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ABSTRACT
The complete nucleotide sequence of the 25 S rRNA gene from one rDNA

repeating unit of Saccharomyces cerevisiae has been determined. The corres-
ponding 25 S rRNA molecule contains 3392 nucleotides6and has an estimated
relative molecular mass ( Mr, Na-salt ) of 1.17 x 10 . Striking sequence
homology is observed with known 5'- and 3'-end terminal segments of L-rRNA
from other eukaryotes. Possible models of interaction with 5.8 S rRNA are
discussed.

INTRODUCTION

Determination of the primary structure of rRNA molecules and the respec-

tive genes is important for understanding ribosome structure, function, bio-

genesis and evolution. It is established that in Saccharomyces cerevisiae the

structural genes for 5 S, 18 S, 5.8 S and 25 S rRNA are organized in one rDNA

repeating unit ( about 9.1 kb ), present in 100 to 120 copies per haploid

genome ( 1 ). The structure of the yeast rDNA repeating unit is studied in

details and all four rRNA genes are mapped within seven Eco RI restriction

fragments designated A to G according to their length ( 2-5 ). A large part

of the rDNA repeating unit has been sequenced, including the 5 S ( 6,7 ),

18 5 ( 8 ) and 5.8 S ( 2,9 ) rRNA genes. Further, the 5'- and 3'-ends of the

25 S rRNA gene are now precisely mapped within the Eco RI fragments A and E,

respectively ( 10, 24).
In the present work we report the complete sequence of the 25 S rRNA gene

from one rDNA repeating unit of Saccharomyces cerevisiae.

MATERIALS AND METHODS

The recombinant plasmids pYlrA9 and pYlrB3, containing the rDNA Eco RI

fragments A, E and F, are used ( 3 ). Restriction endonucleases are prepared

in our laboratories by standard procedures or obtained as a gift from Dr.

A.Yanulaitis. The [32P]-orthophosphate is a product of The Radiochemical
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Centre, Amersham, U.K. The 3 P]ATP ( about 1000 Ci/mmol ) is prepared by

the method of Glynn and Chappel ( 11 ). Plasmid DNA is isolated according to

Tanaka and Weissblum ( 12 ). Restriction rDNA fragments are purified by pre-

parative electrophoresis in 4 or 6 % acrylamide gels. End labelling is carried

out with T4 polynucleotide kinase ( Boehringer-Mannheim ) as described by

Maxam and Gilbert ( 13,14 ). The end-labelled fragments are subjected to

strand separation ( 15 ) or to secondary restriction endonuclease cleavage.

Sequencing of DNA is carried out according to Maxam and Gilbert ( 13,14 ).

RESULTS AND DISCUSSION

Sequencing strategy. The entire 25 S rRNA gene is contained in the Eco RI

fragments A, F and E ( Figure 1 ). These fragments have estimated lengths of

about 2.85, 0.36 and 0.59 kb, respectively. Therefore, first of all, a stra-

tegy for the sequencing of fragment Eco RI-A had to be devised. Analysis of

the cleavage patterns of fragment Eco RI-A with different restriction endo-

nucleases revealed that digestion with Msp I and Sau 3A provides two sets of

1f1 and 8 subfragments, respectively, which appear to be convenient for sequen-

cing ( see Fig.1 ). Most of the sequences in fragments Eco RI-A, as well as

Eco RI-F and Eco RI-E, were determined in both strands and independently con-

firmed by the use of overlapping restriction fragments. In some cases the

orientation of sequenced rDNA chains was defined by hybridization with

25 S rRNA.

Sequence results. The complete sequence of 25 S rRNA ( deduced from the
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FIGURE 1. Above - Endonuclease Eco RI restriction map of the
S.cerevisiae rDNA repeating unit. Arrangement of the Eco RI
fragments A to G and the location of rRNA genes are indicated.

Below - Expanded map of the 25 S rRNA gene. Restriction
sites are indicated by vertical lines: M, Msp I; S, Sau 3A; B,
Bgl II; K, Kpn I; E, Eco RI. The subfragments obtained upon diges-
tion of fragment Eco RI-A with endonucleases Msp I [M] and
Sau 3A [S] are numbered by size. The sequenced strands are shown
as horizontal arrows pointing from the labelled 5'-end.
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corresponding rDNA ) is shown in Figure 2. The identification of the 5'- and

3'-terminal nucleotides is based on our previous results ( 10 ). The total

length of 25 S rRNA is 3392 nucleotides, yielding a relative molecular mass

H , Na-salt ) of 1.17 x 106. This figure is smaller than the ones derived

from physicochemical measurements ( 16,17 ), but it is in close agreement

with results obtained by R-loop and hybridization analyses ( 4 ).

The use of the chemical method of Maxam and Gilbert ( 14 ) permitted con-

fident reading of sequences extending 200-250 nucleotides from the labelled

end. However, the anomalous behaviour of nucleotide 1642 is noteworthy. This

nucleotide behaves simultaneously as C and G ( data not shown ). The absence

of a purine band and analysis of the complementary rDNA strand identify this

nucleotide as a C. Most likely, this cytidine residue is modified by E.coli

enzymes in such a way that it is split by the G-specific dimethyl sulfate

reaction. Such modification of a cytidine residue in plasmid DNA has not been

encountered previously ( 14 ) and could be of more general interest.

Homology with other eukaryotic L-rRNA. The 25 S rRNA of S.cerevisiae is

the first major eukaryotic L-rRNA with a known complete sequence. Previous

indirect evidence indicates that strongly conserved regions of homology exist

in eukaryotic L-rRNA ( 18-20 ). Comparison with published sequence data on

the 5'-end of Xenopus laevis ( 21 ) and the 3'-end of Neurospora crassa (22

L-rRNA, reveals that such highly conserved sequences may be present at both

ends of eukaryotic L-rRNA molecules. The sequence encompassing nucleotides

2-113 of S.cerevisiae L-rRNA shows 81 % homology with the respective sequence

of X.laevis, while the 3'-end segment C nucleotides 3290-3392 ) is 74 %

homologous with the respective sequence in Neurospora crassa.

Interaction with 5.8 S rRNA. It is well known that in the eukaryote ribo-

some 5.8 S rRNA is hydrogen-bonded to L-rRNA ( 1,18 ). Recently, it was re-

ported that 5.8 S rRNA interacts with the 3'-terminal fragment of Neurospora

crassa L-rRNA and a model of possible complementary sequences was proposed

( 22 ). Our preliminary computer search, including the full length of

S.cerevisiae 25 S rRNA, failed to reveal uninterrupted complementary sequen-

ces between L-rRNA and 5.8 S rRNA longer than eight nucleotides. Further,

linear alignment of both sequences revealed numerous regions in 25 S rRNA

with 35 to 38 % complementarity to 5.8 S rRNA. The best fit is observed for
the interaction between nucleotides 5-20 of L-rRNA and the 3'-end half of

5.8 S rRNA. Also, another region of high complementarity involves nucleotides

3265-3333 of L-rRNA and the 5'-end half of 5.8 S rRNA. These results appear

to favor a model in which 5.8 S rRNA interacts simultaneously with segments
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located at both ends of the L-rRNA molecule. Such a model is compatible with
the available experimental data on 5.8 S rRNA:L-rRNA interactions ( 22,23 ),
but further evidence is needed in order to clarify the interaction within
the ribosome of these two rRNA molecules.
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