₁₉H₂₃NO₄) C 68.99, H 7.09.

Glycolate 4g. Prepared as for **4a.** Glycolate **4g** was obtained as an oil in 48% yield (679 mg, 2.13 mmol) from 1.1 g (4.46 mmol) of alcohol **3g**. ¹H-NMR (300 MHz, CDCl₃) δ 7.40 (dd, J = 0.7 Hz, 1.7, 1H), 6.68 – 6.59 (m, 1H), 6.33 – 6.20 (m, 2H), 4.88 (d, J = 7.6 Hz, 1H), 4.74 (d, J = 1.2 Hz, 1H), 4.66 (s, 1H), 4.12 (d, J = 16.8 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.73 – 3.66 (m, 3H), 3.21 (dd, J = 4.4, 9.4 Hz, 1H), 3.09 (dd, J = 4.4, 7.5 Hz, 1H), 2.98 – 2.81 (m, 1H), 2.42 (ddd, J = 2.5, 5.6, 19.6 Hz, 1H), 1.68 (s, 7H). ¹³C-NMR (75 MHz, CDCl₃) δ 198.03, 171.00, 151.32, 145.97, 143.28, 143.06, 112.17, 110.34, 110.18, 74.74, 65.50, 54.79, 51.92, 41.73, 28.02, 21.52, 16.28. Anal. (C₁₈H₂₂O₅) C 67.71, H 6.96.

Glycolate 4h. Prepared as for **4a.** Glycolate **4h** was obtained as an oil in 19 % yield (0.25 g, 0.71 mmol) from 1.05 g of alcohol **3h** (3.8 mmol). ¹H NMR (300 MHz, CDCl₃) δ 7.44 (td, J = 1.8, 7.5 Hz, 1H), 7.31 – 7.21 (m, 2H), 7.15 (t, J = 7.0 Hz, 1H), 6.97 (dd, J = 8.4, 10.1 Hz, 1H), 6.66 (s, 1H), 5.26 (d, J = 7.6 Hz, 1H), 4.68 (d, J = 11.6 Hz, 2H), 4.08 (d, J = 16.5 Hz, 1H), 3.87 (d, J = 16.5 Hz, 1H), 3.73 (s, 3H), 3.31 (s, 1H), 3.06 – 2.80 (m, 2H), 2.43 (d, J = 19.6 Hz, 1H), 1.72 (s, 3H), 1.59 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 198.18, 170.72, 162.47, 159.21, 146.07, 143.16, 135.39, 129.84, 128.75, 126.14, 125.97, 124.48, 124.43, 115.46, 115.18, 112.2574.74, 66.05, 56.64, 51.90, 41.50, 27.91, 21.48, 16.24. Anal. (C₂₀H₂₃FO₄) C 68.98, H 6.61.

Isobenzofuran 5a. To a solution of glycolate **4a** (4.13 g, 9.80 mmol) in dry THF (100 mL) was added KHMDS (2.35 g, 11.8 mmol, 1.1 eq, 0.5 M soln. in toluene) quickly at -78 °C, followed immediately by rapid addition of 1.2 eq HOAc (0.71 g, 11.8 mmol). The reaction mixture was allowed to warm to rt, then water (100 mL) was added. The organic layer was extracted with ether (3 x 60 mL). The combined organic extracts were washed with brine and dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified via flash chromatography over silica gel (10:90 EtOAc/hexanes) to yield cycloaldol product **5a** as a colorless oil in 80% yield (3.30 g, 7.84 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, J = 1.6, 7.9 Hz, 1H), 7.52 (d, J = 8.0, 1H), 7.43 (t, J = 7.6, 1H), 7.22 – 7.14 (m, 1H), 5.78 (s, 1H), 5.24 (d, J = 8.8 Hz, 1H), 4.84 (d, J = 3.3 Hz, 2H), 4.46 (s, 1H), 4.37 – 4.22 (m, 2H), 3.08 (s, 1H), 2.76 (dd, J = 5.3, 8.8 Hz, 1H), 2.54 (d, J = 15.8 Hz, 1H), 2.31 (d, J = 4.6 Hz, 2H), 1.86 (s, 3H), 1.58 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) 171.0, 147.0, 139.4, 132.9, 132.4, 130.4, 129.7, 128.3, 125.6, 123.9, 112.2, 82.6, 81.9, 80.7, 61.3, 55.5, 39.1, 27.7, 21.4, 17.7, 14.2. IR (film) 3536, 1743 cm⁻¹. HRMS Calcd for C₂₁H₂₅BrO₄Na⁺: 443.0834, found 443.0834.

Isobenzofuran 5b. Prepared as for **5a.** Isobenzofuran **5b** was obtained as a white solid in 73% yield (0.56 g, 1.34 mmol) from 0.77g (1.83 mmol) of glycolate **4b**. mp 131-136 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 7.1 Hz, 1H), 7.08

(d, J = 7.7 Hz, 1H), 5.70 (s, 1H), 5.60 (s, 1H), 4.64 (s, 1H), 4.30 (d, J = 4.0 Hz, 2H), 4.20 (d, J = 15.9 Hz, 2H), 3.12 (s, 1H), 2.74 – 2.58 (m, 1H), 2.46 – 2.29 (m, 1H), 2.00-1.77 (m, 6H), 1.61 (s, 1H), 1.42 – 1.26 (m, 7H). ¹³C-NMR (100 MHz, CDCl₃) δ 171.41, 145.68, 141.05, 133.43, 130.42, 130.26, 128.94, 125.89, 125.72, 121.90, 111.83, 83.50, 83.46, 82.88, 77.35, 77.03, 76.71, 61.53, 53.84, 40.35, 31.67, 19.40, 18.00, 14.15. Anal. (C₂₁H₂₅BrO₄) C 60.13, H 6.04.

Isobenzofuran 5c. Prepared as for **5a.** Isobenzofuran **5c** was obtained as a pale yellow oil in 77% yield (2.61 g, 6.34 mmol) from 3.39 g (8.24 mmol) of glycolate **4c**. ¹H NMR (270 MHz, CDCl₃) δ 8.22 (dd, J = 1.7, 7.8 Hz, 1H), 7.38 (dd, J = 1.7, 7.9 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 5.70 (s, 1H), 5.30 (d, J = 8.2 Hz, 1H), 4.80 (s, 3H), 4.42 (s, 1H), 4.25 (qd, J = 2.7, 7.1 Hz, 2H), 3.06 (s, 1H), 2.74 – 2.59 (m, 1H), 2.27 (s, 3H), 1.79 (s, 3H), 1.53 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C-NMR (67 MHz, CDCl₃) 171.1, 146.7, 140.8, 132.9, 132.6, 131.5, 130.1, 128.4, 128.1, 125.7, 112.5, 81.9, 80.9, 80.7, 61.4, 55.4, 39.7, 27.7, 21.3, 17.7, 14.2.

Isobenzofuran 5d. Prepared as for **5a.** Isobenzofuran **5d** was obtained as a pale yellow oil in 74% yield (3.50 g, 8.51 mmol) from 4.73 g (11.5 mmol) of glycolate **4d**. ¹H NMR (300 MHz, CDCl₃) δ 8.27 (d, J = 9.1, 1H), 7.41 – 7.34 (m, 2H), 5.77 (s, 1H), 5.26 (d, J = 8.3 Hz, 1H), 4.85 (s, 2H), 4.46 (s, 1H), 4.31 (ddd, J = 5.6, 8.3, 16.5 Hz, 3H), 3.16 (s, 1H), 2.69 (dd, J = 5.9, 8.3 Hz, 1H), 2.36 (m, 4H), 1.85 (d, J = 1.5 Hz, 4H), 1.58 (d, J = 6.7 Hz, 9H), 1.42 – 1.21 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.10, 146.70, 136.85, 134.34, 132.78, 131.21, 128.77, 128.06, 126.96, 125.72, 112.41, 81.72, 80.77, 79.71, 77.33, 77.21, 77.01, 76.70, 61.46, 59.84, 55.17, 39.68, 27.73, 21.23, 17.68, 14.13.

Isobenzofuran 5e. Prepared as for **5a.** Isobenzofuran **5e** was obtained in 59 % yield (0.22 g, 0.59 mmol) as an oil from 0.41 g (1.08 mmol) of glycolate **4e**. ¹H-NMR (300 MHz, CDCl₃) δ 8.34 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 7.2 Hz, 1H), 7.86 (t, J = 9.1 Hz, 2H), 7.52 (dt, J = 6.9, 14.5 Hz, 3H), 5.76 (s, 1H), 5.62 (d, J = 7.2 Hz, 1H), 4.91 (s, 1H), 4.83 (s, 1H), 4.59 (s, 1H), 3.85 (s, 3H), 3.26 (s, 1H), 3.03 (t, J = 7.2 Hz, 1H), 2.39 (dd, J = 6.5, 12.7 Hz, 1H), 2.29 (s, 2H), 1.87 (s, 3H), 1.55 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 172.29, 146.85, 135.72, 133.92, 133.46, 131.85, 128.99, 128.86, 126.11, 125.74, 125.63, 125.60, 125.52, 123.60, 113.03, 82.77, 81.51, 80.99, 53.68, 52.36, 42.04, 28.22, 20.68, 17.79. Anal. (C₂₄H₂₆O₄) C 76.09, H 6.95.

Isobenzofuran 5f. Prepared as for **5a.** Isobenzofuran **5f** was obtained in 81 % yield (0.30 g, 0.90 mmol) as a solid from 0.36 g (1.10 mmol) of glycolate **4f**; mp 67-69 °C; ¹H-NMR (300 MHz, CDCl₃) δ 8.53 (d, J = 4.0 Hz, 1H), 7.64 (td, J = 1.8, 7.7 Hz, 1H), 7.19 (ddd, J = 3.6, 6.0, 7.8 Hz, 2H), 5.58 (d, J = 1.5 Hz, 1H), 4.88 (s, 1H), 4.82 (s, 1H), 4.55 (s, 1H), 3.69 (s, 3H), 2.55 – 2.32 (m, 2H), 2.07 (d, J = 3.1, 2H), 1.89 – 1.73 (m, 3H), 1.50 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 170.36, 159.63, 149.19, 146.18, 137.80, 133.65, 125.22, 123.42, 123.23, 113.50, 87.12, 84.83, 82.53, 54.58, 52.07, 46.56, 30.98, 19.36, 17.95. Anal. (C₁₉H₂₃NO₄) C 68.98, H 6.86.

Methyl ester 5a.i. To a solution of ethyl ester **5a** (0.10 g, 0.24 mmol) in 15 mL of methanol was added 0.04 g (0.28 mmol, 1.2 eq) of K_2CO_3 at room temperature. The reaction mixture was stirred at rt until no starting material was observed by TLC (ca. 20 min). The mixture was then and diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic extracts were then washed with brine (50 mL), extracted with CH₂Cl₂ (40 mL), dried over

MgSO₄, and concentrated in vacuo. The crude product was filtered through a short silica gel column (EtOAc/Hexanes 1:1) to deliver methyl ester **5a.i** as a colorless oil in 97 % yield (94.8 mg, 23.3 mmol). ¹H-NMR (300 MHz, CDCl₃) δ 8.30 (dd, J = 1.7, 7.9 Hz, 1H), 7.54 (dd, J = 1.2, 8.0 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.24 – 7.15 (m, 1H), 5.79 (s, 1H), 5.25 (d, J = 9.2 Hz, 1H), 4.90 – 4.81 (m, 2H), 4.51 (s, 1H), 3.85 (s, 3H), 2.93 (s, 1H), 2.77 (dd, J = 4.9, 9.2 Hz, 1H), 2.66 – 2.51 (m, 1H), 2.32 (d, J = 15.0 Hz, 2H), 1.88 (d, J = 1.6 Hz, 3H), 1.58 (d, J = 5.8 Hz, 5H). ¹³C-NMR (75 MHz, CDCl₃) δ 171.54, 147.20, 139.28, 132.82, 132.46, 130.27, 129.79, 128.39, 125.67, 123.84, 112.00, 82.51, 81.76, 80.50, 77.47, 77.05, 76.62, 73.47, 55.22, 52.22, 38.31, 27.49, 21.61, 17.67. Anal. (C₂₀H₂₃BrO₄) C 59.16, H 5.80.

Cyclopropylmethyl ester 5a.ii. A mixture of ethyl ester **5a** (0.14 g, 0.33 mmol), cyclopropyl methanol (2.66 mL, 33.22 mmol, 100 eq), and Bu₂SnO (0.06 g, 0.24 mmol, 0.75eq) was sealed in an 8 mL microwave reaction vessel. The mixture was irradiated for 30 min. at 150 °C and 300 W with continuous stirring. The mixture was then cooled to rt, diluted with ethyl acetate (10 mL), washed with sat. NaHCO₃ (30 mL) and extracted with EtOAc (3x20 mL). The combined organic extracts were then washed with brine, dried over MgSO₄, and concentrated in vacuo. The crude product was purified via flash chromatography over silica gel (10:90 EtOAc/hexanes) to deliver ester **5a.ii** as a colorless oil in 84% yield (0.125 g, 0.28 mmol). ¹H NMR (300 MHz, CDCl₃) δ 8.29 (dd, J = 1.7, 7.9 Hz, 1H), 7.53 (dd, J = 1.2, 8.0 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.24 – 7.11 (m, 1H), 5.78 (s, 1H), 5.26 (d, J = 8.6 Hz, 1H), 4.85 (s, 2H), 4.49 (s, 1H), 4.16 – 3.99 (m, 2H), 3.16 (s, 1H), 2.77 (dd, J = 5.7, 8.6 Hz, 1H), 2.53 (d, J = 15.6 Hz, 1H), 2.30 (d, J = 10.1 Hz, 2H), 2.19 (s, 1H), 1.88 (d, J = 1.4 Hz, 3H), 1.59 (d, J = 6.8 Hz, 3H), 1.30 – 1.13 (m, 2H), 0.62 (dt, J = 5.4, 5.9 Hz, 2H), 0.35 (q, J = 4.7 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃) 171.0, 146.8, 139.4, 132.9, 132.4, 130.4, 129.7, 128.3, 125.7, 112.2, 82.7, 81.9, 80.7, 70.2, 55.5, 39.5, 27.8, 21.27, 17.7, 9.6, 3.4.

Cyclopentylmethyl ester 5a.iii. Prepared as for **5a.ii.** Ester **5a.iii** was obtained in 91% yield as an oil (0.11 g, 0.24 mmol) from 0.11 g (0.26 mmol) of ester **5a.** ¹H-NMR (270 MHz, CDCl₃) 8.29 (d, J = 6.2 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.19 (dd, J = 4.5, 10.8 Hz, 1H) 5.79 (s, 1H), 5.25 (d, J = 9.0 Hz, 1H), 4.85 (s, 2H), 4.49 (s, 1H), 4.17 – 4.04 (m, 2H), 2.99 (s, 1H), 2.76 (dd, J = 5.0, 9.1 Hz, 1H), 2.64-2.52 (m, 1H), 2.32 (d, J = 7.3 Hz, 3H), 1.89-1.74 (m, 6H), 1.68-1.54 (m, 8H), 1.39-1.26 (m, 3H). ¹³C-NMR (67 MHz, CDCl₃) 171.1, 147.1, 139.5, 132.9, 132.4, 130.3, 129.7, 128.3, 125.5, 123.8, 112.0, 82.5, 81.9, 80.6, 69.3, 55.5, 38.5, 38.3, 29.3, 27.5, 25.4, 21.5, 17.6.

Acid 5a.iv. To a solution of 3:2:1 THF/H₂O/MeOH and ester 5a (0.18 g, 0.43 mmol) was added 0.02 g (0.85 mmol, 2 eq) of LiOH at rt. The reaction mixture was allowed to stir at rt until no starting material was observed by TLC (~1.5 h), then acidified to pH 2 with 3N HCl. The mixture was diluted with CH₂Cl₂ (30 mL), extracted with CH₂Cl₂ (3 x 30 mL), washed with brine (40 mL), dried over MgSO₄ and concentrated in vacuo to yield a yellow foam. The crude material was eluted through a plug of silica gel (1:1 EtOAc/hexanes) to deliver acid 5a.iv as a white solid in 95% yield (0.16 g, 0.41 mmol); mp 52-56 °C. ¹H-NMR (270 MHz, CDCl₃) δ 8.14- 8.09 (d, J=7.86 Hz, 1H), 7.59-7.54 (d, J=8.03 Hz, 1H), 7.47-7.40 (t, J=7.55 Hz, 1H), 7.25-7.18 (dd, J=4.47, 10.85 Hz, 1H), 5.81 (s, 1H), 5.28 (s, 1H), 5.25 (d, J=8.87 Hz, 1H), 4.85 (s, 2H), 4.51 (s, 1H), 2.79-2.72 (dd, J=5.18, 8.84 Hz, 1H), 2.60-2.47 (m, 1H), 2.35-2.24 (m, 2H), 1.94 (s, 1H), 2.55 Hz, 1H), 1.94 (s, 1H), 2.55 Hz, 1H), 1.94 (s, 1H), 2.55 Hz, 1H), 1.94 (s, 1H),

3H), 1.59 (s, 3H). ¹³C-NMR (67 MHz, CDCl₃) 146.6, 138.6, 132.9, 132.7, 130.0, 129., 128.4, 125.9, 124.1, 112.4, 82.7, 55.6, 27.6, 21.4, 17.7. IR (film) 3450, 1638 cm⁻¹.

Diene 6a. Preparation was carried out as above for **5a** from glycolate **4a** (3.5 g, 8.31 mmol), but the reaction mixture was allowed to stir for 5 minutes before quenching with HOAc. Purification of the crude product via flash chromatography over silica gel (10:90 EtOAc/hexanes) delivered diene **6a** as a yellow oil in 15 % yield (0.42 g, 1.27 mmol) as well as isobenzofuran **5a** in 41% yield (1.43 g, 3.41 mmol). ¹H-NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 6.5, 1H), 7.34 – 7.08 (m, 3H), 6.62 (s, 1H), 4.95 (s, 1H), 4.73 (s, 1H), 3.62 (s, 1H), 2.74 – 2.48 (m, 1H), 2.19 (s, 1H), 1.95 – 1.82 (m, 2H), 1.77 (s, 2H), 1.59 (s, 1H). ¹³C-NMR (101 MHz, CDCl₃) δ 189.40, 145.37, 141.23, 139.35, 136.66, 136.31, 134.83, 132.82, 129.65, 129.62, 127.04, 125.00, 114.21, 77.35, 77.03, 76.71, 43.88, 29.72, 29.18, 21.78, 16.34.

Diene 6e. Prepared as for **6a.** Diene **6e** was obtained in 33% yield (0.10 g, 0.33 mmol) as a solid from 0.41 g (1.08 mmol) of glycolate **4e**; ; mp 113-115 °C; ¹H-NMR (300 MHz, CDCl₃) δ 8.34 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 7.2 Hz, 1H), 7.86 (dd, J = 8.2, 10.1 Hz, 2H), 7.61 – 7.42 (m, 3H), 5.76 (s, 1H), 5.62 (d, J = 7.2 Hz, 1H), 4.87 (d, J = 26.1 Hz, 2H), 4.59 (s, 1H), 3.83 (s, 3H), 3.26 (s, 1H), 3.03 (t, J = 7.2 Hz, 1H), 2.39 (dd, J = 6.5, 12.7 Hz, 1H), 2.34 – 2.21 (m, 2H), 1.87 (s, 3H), 1.55 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 189.94, 146.02, 141.49, 140.18, 136.87, 133.88, 133.65, 133.24, 132.32, 128.97, 128.70, 126.58, 126.32, 126.02, 125.37, 124.92, 114.15, 44.28, 29.57, 22.06, 16.59. Anal: (C₂₂H₂₂O) C 87.78, H 7.26.

Diene 6g. Prepared as for **6a.** Diene **6g** was obtained in 41% yield (0.05 g, 0.19 mmol) as a solid from 0.15 g (0.46 mmol) of glycolate **4g**; mp 71-73 °C; ¹H-NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 1.6 Hz, 1H), 7.42 (s, 1H), 6.70 – 6.61 (m, 1H), 6.58 (d, J = 3.4 Hz, 1H), 6.47 (dd, J = 1.8, 3.4 Hz, 1H), 4.87 – 4.74 (m, 1H), 4.65 (s, 1H), 4.37 (d, J = 6.1 Hz, 1H), 2.77 – 2.45 (m, 2H), 1.86 (s, 3H), 1.81 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 188.77, 152.31, 145.57, 144.27, 141.82, 136.68, 134.43, 122.87, 116.05, 112.65, 112.24, 43.29, 28.94, 22.11, 16.77. Anal. (C₁₆H₁₈O₂) C 79.23, H 7.24.

Diene 6h. Prepared as for **10a.** Diene **6h** was obtained in 45% yield (0.07 g, 0.26 mmol) as an oil from 0.20 g (0.58 mmol) of glycolate **4h**. ¹H NMR (300 MHz, CDCl₃) δ 7.68 (s, 1H), 7.33 (dt, J = 4.5, 14.2 Hz, 2H), 7.12 (dd, J = 8.3, 16.2 Hz, 2H), 6.67 – 6.59 (m, 1H), 4.96 (s, 1H), 4.74 (s, 1H), 3.75 (s, 1H), 2.72 – 2.50 (m, 2H), 1.90 (s, 3H), 1.81 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 189.45, 162.81,159.50, 145.36, 141.33, 140.24, 136.68, 130.42, 130.31, 129.93, 129.90, 128.54, 128.49, 124.03, 123.98, 123.86, 115.88, 115.59, 114.30, 44.28, 29.24, 21.92, 16.50. Anal. (C₁₈H₁₉FO) C 79.58, H 6.72.

Enone 8a. Isobenzofuran **5a** (0.37 g, 0.87 mmol) in anhydrous CH_2Cl_2 (9.0 mL) was added to a mixture of finely ground pyridinium chlorochromate (2.00 g, 8.70 mmol) and silica gel (2.00 g) in dry CH_2Cl_2 (20.0 mL) at rt. The reaction mixture was stirred at rt for 24 h. The crude solution was then filtered through a short silica gel column with ether (100 mL) and concentrated in vacuo. The dark brown residue was purified via flash chromatography over silica gel (15/85, EtOAc/hexanes) to deliver enone **6a** as a white solid in 55 % yield (0.20 g, 0.48 mmol) mp 126-127 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.08 – 7.98 (m, 1H), 7.49 (dd, *J* = 1.0, 8.1 Hz, 1H), 7.41

(t, J = 7.6 Hz, 1H), 7.18 (td, J = 1.7, 8.0 Hz, 1H), 5.28 (s, 1H), 5.21 (d, J = 10.0 Hz, 1H), 4.74 (s, 1H), 4.47 (s, 1H), 4.40 – 4.25 (m, 2H), 3.26 (t, J = 10.3 Hz, 1H), 2.93 – 2.70 (m, 1H), 2.54 – 2.30 (m, 2H), 2.01 – 1.87 (m, 3H), 1.58 (d, J = 8.2 Hz, 1H), 1.36 (q, J = 7.1 Hz, 3H), 1.27 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃) 198.0, 171.0, 146.0, 142.0, 138.0, 132.9, 130.4, 130.0, 129.7, 128.3, 125.6, 114.2, 85.2, 78.5, 62.3, 51.5, 47.5, 42.0, 18.5, 14.7, 12.2. IR (film) 1743, 1674 cm ⁻¹. HRMS Calcd for C₂₁H₂₄BrO₄⁺: 419.0858, found 419.0836. Anal. (C₂₁H₂₃BrO₄) C 60.31, H 5.47.

Enone 8b. Prepared as for **8a.** Enone **8b** was obtained as a white foam in 54 % yield (0.07 g, 0.16 mmol) from 0.12g (0.29 mmol) of isobenzofuran **5b**. ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, J = 8.8 Hz, 1H), 7.18 (dd, J = 5.0, 10.5 Hz, 2H), 6.98 (d, J = 7.8 Hz, 1H), 5.61 (d, J = 8.9 Hz, 1H), 5.56 (s, 1H), 4.92 (s, 1H), 4.77 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.70 (s, 1H), 2.50 (dd, J = 3.9, 16.3 Hz, 1H), 2.23 (dd, J = 13.9, 16.3 Hz, 1H), 1.98 (d, J = 2.0 Hz, 3H), 1.93 – 1.80 (m, 1H), 1.61 (s, 1H), 1.53 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C-NMR (75 MHz, CDCl₃) 183.6, 156.0, 142.3, 132.6, 129.9, 127.9, 113.9, 85.0, 78.1, 66.6, 62.0, 58.0, 46.7, 42.4, 22.7, 18.02, 14.2, 11.4.

Enone 8c. Prepared as for **8a.** Enone **8c** was obtained as a white solid in 56% yield (0.22 g, 0.54 mmol) from 0.40 g (0.97 mmol) of isobenzofuran **5c**; mp 41-45 °C; ¹H NMR (270 MHz, CDCl₃) δ 7.93 (dd, J = 1.6, 7.8, 1H), 7.38 (dd, J = 1.7, 7.9, 1H), 7.25 (t, J = 7.9, 1H), 5.31 – 5.10 (m, 2H), 4.61 (s, 1H), 4.47 – 4.36 (m, 1H), 4.25 (qd, J = 1.3, 7.1, 2H), 3.14 (d, J = 10.4, 1H), 2.84 – 2.63 (m, 1H), 2.48 – 2.21 (m, 2H), 1.86 (dd, J = 0.9, 2.5, 3H), 1.30 (t, J = 7.1, 3H), 1.21 (s, 4H). ¹³C-NMR (67 MHz, CDCl₃) 197.5, 169.8, 154.7, 142.1, 139.0, 132.5, 129.9, 127.4, 113.4, 82.6, 62.0, 50.4, 46.9, 42.3, 18.2, 14.1, 11.1.

Enone 8d. Prepared as for **8a.** Enone **8d** was obtained as a white solid in 67% yield (0.11 g, 0.27 mmol) from 0.17 g (0.41 mmol) of isobenzofuran **5d**; mp 96-100 °C; ¹H NMR (270 MHz, CDCl₃) δ 7.93 (dd, J = 1.6, 7.8 Hz, 1H), 7.38 (dd, J = 1.7, 7.9 Hz, 1H), 7.25 (t, J = 7.9 Hz, 1H), 5.31 – 5.10 (m, 2H), 4.61 (s, 1H), 4.47 – 4.36 (m, 1H), 4.25 (qd, J = 1.3, 7.1 Hz, 2H), 3.14 (d, J = 10.4 Hz, 1H), 2.84 – 2.63 (m, 1H), 2.48 – 2.21 (m, 2H), 1.86 (dd, J = 0.9, 2.5 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.21 (s, 3H). ¹³C-NMR (67 MHz, CDCl₃) 198.1, 169.8, 155.5, 142.4, 135.6, 134.7, 130.5, 130.4, 129.0, 127.8, 114.0, 82.0, 62.2, 50.2, 46.7, 42.3, 18.2, 14.3, 11.5.

Tosylhydrazone 9a. HOAc (0.01 g, 0.16 mmol) was added to a solution of enone **8a** (0.10 g, 0.24 mmol) and tosylhydrazide (0.06 g, 0.31 mmol) in CH₂Cl₂ (2.20 mL). The reaction mixture stirred at rt for 24 h, then was washed with water (5.00 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified via flash chromatography on silica gel (80:20, hexanes/EtOAc) to afford tosylhydrazone **9a** as white solid in 92 % yield (0.13 g, 0.22 mmol); mp 162-165 °C. ¹H-NMR (400 MHz, CDCl₃) δ 8.02 – 7.79 (m, 3H), 7.46 (d, J = 9.5 Hz, 2H), 7.36 (t, J = 8.7 Hz, 3H), 7.14 (t, J = 7.7 Hz, 1H), 5.28 (s, 1H), 5.07 (d, J = 9.8 Hz, 1H), 4.70 (s, 1H), 4.48 (s, 1H), 4.25 (q, J = 7.1 Hz, 2H), 2.99 (s, 1H), 2.58 – 2.34 (m, 6H), 2.10 – 1.85 (m, 4H), 1.34 (t, J = 7.1 Hz, 3H), 1.22 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 170.44, 153.31, 144.28, 143.92, 142.66, 138.39, 135.01, 132.51, 129.73, 129.69, 129.49, 128.25, 127.80, 127.78, 124.74, 114.17, 85.49, 78.23, 77.35, 77.04, 76.72, 61.70, 49.10, 44.80, 29.37, 21.66, 18.00, 14.18, 13.07. IR (film) 3210, 3070, 2980, 2919, 2256, 1739 cm⁻¹. HRMS Calcd for C₂₈H₃₁BrN₂O₅S⁺ : 587.1215, found: 587.1201.

Ester 10a. Catecholborane (0.10 mL, 0.80 mmol)) was added to a solution of tosylhydrazone **9a** (0.40 g, 0.70 mmol) in CHCl₃ (3.00 mL) at 0 °C. The reaction mixture stirred at 0 °C for 1 h, then NaOAc.3H₂O (0.19 g, 1.30 mmol) was added in one portion. The reaction mixture was maintained for 1 h at 0 °C, diluted with CHCl₃ (1.80 mL), and heated under reflux for 12 h. The mixture was then cooled to rt and filtered through a pad of Celite. The filtrate was concentrated in vacuo and the residue was purified via flash chromatography over silica gel (90:10, hexanes/ EtOAc) to afford ester **10a** as white solid in 68 % yield (0.17 g, 0.48 mmol); mp 37-40 °C; ¹H-NMR (270 MHz, CDCl₃) δ 7.97 (d, J = 6.2 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.0 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 5.59 (s, 1H), 5.34 (d, J = 6.4 Hz, 1H), 4.79 (s, 2H), 4.38 (d, J = 6.4 Hz, 1H), 4.25 (dd, J = 4.9, 7.1 Hz, 2H), 3.01 (s, 1H), 2.37 (m, 3H), 2.21 – 2.04 (m, 1H), 1.73 (s, 3H), 1.60 (s, 4H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C-NMR (67 MHz, CDCl₃) δ 173.01, 146.94, 140.85, 132.70, 130.21, 129.58, 129.37, 128.04, 123.25, 123.10, 112.16, 83.50, 81.30, 77.56, 77.09, 76.62, 61.33, 49.14, 47.31, 39.39, 28.04, 22.08, 21.00, 14.22.

Biological Assays

KB3 Assays. All stock solutions of compounds were made at 10 mM in dimethyl sulfoxide (DMSO). DMSO and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were from Sigma Chemical Co. (St. Louis, MO). Cell culture reagents were obtained from Life Technologies (Carlsbad, CA).

Cell Culture. The KB-3 human carcinoma cell line was maintained in monolayer culture at 37°C and 5% CO₂ in Dulbecco's Modified Eagle's Medium, supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 50 units/mL penicillin, and 50 μ g/mL streptomycin.

MTT colorimetric assay. Inhibition of cell proliferation was assessed by the MTT colorimetric assay. First described by Mosmann,¹ this assay is based on the ability of a mitochondrial dehydrogenase enzyme from viable cells to cleave the tetrazolium rings of the pale yellow MTT and form a dark blue formazan crystal product which is largely impermeable to cell membranes, thus resulting in its accumulation within healthy cells. Solubilization of the cells by the addition of solvent results in the liberation of the crystals which are solubilized. The level of the formazan product created is directly proportional to the number of living cells.

KB-3 cells (2000/well) were plated in 96-well dishes, and were treated after 24 h with different concentrations (0.1 nM -100 μ M) of the compound being assayed. The final concentration of DMSO did not exceed 1%, and controls received vehicle alone. MTT assay was performed after 96 h as described.^{2,3} Cells were incubated with 50 μ g/well/0.2 mL MTT for 4 h at 37°C, the media was removed and the formazan crystals were dissolved in 150 μ L of DMSO. The resulting color change was measured via spectrophotometry at a wavelength of 570 nm using an ELx800TM Absorbance Microplate Reader (Bio Tek Instruments, Inc., Winooski, VT). Values are the means of triplicate assays and are expressed as mean relative to untreated controls. IC₅₀

¹ Mosmann T. J. Immunol. Methods **1983**, 65, 55-63.

² Fan, M.; Du, L.; Stone, A. A.; Gilbert K. M.; Chambers, T. C. *Cancer Res.* **2000**, *60*, 6403-6407.

³ Alley, M. C.; Scudiero, D. A.; Monks A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd M. R. *Cancer Res.* **1988**, *48*, 589-601

is the concentration that reduced survival to 50% of the control (no drug). Representative concentrations curves are shown below (Figure).

Figure. Concentration curves of Sclerologs 5a, 5c, 8a and 10a.

Current Data Parameters NAME km-1387 EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date 11.13 INSTRUM spect PROBHD 5 mm PABD0 BB- PROBHD 5 mm PABD0 BB- PRO	======= CHANNEL f1 ======= NUC1 1H Pl 12.20 usec Pl1 300.1316608 MHz SF01 300.1316608 MHz S1 300.13160066 MHz SF 300.1300065 MHz CM MDW EM S5B 0.30 Hz CB 0.30 Hz CB 0.30 Hz CB 0.30 Hz	ID NMR plot parameters CX 20.00 cm CY 12.00 cm F1P 9.000 ppm F1 2701.17 Hz F2P 0.000 ppm F2P 0.00 Hz/cm PPMCM 0.45000 ppm/cm HZCM 135.05850 Hz/cm
88857.1 98864 15585.1		3.2547
4.59356 4.59356 4.59356 5.95393 5.9558 5.95893 5.95895 5.95855 5.95855 5.95855 5.958555 5.958555 5.9585555 5.9585555 5.958555555555 5.9585555555555555555555555555555555555		2.0594
2:8432 2:86432 2:86432 2:86432 2:3210 2:829432 2:4208 2:4200 2:420 2:4208 2:4208 2:4200 2:4200 2:4200 2:4200 2:4200 2:420	=	<u>6666 0</u> 0000 · I
mpm Ppm Ppm Ppm Ppm Ppm Ppm Ppm		10120

}______

Current Data Parameters JAME - verioog	XPN0 2	ROCNO	22 - Acquisition Parameters	Jate20071203	11.18 June 11.18	(NSTRUM spect 2208н0 5 mm Ра880 88-	JUL PROG 290930	0 32372	SOL VENT CDC13	35	SWH 18115.941 Hz	TDRES 0.559618 Hz	0.8935172 sec	36 23170.5	W 27.600 usec	5.00 usec	2 0000000 car	11 0.03000000 sec	JELTA 1.89999998 sec	ICREST 0.0000000 sec	1CWFK 0.01500000 sec	CHANNE! (1		21 B 38 115 B	-2.80 d8	5F01 75.4752953 MHz	HIT I TO THE CHANNEL 12 THEFT	CPOPRG2 waltz16	1UC2 3H	CPD2 80.00 usec	-0.60 dB	212 15.73 dB	5F02 300.1312005 MHz	1) - Droression narameters	32768	F 75.4677415 MHz	EM	558	.B 1.00 Hz	1.40 J		() NMR plot parameters X	11.00 cm	1P 220.118 ppm	2P 10.1001 12	-0.00 Hz	PMCM 11.00590 ppm/cm kZCM 830.59045 Hz/cm	
				r_1	-		a	- 1	01 2		,		V	11			- 1			2	>		~		. 0.	01				n (, cn			. 01		5		o a		- 0		., ,	. u	14 F	1. 7	
																																											بالمتناكس بمغادهم	in second division		-		
	ļ	126 03	. 05 . 01				-																				 																يليك المناكرين	Sec. 4 de a state				
	8	385	6	2 -			-												-																-						_		مفسالاستخا	aline states a		-	Ň	
	C	50(. Þ. t	, .			-																				 														-		مستعينات	مر المراجع المراجع		-		
	2	208 121	. 1 č	; -			-								_	-											 																ملحده فالتعاصين	in the second			50	
	ţ	99	. 76) -			_							_																												_	يت المنامين المنا	and all all and and				
	2 8 3	80: SSI	. 97 . 77 . 77	-		\geq																			1	-2.75	 			10.01	-												عنسالند			-	75	
	L	45	.58	} -			-																														-						S. Laboration	الحمد والالجار		-		
																																											بالمرابعة إبيانهم	In the desired at a			100	
	4	85	.E1	Į -			-																					_			-												alute and the			-		
	S	35 36	. SS . 15	ļ-		>																					 		-														and Name			_	125	
	2 6	25 25	: SE : 9E	[- [-		_																															-		-				Junior Marine			-		
	5	81 35	127 197	[- [-											_		_										 																and the second sec			-	20	
	ŗ	65	. 09	ļ										e																													No. of Lot of Lo			_	-	
	ç	30	02	ļ										≥ 0 1					-	z	~	7							-											_	_		States in the second second			-	10	
												C	5	ア			\			$\overset{()}{\nearrow}$	-	//) 																				of the second				179	
				_													C			$\left.\right\rangle$		4			=																							
	ţ.	60	26	ţ													(0		$\left\langle \right\rangle$		=/	7																				Animalian State	E.		-	200	
		u	ıdd																		۶t	<u>+</u>																								-	mdd	

S36

Current Data Parameters NAME km-1354 EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date 20080205 Time 17.30 NSTRUM spect PULPROG 23980 SOLVENT 5051 SOLVENT 5051 SOC 130005 SC 12 SOC 130005 SC 12 SOC 12 SOC 12 SOC 12 SOC 12 SOC 130005 SC 12 SC 12 SOC 130005 SC 12 SC 1	· · · · · · · · · · · · · · · · · · ·
<u>6.2673</u>	-
£6690`£− S¢Z0`Ī	- Oy
1.0072 1.0072 1.0072 1.0072 1.0072 1.0076	
5.0633 2.0633 2.0633 2.0633 2.0633 2.0633 2.0633 2.0633 2.0633 2.0634 2.0633 2.0634 2.0633 2.0634 2.0654 2.06554 2.06545 2.06545 2.06545 2.065555 2.0655555 2.06555555555555555555555555555555555555	
	- (1) - - - - -
1.0000 1.0000	
	1. 1. Pro. 1.
89007 2 -/	 -

S38

Current Data Parameters VAME & M-1354 EXPNO 2 PROCNO 1 2 - Acquisition Parameters Date 90.05 INSTRUM Spect POBHD 5 MM PABBO BB- OLLPRO 36030 10 36230 SQLVENT C013 VS	SMH 18115.04 4 FIDRES 0.500026142 142 FIDRES 0.500026142 123 AO 0.9999900 sec 23170 5 DH 2.0000000 sec 27.0 K D1 2.00000000 sec 211 D1 0.00000000 sec VCREST MCMEK 0.01500000 sec VCMEK	 Serresse CHANNEL F2 Serresse CPOPRG2 waltz16 1H NCC2 1H 00 00 CPD2 B0.00 Usec -1 00 dB PL12 15.33 dB -1.3 06 30 30 SF02 300.1312005 MH2 300.1312005 MH2 300.1312005 MH2	F2 - Processing parameters SI 32768 MDW EM MDW EM SSB 0 LB 0 LB 0 1.40	ID NWR plot parameters CX 20.00 cm CY 10.00 cm -1P 250.205 ppm -1 16518 44 Hz -1 16518 44 Hz -2P 0.000 Hz -2P 0.001 Hz -2PMCM 11 01330 ppm/cm
10,586				
867.14				
26°IS 662'25 602'29 672'72		 		
908'92 22'23 22'7 22'7		анын калан айтай айта		
110.110 110.341 681.011				
121-353				
500 121			:	
198.031	[4]			

Current Data Parameters VAME km-1255 EXPMO 11 PROCNO 11	 -Z - Acguisition Parameters Date20060229 Time11.51 INS.RUM spect PR06H0 5 mm PABB0 88- PULPR06 17984 SQLVENI CDD13 	VS 8 25 54 54 54 54 64 65.00 75.9 71.200 1.9998708 86 75.9 7	Figure CHANNEL f1 ======= NUC1 1H 1 P1 12.20 usec PL1 300.1321009 MH2 F2 - Processing parameters	SF 300.130068 MHz WDW 558 00.130068 MHz SSB 0.30 Hz 58 0.30 Hz 58 1.00	CX 20.00 cm CY 11.00 cm F1P 2701.17 Hz F2P 0.000 ppm 72 0.000 ppm 72 0.001 ppm 72 0
					0.9109 0.9709 1017 1017 1017 1017 1017 1017 1017
					3.0263 2.0263
2 (0,12) 2 (0,12) 2 (0,02) 2 (MeO2CC HO			0000 1
96825 2 - 2 2868 - 2 2800 - 2 2800 - 2 280 - 2 882 - 2 882		_ 2e			1016901 2.1936 1.0119 2.1936

i,

1

S56

10 NMR plot parameters X 20.00 cm P 20.00 cm 10.00 cm 9 5693 65 M 15693 65 M 15693 65 M 15693 65 M 15693 65 M CHANNEL f2
 waltz16
 11
 80.00 usec
 10.00 dB
 15.33 dB
 16.00 dB
 300.1312005 MHz 18115.941 H2 0.555601 H2 0.555601 H2 2.8170.5 sec 2.3170.5 sec 2.0000000 sec 0.0000000 sec 0.0000000 sec 0.0000000 sec 0.0000000 sec 0.0000000 sec = CHANNEL f1 ======= 13C 8.38 usec -2.80 dB 75.4760505 MHz -Z - Acquisition Parameters Date_____20080229 Time_____20080229 NucPRUM spect PADBHD 5 mm PABB0 88 OULPROC Z99930 TIU COCT3 SNH 18115 941 Hz AD 0.989375 sc AC 23170.5 AD 0.9893975 sc AC 23170.5 AD 0.9893998 sc AC 23170.5 AD 0.9993998 sc AC 23170.5 AD 0.9993998 sc AC 23170.5 AD 0.0000000 sc
 - 2
 - Processing parameters

 SF
 75,4677447
 MHz

 SP
 75,4677447
 MHz

 SB
 75,4677447
 MHz

 SCB
 0
 22768

 SSB
 0
 0

 SSB
 1.40
 1.40

 C
 20.00 pm
 0

 C
 2000 pm
 0
 Current Data Parameters NAME km-1255 EXPNO 10 PROCNO 1 CPOPPG2 CPOPPG2 VUC2 VUC2 CPO2 DC2 DC2 DC12 DC13 SF02 SF02 262°21 ---------- 50.680 --- 58'558 ---- 45.044 25.367 889.52 808.97 -SSS.77 --77.434 29°22 - 80.992 112.18 -85:777 Т Ò MeO₂C 150.511-ОH -153.603 -152°253 -152'904 5e 859.351--152'J43 711.951---158.862 966.851--131.852 6921661-939,925 -1321250 298.941-795.17:----

20.00 cm 12.50 cm 29.00 ppm 291.17 Hz 0.000 ppm 0.000 ppm 0.4500 ppm/cm 57 57 81.000 usec 6.00 usec 296.2 K 1.0000000 sec 0.0000000 sec 1H 12.20 usec -1.00 dB 300.1318534 MHz 2 - Acoustion Parameters hte____20080229 ime____17.51 NSTRUM spect NBCRUM 5 mm PABB0 B8-PULPR05 2030 D 37036 D 37036 SOLVENT C0C13 72 - Processing parameters SF 32768 MDW ER SSB 0.30,1300218 MH2 SSB 0.30 H2 6172.839 Hz 0.166671 Hz 2.9999659 sec CHANNEL f1 =====: 300.1300218 MHz EM Current Data Parameters NAME km-1290 œ The second INSTRUM ULPR0G SOL VENT ROBHD ONDORC 5×PN0 NUC1 21 21 5F01 ate **ICWR** θщ 11 11 11 0 μ

кан 1290 8	11511100 Parameters 20090229 18.45 50ect 5.mm PABBO 88- 250930	2.1366 CDC13 1024 1.2965.E11 Hz 0.590045 Hz 0.999964 sec 23170.6 sec 23170.0 usec	6,00 usec 2,0000000 set 0,0300000 set 1,8999998 set 0,0000000 set 0,01500000 set	CHANNEL f1	CHANNEL f2 ===================================	essing parameters 32768 75.457395 MHZ EM EM 1.00 Hz 1.40	ot parameters 20.00 cm 20.00 ppm 200 000 ppm 200 01 pm
VAME EXPNO PROCNO	-2 - Aca Date Isme INSTRUM PROGHD PULPROG	SOL VENT VS SU SWH SWH SWH FIDRES AD AD WC	DE TE 01 DELFA MCRES: MCRES:	NUC1 21 21	CPDPR62 CPDPR62 NUC2 PCPD2 PCPD2 PL12 PL13 FC2 SF02	- 51 55 55 55 55 55 55 55 55 55 55 55 55 5	NMR D C C C C C C C C C C C C C C C C C C C
596 -	61	_					
586.	· 0£						
699 ·	49		·				
p08.	94						
453 458 928 938 938	22	-10.000					
751. 858.	28 						
805.	eu						بنه بنه الم
. 535 . 453 . 535	153	_					
508. 563.	261 261	z					
801. 881.	971						
79£. 9£.8.	071	MeO ₂ C	_/				
		5f	5				nyinny hyverid inny soci
	dd						

S62

j,

Current Data Parameters NAME · km-1360 EXPNO 2 PROCNO 1 72 - Acquisition Parameters Date_ 20080207 Time 16 57 INSTRUM spect PNLPROG 5 mm PABB0 88- PULPROG 5 mm PABB0 88- PULPROG 2930	IU 2390 SOL VENT CDC13 VS 16 DS 2 SS 225.204 HR 5995.204 SMH 5995.204 FIDRES 0.259000 AD 1.9999920 AG 256 AG 256.4 AT 296.4 ACREST 0.015000000 VCMRK 0.015000000	Effective CHANNEL [1 ====== NUC1 1 H 21 12.20 usec PL1 300.1318608 MHz FF01 300.1318608 MHz FF 300.1318608 MHz SF 300.1300066 MHz FF 300.1300066 MHz FM 0 SSB 0.30 Hz SSB 0.30 Hz SSB 0.30 Hz SSB 0.30 Hz SSB 0.30 Hz SSB 0.30 Hz	10 NMR plot parameters CX 20.00 cm CY 10.00 cm 71 2701.17 Hz 72P 0.00 ppm 72P 0.00 ppm 72P 0.00 ppm 72 2PMCM 0.4500 ppm/rm 73.01 12 Hz 2PMCM	
-2.65830 -2.65830 -2.65905 -2.65905 -2.65905 -1.8563 -1.8563 -1.866333 -1.866333 -1.866333 -1			<u>3 3437</u> <u>3 3695</u> <u>1 1413</u>	
6 1 1 6 4 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			0651.1 9101.1 8101.1	3
- 7.26029 - 6.6727 - 7.26029 - 6.6727 - 6.6737 -	g		1 0160 1 0629 1 0643	5
03577 2			10 ເດືອງແມ	

11

Percentage Growth

Percentage Growth

Renal Cancer

Percentage Growth

100

Non-Small Cell Lung Cancer

NSC: D - 749112 / 1

SSPL: 0XCV

EXP. ID: 0902NS35

Report Date: March 24, 2009

National Cancer Institute Developmental Therapeutics Program **Dose Response Curves**

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results																	
NSC : D - 749112 / 1						Experiment ID : 0902NS35						Test	Туре : 08	Units : Molar			
Report Date : March 24, 2009						Test Date : February 02, 2009						QNS	:	MC :			
COMI : DB.10h (81264)						Stain Reagent : SRB Dual-Pass Related						SSPI	_ : 0XCV				
						Log10 Concentration											
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	n Optical -6.0	l Densiti -5.0	es -4.0	-8.0	P -7.0	ercent G -6.0	rowth -5.0	-4.0	GI50	TGI	LC50		
Leukemia HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.986 0.252 0.530 0.854 0.425	2.104 1.205 1.404 1.741 0.820	2.149 1.210 1.457 1.548 0.753	2.153 1.156 1.404 1.348 0.744	2.017 0.897 1.241 1.056 0.609	0.589 0.352 0.452 0.409 0.273	0.415 0.059 0.203 0.028 0.114	104 101 106 78 83	104 95 100 56 81	92 68 81 23 47	-40 10 -15 -52 -36	-58 -77 -62 -97 -73	2.08E-6 2.04E-6 2.12E-6 1.48E-7 7.98E-7	4.97E-6 1.32E-5 7.03E-6 2.01E-6 3.67E-6	3.55E-5 4.93E-5 5.62E-5 9.36E-6 2.39E-5		
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H522	g Cancer 0.245 0.596 0.452 0.824 0.670 0.665 0.621 0.261 0.396	1.246 1.398 1.137 1.239 1.231 1.820 1.739 2.111 1.269	1.178 1.380 1.100 1.188 1.206 1.792 1.686 2.057 1.111	1.135 1.341 1.115 1.112 1.171 1.723 1.557 2.061 1.069	1.193 1.236 1.124 1.004 1.090 1.648 1.507 1.784 1.013	0.627 0.783 0.801 0.712 0.851 1.060 1.173 0.832 0.649	0.143 0.252 0.002 0.011 0.104 0.105 0.091 0.011 0.036	93 98 95 88 96 98 95 97 82	89 93 97 69 89 92 84 97 77	95 80 98 43 75 85 79 82 71	38 23 51 -14 32 34 49 31 29	-42 -58 -100 -99 -85 -84 -85 -96 -91	6.17E-6 3.37E-6 1.01E-5 5.52E-7 3.82E-6 4.88E-6 9.50E-6 4.24E-6 3.13E-6	3.01E-5 1.94E-5 2.18E-5 5.76E-6 1.89E-5 1.94E-5 2.32E-5 1.75E-5 1.74E-5	> 1.00E-4 8.03E-5 4.68E-5 2.68E-5 5.06E-5 5.14E-5 5.46E-5 4.34E-5 4.55E-5		
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.280 0.683 0.251 0.376 0.149 0.466 0.291	0.968 1.954 1.689 2.159 0.997 2.085 1.511	0.978 1.779 1.718 2.057 0.976 2.011 1.462	0.859 1.818 1.524 2.072 0.928 1.964 1.472	0.910 1.915 1.424 1.878 0.845 1.921 1.520	0.621 1.176 0.472 0.927 0.334 0.853 0.572	-0.011 0.024 -0.014 0.063 0.013 0.010 0.025	101 86 102 94 98 95 96	84 89 88 95 92 93 97	92 97 82 84 82 90 101	50 39 15 31 22 24 23	-100 -97 -100 -83 -91 -98 -92	9.77E-6 6.40E-6 3.00E-6 4.38E-6 3.41E-6 4.02E-6 4.49E-6	2.15E-5 1.93E-5 1.36E-5 1.86E-5 1.56E-5 1.57E-5 1.59E-5	4.63E-5 4.53E-5 3.69E-5 5.10E-5 4.32E-5 4.04E-5 4.34E-5		
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.362 1.371 0.743 0.642 0.585 0.235	1.187 3.235 2.275 1.499 1.212 1.379	1.115 3.161 2.135 1.445 1.119 1.353	1.136 3.095 2.118 1.403 1.092 1.309	1.077 3.020 2.026 1.398 1.111 1.153	0.718 1.921 1.406 1.107 0.805 0.442	0.096 0.124 -0.001 -0.007 0.132 -0.001	91 96 91 94 85 98	94 92 90 89 81 94	87 88 84 88 84 80	43 30 43 54 35 18	-73 -91 -100 -100 -78 -100	6.95E-6 4.49E-6 6.82E-6 1.07E-5 4.94E-6 3.06E-6	2.34E-5 1.76E-5 2.00E-5 2.25E-5 2.05E-5 1.42E-5	6.29E-5 4.57E-5 4.48E-5 4.74E-5 5.69E-5 3.77E-5		
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.270 0.708 0.256 0.472 0.507 0.479 0.327 0.602 0.265	1.964 1.590 0.915 1.904 0.967 1.173 1.972 1.345 0.930	1.911 1.562 0.897 1.787 0.913 1.157 1.816 1.280 0.852	1.807 1.485 0.846 1.665 0.886 1.121 1.779 1.272 0.804	1.603 1.365 0.785 1.676 0.856 1.122 1.461 1.201 0.748	0.835 0.879 0.540 0.524 0.649 0.847 0.673 0.926 0.459	0.058 0.080 0.005 0.181 0.111 -0.001 -0.015 0.067 0.048	97 97 92 88 98 91 91 88	91 88 89 83 82 93 88 90 81	79 74 80 84 76 93 69 81 73	33 19 43 4 31 53 21 44 29	-79 -89 -98 -62 -78 -100 -100 -89 -82	4.30E-6 2.78E-6 6.51E-6 2.65E-6 3.74E-6 1.05E-5 2.48E-6 6.71E-6 3.31E-6	1.98E-5 1.51E-5 2.02E-5 1.14E-5 1.92E-5 2.22E-5 1.49E-5 2.13E-5 1.83E-5	5.54E-5 4.38E-5 4.56E-5 6.63E-5 5.52E-5 4.71E-5 3.86E-5 5.09E-5 5.15E-5		
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.319 0.361 0.397 0.478 0.302 0.556 0.621	1.316 0.987 1.403 0.903 1.242 1.619 1.326	1.225 0.914 1.310 0.891 1.233 1.667 1.309	1.164 0.912 1.266 0.837 1.210 1.589 1.323	1.144 0.925 1.165 0.905 1.181 1.423 1.314	0.874 0.434 0.733 1.015 0.858 0.829 1.037	0.167 0.007 0.177 0.101 0.114 0.137 0.372	91 88 91 97 99 105 98	85 88 86 84 97 97 100	83 90 76 100 93 82 98	56 12 33 126 59 26 59	-48 -98 -56 -79 -62 -75 -40	1.13E-5 3.24E-6 4.10E-6 2.36E-5 1.19E-5 3.67E-6 1.23E-5	3.46E-5 1.28E-5 2.37E-5 4.13E-5 3.06E-5 1.79E-5 3.93E-5	> 1.00E-4 3.65E-5 8.66E-5 7.23E-5 7.90E-5 5.61E-5 > 1.00E-4		
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.594 1.150 0.334 0.864 0.398 0.544 0.599 0.460	2.154 1.457 1.372 2.632 1.056 1.869 1.222 1.368	2.139 1.402 1.332 2.565 1.016 1.668 1.123 1.264	2.032 1.430 1.333 2.515 0.960 1.703 1.124 1.217	1.980 1.422 1.344 2.399 0.954 1.593 1.170 1.193	1.336 0.970 0.734 1.520 0.686 1.123 0.897 0.845	0.027 0.035 0.002 0.651 0.112 0.012 0.268 0.041	99 82 96 94 85 84 89	92 91 96 93 85 87 84 83	89 88 97 87 84 79 92 81	48 -16 39 37 44 44 48 42	-95 -97 -25 -72 -98 -55 -91	8.73E-6 2.34E-6 6.39E-6 5.50E-6 7.00E-6 6.63E-6 8.93E-6 6.32E-6	2.15E-5 7.07E-6 1.90E-5 3.98E-5 2.39E-5 2.03E-5 2.91E-5 2.08E-5	4.81E-5 2.65E-5 4.38E-5 > 1.00E-4 6.47E-5 4.59E-5 8.89E-5 4.92E-5		
Prostate Cancer PC-3 DU-145	0.422 0.297	1.262 1.210	1.218 1.104	1.166 1.061	1.006 1.089	0.592 0.637	0.116 0.142	95 88	89 84	70 87	20 37	-73 -52	2.49E-6 5.53E-6	1.65E-5 2.61E-5	5.72E-5 9.45E-5		
Breast Cancer MCF7 MDA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	0.265 C 0.489 0.689 1.527 0.705 0.404	1.401 1.367 1.300 2.435 1.402 1.289	1.317 1.378 1.194 2.405 1.389 1.227	1.441 1.271 1.194 2.293 1.325 1.106	1.209 1.204 1.099 2.136 1.236 0.911	0.557 0.871 0.858 1.442 0.717 0.502	0.084 0.090 0.397 0.166 0.452 0.148	93 101 83 97 98 93	103 89 83 84 89 79	83 81 67 67 76 57	26 43 28 -6 2 11	-68 -82 -42 -89 -36 -63	3.77E-6 6.73E-6 2.72E-6 1.72E-6 2.24E-6 1.43E-6	1.88E-5 2.23E-5 2.48E-5 8.37E-6 1.11E-5 1.41E-5	6.39E-5 5.59E-5 > 1.00E-4 3.40E-5 > 1.00E-4 6.61E-5		

MID Delta Range	MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	PC-3 DU-145 Breast Cancer	786-0 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 TK-10 UO-31 UO-31 Prostate Cancer	OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-0V-3	MALME-3M MALME-3M MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-267 UACC-257 UACC-257	SF-268 SF-268 SF-295 SNB-75 SNB-75 U251-75 U2507	CCOL O 2010 CCOL O 2010 HCC-2998 HCT-116 HCT-15 HCT-15 KM12 SW-620 CNS C-ancer	A549/ATCC EKVX HOP-62 NCI-H226 NCI-H226 NCI-H223 NCI-H223 NCI-H223 NCI-H220 NCI-H220 NCI-H220 NCI-H220 NCI-H220 NCI-H220	Leukemia HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer	Panel/Cell Line	National Cancer Institute Dev	
^{1.5.} 2.25 ³	ຜູ້ຊາງ ທີ່ທີ່ທີ່ ທີ່ທີ່ ທີ່ທີ່ ທີ່ ທີ່ ທີ່ ທີ່	-5.60 -5.26	မှုက္ကက္ကက္ကက္ ၇၀၀ ၁၀၀ ၁၀၀ ၁၀၀ ၁၀၀ ၁၀၀ ၁၀၀ ၁၀၀ ၁၀၀ ၁၀၀	4544554 242003495 2423995		ჯ.ყ. ფ. 4. ფ. 4.				Log ₁₀ GI50	elopmental Therapeutics Mean Graphs	
	-T+1+,,,,	•	<u> </u>	ц.Ц.,	╍┸┰┸╌┰┸┰	lı		• • • •	IIIII	GI50	Program	
-4.77 1.93 1.32 +3 +2 +1	44-5444 4.96 568 568 568	-4.78 -4.58	4444454 4456 684 9020 757	4.44.4.4 4.4.4 4.75 4.75 4.75 4.75 4.75	4444444 4444 447 447 44 44 4 4 4 4 4 4	4.4.4.4.4. 4.4.65 4.65 5.59 5.50 5.50 5.50 5.50 5.50 5.50 5.5	4.67 4.71 4.73 4.80 4.80	4.4.4.5.4.4.5 4.4.72 4.76 66 77 76 77 76 77 76	స.స.4.5 .4830 430 55880	Log ₁₀ TGI	NSC : D - 749112/1 Report Date :March 24, 2	
								· · · · · · · · ·	11.1	TGI	Units :Molar 009	_
1.03 1.74 1.74 1.74 1.74 1.74	v v 44440 4407	-4.24 -4.02	v 4.4.4.4.4.4.4 	v v 4.4.4.4.4.4 005 04 05 04 05 04 005	4444444 44444 29913 8684 4886 8466 8466 8466 8466 8466 846	4.4.4.4.4 4.23 4.22 2.4 2.2 2.4 2.5 4 0	444444 3332433 69669343	v 444444444 34669073300	-4.45 -4.25 -4.60 -4.60	Log ₁₀ LC50 LC	SSPL :0XCV Test Date :February 02	_
					S86				T,	350	EXP. ID :0902NS35 , 2009	_