Supporting information for:

Specific uptake and imaging of bombesin functionalized iron oxide nanoparticles in prostate cancer cells

Amanda L. Martin[†], Jennifer L. Hickey[†], Amber L. Ablack[§], John D. Lewis^{§¶}, Leonard G. Luyt^{†§+}, and Elizabeth R. Gillies^{†‡}*

[†]Department of Chemistry, [‡]Department of Chemical and Biochemical Engineering, [§]Department of Oncology, [⊥]Department of Medical Imaging, [¶]Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7.

Table of Contents:

1.	HPLC of peptide 1	pg. 2
2.	ESI-MS of peptide 1	pg. 2
3.	UV-visible spectrum of nanoparticle 4	pg. 3
4.	Fluorescence spectrum of nanoparticle 4	pg. 3

Figure S1. HPLC of peptide 1. Linear gradient of 20-80% solvent A in B. Purity of peptide determined to be 98.7%.

Figure S2. ESI-MS of peptide 1. m/z calculated 1121.59, found 1121.35 $[M+H]^+$ and m/z calculated 561.30, found 561.50 $[M+2H]^{2+}$.

Figure S3. UV-visible spectrum of nanoparticle **4** (c = 0.14 mg/mL of iron, path length (b) = 1 cm, ε for rhodamine dye = 96000 cm⁻¹M⁻¹ at 560 nm). The loading of dye can be determined by subtracting the absorbance of the iron oxide nanoparticles at 560 nm (determined from a calibration curve), then solving the expression A = ε bc for the concentration of dye.

Figure S4. Fluorescence emission spectrum of nanoparticle **4** showing maximum emission at 595 nm. Lack of quenching by the iron oxide core was verified by comparison with a sample of the unconjugated dye having a normalized absorbance.