Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers

Stephen T. McCracken, Marcel Kaiser, Helena I. Boshoff, Peter D. W. Boyd and Brent R. Copp

Supplementary data

Table of contents.

	page
General crystallography information	2
Crystal structure data for compound 2	3
Crystal structure data for compound 3	11
Crystal structure data for compound 14	19
¹ H and ¹³ C NMR spectra of 1-5, 7, 12-35	28

X-ray crystallography.

Single crystal X-ray data for **2**, **3** and **14** were collected with a Bruker SMART-APEX II diffractometer. The data was integrated with SAINT.¹ Empirical absorption corrections were made with SADABS.^{2.} The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least-squares methods against F^2 (SHELXL-97).³ All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically at calculated positions using a riding model.

- (1) SAINT; Bruker AXS Inc.: Madison,WI, 2000.
- (2) G. M. Sheldrick, *SADABS 2.0*; Universität Göttingen, Göttingen, Germany, 2000.
- (3) G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, A64, 112-122.

Figure S1. Crystal structure of 2 with ellipsoids drawn at the 50% probability level.

 Table S1.
 Crystal data and structure refinement for 2.

Identification code	shelxl		
Empirical formula	C15 H14 O5		
Formula weight	274.26		
Temperature	98(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.0036(2) Å	$\alpha = 90.8060(10)^{\circ}$	
	b = 8.3760(3) Å	$\beta = 105.8980(10)^{\circ}$	
	c = 10.5599(3) Å	$\gamma = 110.4210(10)^{\circ}$	
Volume	633.31(3) Å ³		
Z	2		
Density (calculated)	1.438 Mg/m ³		
Absorption coefficient	0.109 mm ⁻¹		
F(000)	288		
Crystal size	$0.43 \ x \ 0.29 \ x \ 0.2 \ mm^3$		
Theta range for data collection	2.02 to 27.98°.		
Index ranges	-10<=h<=10, -11<=k<=10, -13	<=l<=13	
Reflections collected	15272		
Independent reflections	3024 [R(int) = 0.0243]		
Completeness to theta = 27.98°	99.4 %		
Absorption correction	None		

Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

Full-matrix least-squares on F^2 3024 / 0 / 182 1.033 R1 = 0.0342, wR2 = 0.0944 R1 = 0.0368, wR2 = 0.0974 0.336 and -0.240 e.Å⁻³

	X	у	Z	U(eq)
O(1)	1891(1)	8019(1)	7566(1)	21(1)
O(19)	1577(1)	12762(1)	7927(1)	24(1)
O(16)	3166(1)	1779(1)	12057(1)	24(1)
C(5)	1524(1)	10196(1)	8783(1)	19(1)
O(17)	2646(1)	2476(1)	14006(1)	24(1)
C(10)	3397(1)	4549(1)	11174(1)	20(1)
C(14)	3091(1)	6587(1)	12660(1)	25(1)
C(3)	1922(1)	10614(1)	6600(1)	19(1)
C(11)	3200(1)	3437(1)	12118(1)	18(1)
C(12)	2915(1)	3861(1)	13292(1)	19(1)
C(2)	2041(1)	8959(1)	6493(1)	20(1)
O(18)	2268(1)	8270(1)	5567(1)	28(1)
C(4)	1685(1)	11221(1)	7715(1)	18(1)
C(6)	1624(1)	8638(1)	8666(1)	19(1)
C(13)	2852(2)	5431(1)	13604(1)	24(1)
C(8)	3479(1)	7438(1)	10453(1)	25(1)
C(7)	1535(1)	7416(1)	9685(1)	22(1)
C(9)	3347(1)	6172(1)	11465(1)	21(1)
C(20)	1756(2)	13863(1)	6891(1)	26(1)
C(15)	3193(1)	1304(1)	13364(1)	23(1)

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(6)	1.3647(11)
O(1)-C(2)	1.3962(11)
O(19)-C(4)	1.3436(11)
O(19)-C(20)	1.4450(11)
O(16)-C(11)	1.3795(11)
O(16)-C(15)	1.4379(12)
C(5)-C(6)	1.3405(13)
C(5)-C(4)	1.4335(12)
C(5)-H(5)	0.9300
O(17)-C(12)	1.3780(11)
O(17)-C(15)	1.4345(12)
C(10)-C(11)	1.3775(13)
C(10)-C(9)	1.4065(14)
C(10)-H(10)	0.9300
C(14)-C(9)	1.3913(14)
C(14)-C(13)	1.4033(13)
C(14)-H(14)	0.9300
C(3)-C(4)	1.3615(12)
C(3)-C(2)	1.4276(13)
C(3)-H(3)	0.9300
C(11)-C(12)	1.3838(12)
C(12)-C(13)	1.3725(13)
C(2)-O(18)	1.2152(11)
C(6)-C(7)	1.4943(12)
C(13)-H(13)	0.9300
C(8)-C(9)	1.5134(12)
C(8)-C(7)	1.5383(14)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600

Table S3.	Bond lengths	[Å] and	angles	[°] for 2 .
-----------	--------------	---------	--------	--------------------

0.9700
0.9700
121.86(7)
116.89(7)
104.79(7)
118.82(8)
120.6
120.6
104.83(7)
117.11(8)
121.4
121.4
122.53(9)
118.7
118.7
120.16(8)
119.9
119.9
128.05(8)
122.16(9)
109.74(8)
128.13(8)
122.15(9)
109.68(8)
115.85(8)
127.04(9)
117.11(8)
125.17(8)
114.40(8)
120.43(8)
121.62(8)
126.32(9)
112.03(8)
116.12(9)
121.9

C(14)-C(13)-H(13)	121.9
C(9)-C(8)-C(7)	111.11(8)
C(9)-C(8)-H(8A)	109.4
C(7)-C(8)-H(8A)	109.4
C(9)-C(8)-H(8B)	109.4
C(7)-C(8)-H(8B)	109.4
H(8A)-C(8)-H(8B)	108.0
C(6)-C(7)-C(8)	112.21(8)
C(6)-C(7)-H(7A)	109.2
C(8)-C(7)-H(7A)	109.2
C(6)-C(7)-H(7B)	109.2
C(8)-C(7)-H(7B)	109.2
H(7A)-C(7)-H(7B)	107.9
C(14)-C(9)-C(10)	119.91(9)
C(14)-C(9)-C(8)	119.90(9)
C(10)-C(9)-C(8)	120.13(9)
O(19)-C(20)-H(20A)	109.5
O(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
O(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
O(17)-C(15)-O(16)	107.32(7)
O(17)-C(15)-H(15A)	110.3
O(16)-C(15)-H(15A)	110.3
O(17)-C(15)-H(15B)	110.3
O(16)-C(15)-H(15B)	110.3
H(15A)-C(15)-H(15B)	108.5

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	26(1)	19(1)	22(1)	5(1)	8(1)	11(1)
O(19)	35(1)	19(1)	21(1)	4(1)	9(1)	13(1)
O(16)	33(1)	21(1)	22(1)	4(1)	10(1)	14(1)
C(5)	21(1)	22(1)	16(1)	4(1)	7(1)	8(1)
O(17)	37(1)	21(1)	22(1)	9(1)	14(1)	14(1)
C(10)	18(1)	26(1)	16(1)	5(1)	6(1)	8(1)
C(14)	30(1)	20(1)	28(1)	5(1)	8(1)	12(1)
C(3)	21(1)	19(1)	16(1)	5(1)	5(1)	7(1)
C(11)	17(1)	19(1)	19(1)	2(1)	5(1)	7(1)
C(12)	22(1)	20(1)	17(1)	6(1)	6(1)	8(1)
C(2)	19(1)	22(1)	18(1)	2(1)	5(1)	8(1)
O(18)	35(1)	30(1)	23(1)	0(1)	10(1)	17(1)
C(4)	18(1)	16(1)	18(1)	3(1)	4(1)	6(1)
C(6)	16(1)	21(1)	19(1)	6(1)	5(1)	6(1)
C(13)	32(1)	24(1)	20(1)	3(1)	10(1)	13(1)
C(8)	20(1)	28(1)	29(1)	15(1)	7(1)	9(1)
C(7)	20(1)	23(1)	25(1)	11(1)	7(1)	8(1)
C(9)	17(1)	23(1)	23(1)	9(1)	5(1)	7(1)
C(20)	35(1)	18(1)	24(1)	6(1)	5(1)	11(1)
C(15)	28(1)	22(1)	24(1)	7(1)	10(1)	13(1)

Table S4. Anisotropic displacement parameters (Å²x 10³) for **2**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(5)	1353	10604	9543	23
H(10)	3556	4240	10378	24
H(14)	3078	7672	12841	30
H(3)	2006	11280	5906	23
H(13)	2663	5713	14395	29
H(8A)	4060	7149	9835	30
H(8B)	4258	8583	10901	30
H(7A)	753	6264	9251	27
H(7B)	963	7715	10305	27
H(20A)	2916	14040	6711	39
H(20B)	1733	14948	7174	39
H(20C)	738	13332	6102	39
H(15A)	2332	136	13307	28
H(15B)	4436	1376	13861	28

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **2**.

Figure S2. Crystal structure of 3 with ellipsoids drawn at the 50% probability level.

Figure S3. The packing of structure 3 with ellipsoids drawn at the 50 % probability level. Highlighted distances between C-7/C-8 (top) to C-5/C-6 (bottom) are 3.6 - 3.7 Å.

Table S6. Crystal data and structure refinement for 3.

Identification code	shelxl			
Empirical formula	C16 H16 O5	C16 H16 O5		
Formula weight	288.30			
Temperature	93(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 8.6990(7) Å	$\alpha = 89.624(7)^{\circ}$		
	b = 9.3889(8) Å	$\beta = 68.010(6)^{\circ}$		
	c = 10.0485(8) Å	$\gamma=67.643(6)^\circ$		
Volume	694.90(10) Å ³			
Z	2			
Density (calculated)	1.378 Mg/m ³			
Absorption coefficient	0.103 mm ⁻¹			
F(000)	304			
Crystal size	0.18 x 0.16 x 0.10 mm ³	0.18 x 0.16 x 0.10 mm ³		
Theta range for data collection	2.21 to 28.17°.	2.21 to 28.17°.		
Index ranges	-11<=h<=11, -12<=k<=	-11<=h<=11, -12<=k<=12, -13<=l<=13		
Reflections collected	8711			
Independent reflections	3359 [R(int) = 0.0688]			
Completeness to theta = 28.17°	98.4 %			
Absorption correction	Semi-empirical from eq	uivalents		
Max. and min. transmission	0.990 and 0.990			
Refinement method	Full-matrix least-square	es on F ²		
Data / restraints / parameters	3359 / 0 / 193	3359 / 0 / 193		
Goodness-of-fit on F ²	1.084			
Final R indices [I>2sigma(I)]	R1 = 0.0730, wR2 = 0.2	R1 = 0.0730, $wR2 = 0.2232$		
R indices (all data)	R1 = 0.1357, wR2 = 0.2	R1 = 0.1357, $wR2 = 0.2648$		
Largest diff. peak and hole	0.394 and -0.367 e.Å ⁻³			

	x	У	Z	U(eq)
C(2)	1839(5)	1892(4)	3537(4)	26(1)
C(3)	311(4)	1517(4)	3760(4)	23(1)
C(4)	-1192(4)	2136(4)	5004(4)	22(1)
C(5)	-1264(4)	3118(4)	6134(4)	23(1)
C(6)	203(4)	3421(4)	5938(3)	22(1)
C(7)	315(4)	4381(4)	6988(4)	24(1)
C(8)	1798(4)	4633(4)	6803(4)	24(1)
C(9)	1961(4)	5607(4)	7834(4)	24(1)
C(10)	437(4)	6637(4)	9032(3)	23(1)
C(11)	623(4)	7550(4)	9984(3)	22(1)
C(12)	2379(4)	7426(4)	9779(3)	23(1)
C(13)	3876(4)	6445(4)	8586(4)	26(1)
C(14)	3664(5)	5549(4)	7610(4)	26(1)
C(16)	-2564(4)	8830(4)	11306(4)	28(1)
C(18)	4191(4)	8033(4)	10776(4)	27(1)
C(20)	-2813(5)	1021(4)	4223(4)	29(1)
O(1)	1724(3)	2821(3)	4676(2)	25(1)
O(2)	3227(3)	1497(3)	2448(3)	39(1)
O(15)	-773(3)	8601(3)	11146(2)	27(1)
O(17)	2431(3)	8322(3)	10812(2)	25(1)
O(19)	-2747(3)	1939(3)	5331(2)	28(1)

Table S7. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(2)-O(2)	1.212(4)
C(2)-O(1)	1.394(4)
C(2)-C(3)	1.440(5)
C(3)-C(4)	1.348(4)
C(3)-H(3)	0.9300
C(4)-O(19)	1.353(4)
C(4)-C(5)	1.435(4)
C(5)-C(6)	1.355(5)
C(5)-H(5)	0.9300
C(6)-O(1)	1.365(4)
C(6)-C(7)	1.446(4)
C(7)-C(8)	1.344(5)
C(7)-H(7)	0.9300
C(8)-C(9)	1.466(4)
C(8)-H(8)	0.9300
C(9)-C(14)	1.392(5)
C(9)-C(10)	1.410(5)
C(10)-C(11)	1.382(4)
C(10)-H(10)	0.9300
C(11)-O(15)	1.361(4)
C(11)-C(12)	1.420(4)
C(12)-O(17)	1.365(4)
C(12)-C(13)	1.384(5)
C(13)-C(14)	1.402(5)
C(13)-H(13)	0.9300
C(14)-H(14)	0.9300
C(16)-O(15)	1.435(4)
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(18)-O(17)	1.435(4)
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600

 Table S8. Bond lengths [Å] and angles [°] for 3.

1.443(4)
0.9600
0.9600
0.9600
115.7(3)
126.8(3)
117.5(3)
119.6(3)
120.2
120.2
125.9(3)
120.8(3)
113.2(3)
119.1(3)
120.4
120.4
120.7(3)
124.8(3)
114.5(3)
124.4(3)
117.8
117.8
126.0(3)
117.0
117.0
118.6(3)
119.4(3)
122.0(3)
121.0(3)
119.5
119.5
125.0(3)
115.2(3)
119.8(3)
125.1(3)

O(17)-C(12)-C(11)	115.4(3)
C(13)-C(12)-C(11)	119.4(3)
C(12)-C(13)-C(14)	120.2(3)
C(12)-C(13)-H(13)	119.9
C(14)-C(13)-H(13)	119.9
C(9)-C(14)-C(13)	120.9(3)
C(9)-C(14)-H(14)	119.5
C(13)-C(14)-H(14)	119.5
O(15)-C(16)-H(16A)	109.5
O(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
O(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
O(17)-C(18)-H(18A)	109.5
O(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(19)-C(20)-H(20A)	109.5
O(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
O(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(6)-O(1)-C(2)	122.1(3)
C(11)-O(15)-C(16)	116.0(2)
C(12)-O(17)-C(18)	116.7(2)
C(4)-O(19)-C(20)	116.6(3)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(2)	23(2)	28(2)	24(2)	-2(1)	-5(1)	-12(1)
C(3)	24(2)	24(2)	25(2)	2(1)	-12(1)	-11(1)
C(4)	20(2)	22(2)	29(2)	6(1)	-14(1)	-11(1)
C(5)	20(2)	27(2)	23(2)	3(1)	-8(1)	-10(1)
C(6)	21(2)	23(2)	24(2)	2(1)	-10(1)	-9(1)
C(7)	22(2)	29(2)	24(2)	5(1)	-11(1)	-10(1)
C(8)	23(2)	25(2)	28(2)	2(1)	-12(1)	-10(1)
C(9)	24(2)	23(2)	29(2)	6(1)	-14(1)	-11(1)
C(10)	18(2)	27(2)	29(2)	3(1)	-11(1)	-11(1)
C(11)	20(2)	25(2)	24(2)	5(1)	-11(1)	-10(1)
C(12)	23(2)	26(2)	24(2)	4(1)	-12(1)	-13(1)
C(13)	18(2)	31(2)	34(2)	5(2)	-14(1)	-12(1)
C(14)	23(2)	26(2)	30(2)	1(1)	-13(1)	-8(1)
C(16)	16(2)	34(2)	34(2)	-2(2)	-10(1)	-10(1)
C(18)	21(2)	35(2)	33(2)	2(2)	-16(1)	-15(2)
C(20)	32(2)	33(2)	35(2)	2(2)	-20(2)	-20(2)
O(1)	20(1)	28(1)	28(1)	-2(1)	-7(1)	-13(1)
O(2)	27(1)	46(2)	36(2)	-10(1)	2(1)	-21(1)
O(15)	16(1)	36(1)	29(1)	-3(1)	-9(1)	-11(1)
O(17)	18(1)	35(1)	29(1)	0(1)	-12(1)	-14(1)
O(19)	21(1)	36(1)	30(1)	-3(1)	-10(1)	-15(1)

Table S9. Anisotropic displacement parameters (Å²x 10³) for **3**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	X	У	Z	U(eq)
H(3)	360	851	3049	28
H(5)	-2304	3540	6991	28
H(7)	-707	4856	7849	29
H(8)	2815	4144	5942	29
H(10)	-713	6704	9183	28
H(13)	5025	6380	8430	31
H(14)	4676	4908	6802	31
H(16A)	-2701	9070	10416	42
H(16B)	-3446	9677	12079	42
H(16C)	-2746	7895	11531	42
H(18A)	4810	6949	10804	40
H(18B)	4057	8653	11601	40
H(18C)	4883	8305	9899	40
H(20A)	-2650	1506	3367	44
H(20B)	-3968	953	4573	44
H(20C)	-1863	-8	3993	44

Table S10. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **3**.

Figure S4. Crystal structure of 14 with ellipsoids drawn at the 50% probability level.

Figure S5. The packing of structure **14** with ellipsoids drawn at the 50 % probability level. Highlighted distances between C-7/C-8 (top) to C-5/C-6 (bottom) are 3.5 - 3.9 Å.

Table S11. Crystal data and structure refinement for 14.

Identification code	shelxl	
Empirical formula	C18 H20 O3	
Formula weight	284.34	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 14.6633(5) Å	$\alpha = 90^{\circ}$
	b = 7.1228(3) Å	$\beta = 113.468(3)^{\circ}$
	c = 15.6152(6) Å	$\gamma=90^\circ$
Volume	1496.01(10) Å ³	
Z	4	
Density (calculated)	1.262 Mg/m^3	
Absorption coefficient	0.085 mm ⁻¹	
F(000)	608	
Crystal size	0.44 x 0.12 x 0.12 mm	3
Theta range for data collection	2.46 to 27.99°.	
Index ranges	-19<=h<=19, -9<=k<=	9, -20<=l<=20
Reflections collected	18895	
Independent reflections	3588 [R(int) = 0.0656]	
Completeness to theta = 27.99°	99.5 %	
Absorption correction	None	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	3588 / 0 / 202	
Goodness-of-fit on F ²	1.013	
Final R indices [I>2sigma(I)]	R1 = 0.0465, wR2 = 0.0455, wR2 = 0.0465, wR2 = 0.0465, wR2 = 0.0455, wR2 = 0.0465, wR2 = 0.0465, wR2 = 0.0465, wR2 = 0.0465, wR2 = 0.04655, wR2 = 0.046555, wR2 = 0.046555, wR2 = 0.046555, wR2 = 0.0465555, wR2 = 0.0465555, wR2 = 0.0465555, wR2 = 0.04655555, wR2 = 0.046555555, wR2 = 0.04655555555555555555555555555555555555	.1007
R indices (all data)	R1 = 0.0906, wR2 = 0.0906, w	.1190
Largest diff. peak and hole	0.257 and -0.229 e.Å-3	3

	Х	У	Z	U(eq)	
C(2)	3663(1)	7287(2)	1495(1)	25(1)	
C(3)	4520(1)	7047(2)	2337(1)	25(1)	
C(4)	4432(1)	6627(2)	3151(1)	23(1)	
C(5)	3469(1)	6362(2)	3161(1)	24(1)	
C(6)	2653(1)	6603(2)	2365(1)	22(1)	
C(7)	1635(1)	6466(2)	2278(1)	24(1)	
C(8)	842(1)	6669(2)	1470(1)	24(1)	
C(9)	-203(1)	6689(2)	1326(1)	23(1)	
C(10)	-919(1)	6661(2)	409(1)	25(1)	
C(11)	-1922(1)	6790(2)	217(1)	24(1)	
C(12)	-2269(1)	6984(2)	926(1)	21(1)	
C(13)	-1544(1)	6958(2)	1847(1)	23(1)	
C(14)	-544(1)	6818(2)	2043(1)	23(1)	
C(15)	-3363(1)	7214(2)	739(1)	23(1)	
C(16A)	-3721(1)	5462(2)	1094(1)	29(1)	
C(16B)	-3515(1)	8954(2)	1252(1)	31(1)	
C(16C)	-4014(1)	7475(2)	-304(1)	28(1)	
C(18)	6181(1)	6709(2)	4037(1)	31(1)	
O(1)	2737(1)	7051(2)	1545(1)	26(1)	
O(2)	3635(1)	7700(2)	731(1)	34(1)	
O(17)	5189(1)	6447(2)	3991(1)	28(1)	

Table S12. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **14**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(2)-O(2)	1.2143(17)
C(2)-O(1)	1.4005(19)
C(2)-C(3)	1.421(2)
C(3)-C(4)	1.360(2)
C(3)-H(3)	0.9300
C(4)-O(17)	1.3456(18)
C(4)-C(5)	1.431(2)
C(5)-C(6)	1.350(2)
C(5)-H(5)	0.9300
C(6)-O(1)	1.3710(17)
C(6)-C(7)	1.448(2)
C(7)-C(8)	1.340(2)
C(7)-H(7)	0.961(16)
C(8)-C(9)	1.458(2)
C(8)-H(8)	0.997(15)
C(9)-C(10)	1.398(2)
C(9)-C(14)	1.399(2)
C(10)-C(11)	1.382(2)
C(10)-H(10)	0.9300
C(11)-C(12)	1.398(2)
C(11)-H(11)	0.9300
C(12)-C(13)	1.407(2)
C(12)-C(15)	1.520(2)
C(13)-C(14)	1.377(2)
C(13)-H(13)	0.9300
C(14)-H(14)	0.9300
C(15)-C(16C)	1.537(2)
C(15)-C(16B)	1.539(2)
C(15)-C(16A)	1.540(2)
C(16A)-H(16A)	0.9600
C(16A)-H(16B)	0.9600
C(16A)-H(16C)	0.9600
C(16B)-H(16D)	0.9600
C(16B)-H(16E)	0.9600

Table S13. Bond lengths [Å] and angles $[\circ]$ for 14.

C(16B)-H(16F)	0.9600
C(16C)-H(16G)	0.9600
C(16C)-H(16H)	0.9600
C(16C)-H(16I)	0.9600
C(18)-O(17)	1.4400(19)
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
O(2)-C(2)-O(1)	115.48(14)
O(2)-C(2)-C(3)	127.51(15)
O(1)-C(2)-C(3)	117.00(13)
C(4)-C(3)-C(2)	120.85(15)
C(4)-C(3)-H(3)	119.6
C(2)-C(3)-H(3)	119.6
O(17)-C(4)-C(3)	125.78(15)
O(17)-C(4)-C(5)	114.26(13)
C(3)-C(4)-C(5)	119.95(15)
C(6)-C(5)-C(4)	119.38(14)
C(6)-C(5)-H(5)	120.3
C(4)-C(5)-H(5)	120.3
C(5)-C(6)-O(1)	120.85(14)
C(5)-C(6)-C(7)	125.49(14)
O(1)-C(6)-C(7)	113.65(13)
C(8)-C(7)-C(6)	123.77(14)
C(8)-C(7)-H(7)	123.4(10)
C(6)-C(7)-H(7)	112.8(10)
C(7)-C(8)-C(9)	127.66(14)
C(7)-C(8)-H(8)	115.8(9)
C(9)-C(8)-H(8)	116.5(9)
C(10)-C(9)-C(14)	117.32(15)
C(10)-C(9)-C(8)	118.21(13)
C(14)-C(9)-C(8)	124.41(14)
C(11)-C(10)-C(9)	121.43(14)
C(11)-C(10)-H(10)	119.3
C(9)-C(10)-H(10)	119.3

C(10)-C(11)-C(12)	121.72(14)
C(10)-C(11)-H(11)	119.1
C(12)-C(11)-H(11)	119.1
C(11)-C(12)-C(13)	116.30(14)
C(11)-C(12)-C(15)	123.15(13)
C(13)-C(12)-C(15)	120.55(12)
C(14)-C(13)-C(12)	122.20(13)
C(14)-C(13)-H(13)	118.9
C(12)-C(13)-H(13)	118.9
C(13)-C(14)-C(9)	120.96(14)
C(13)-C(14)-H(14)	119.5
C(9)-C(14)-H(14)	119.5
C(12)-C(15)-C(16C)	112.33(12)
C(12)-C(15)-C(16B)	110.30(13)
C(16C)-C(15)-C(16B)	107.23(13)
C(12)-C(15)-C(16A)	109.20(13)
C(16C)-C(15)-C(16A)	108.80(13)
C(16B)-C(15)-C(16A)	108.92(13)
C(15)-C(16A)-H(16A)	109.5
C(15)-C(16A)-H(16B)	109.5
H(16A)-C(16A)-H(16B)	109.5
C(15)-C(16A)-H(16C)	109.5
H(16A)-C(16A)-H(16C)	109.5
H(16B)-C(16A)-H(16C)	109.5
C(15)-C(16B)-H(16D)	109.5
C(15)-C(16B)-H(16E)	109.5
H(16D)-C(16B)-H(16E)	109.5
C(15)-C(16B)-H(16F)	109.5
H(16D)-C(16B)-H(16F)	109.5
H(16E)-C(16B)-H(16F)	109.5
C(15)-C(16C)-H(16G)	109.5
C(15)-C(16C)-H(16H)	109.5
H(16G)-C(16C)-H(16H)	109.5
C(15)-C(16C)-H(16I)	109.5
H(16G)-C(16C)-H(16I)	109.5
H(16H)-C(16C)-H(16I)	109.5

O(17)-C(18)-H(18A)	109.5
O(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(6)-O(1)-C(2)	121.94(12)
C(4)-O(17)-C(18)	117.38(12)

	U11	U ²²	U33	U23	U13	U12	
C(2)	22(1)	24(1)	32(1)	-3(1)	13(1)	-1(1)	
C(3)	17(1)	26(1)	33(1)	-4(1)	11(1)	-1(1)	
C(4)	20(1)	18(1)	29(1)	-4(1)	8(1)	2(1)	
C(5)	24(1)	23(1)	27(1)	0(1)	12(1)	-1(1)	
C(6)	23(1)	18(1)	27(1)	-1(1)	11(1)	0(1)	
C(7)	23(1)	21(1)	29(1)	-1(1)	12(1)	-1(1)	
C(8)	22(1)	23(1)	29(1)	0(1)	11(1)	-2(1)	
C(9)	21(1)	20(1)	26(1)	1(1)	9(1)	-1(1)	
C(10)	26(1)	28(1)	24(1)	0(1)	12(1)	0(1)	
C(11)	23(1)	26(1)	20(1)	1(1)	6(1)	-1(1)	
C(12)	22(1)	17(1)	25(1)	0(1)	9(1)	-2(1)	
C(13)	24(1)	22(1)	23(1)	0(1)	11(1)	-1(1)	
C(14)	23(1)	24(1)	20(1)	0(1)	5(1)	-1(1)	
C(15)	20(1)	25(1)	24(1)	-2(1)	8(1)	-2(1)	
C(16A)	24(1)	33(1)	32(1)	1(1)	13(1)	-4(1)	
C(16B)	25(1)	32(1)	36(1)	-5(1)	13(1)	1(1)	
C(16C)	23(1)	33(1)	27(1)	1(1)	7(1)	0(1)	
C(18)	17(1)	35(1)	37(1)	-5(1)	8(1)	2(1)	
O(1)	21(1)	31(1)	25(1)	1(1)	9(1)	-1(1)	
O(2)	30(1)	45(1)	30(1)	3(1)	15(1)	-1(1)	
O(17)	18(1)	36(1)	28(1)	-1(1)	6(1)	2(1)	

Table S14. Anisotropic displacement parameters (Å $^2x 10^3$) for 14. The anisotropic displacement factorexponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	У	Z	U(eq)
H(3)	5148	7179	2331	30
H(5)	3406	6027	3710	29
H(10)	-716	6554	-82	30
H(11)	-2379	6747	-401	29
H(13)	-1747	7038	2339	27
H(14)	-88	6808	2661	28
H(16A)	-3628	4369	778	44
H(16B)	-4414	5596	971	44
H(16C)	-3346	5330	1753	44
H(16D)	-3141	8811	1911	46
H(16E)	-4208	9083	1128	46
H(16F)	-3291	10052	1036	46
H(16G)	-3795	8562	-533	43
H(16H)	-4694	7641	-388	43
H(16I)	-3960	6386	-643	43
H(18A)	6310	5803	3644	46
H(18B)	6652	6549	4669	46
H(18C)	6243	7952	3828	46
H(7)	1586(12)	6230(20)	2864(11)	31(4)
H(8)	989(12)	6860(20)	906(11)	26(4)

Table S15. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for 14.

¹H 400 MHz, ¹³C 100 MHz, CDCl₃.

¹H 300 MHz, ¹³C 75 MHz, CDCl₃.

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 ppm

¹H 400 MHz, ¹³C 100 MHz, CDCl₃.

¹H 400 MHz, ¹³C 100 MHz, CDCl₃.

¹H 300 MHz, ¹³C 75 MHz, CDCl₃.

¹H 400 MHz, ¹³C 100 MHz, CDCl₃.

¹H 300 MHz, ¹³C 75 MHz, CDCl₃.

¹H 400 MHz, ¹³C 100 MHz, CDCl₃.

¹H 400 MHz, ¹³C 100 MHz, CDCl₃.

¹H 400 MHz, ¹³C 100 MHz, CDCl₃.

