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SI Methods
Procedure. Before entering the scanner, subjects were given
instructions and completed a quiz to ensure comprehension of the
game. In the Patent Race, players were matched at random at the
beginning of each round and competed for a prize by choosing an
investment from their respective endowments. The player who
invested more won the prize, and the other lost. In the event of
a tie, both lost the prize. Regardless of the outcome, players lost
the amount that they invested (Fig. 1). In the particular payoff
structure we used, the prize was worth 10 units, and the Strong
(Weak) player was endowed with 5 (4) units.
To overcome logistic difficulties of conducting simultaneous

experiments with upwards of 16 subjects for each neuroimaging
subject, and to minimize unobserved session effects in opponent
play associated with such a protocol, we matched subjects with
choices from a pool of players who previously participated in
behavioral sessions. Importantly, subjects were informed that they
played in the same sequence as the pool players. That is, if the
scanner subject was playing in round 60, the choice of opponent
was drawn randomly from round 60 of one of the pool players
(SI Results).

fMRI Scanning Parameters. Functional MR images were obtained
for each subject by using a 3.0 Tesla Siemens Allegra scanner
located at the research-dedicated Beckman Imaging Center
(BIC) at the University of Illinois at Urbana–Champaign. Images
were acquired by using echo-planar T2* images with BOLD
(blood oxygenation-level-dependent) contrast, and angled 30°
with respect to the AC-PC line to minimize susceptibility artifacts
in the orbitofrontal cortex (1). MR imaging settings were as fol-
lows: repetition time (TR) = 2,000 ms; echo time (TE) = 40 ms;
slice thickness = 3 mm yielding a 64 × 64 × 32 matrix (3 mm ×
3 mm × 3 mm); flip angle = 90°; FOV read = 220 mm; FOV
phase = 100 mm, interleaved series order. High-resolution
structural T1-weighted scans (1 mm × 1 mm × 1 mm) were ac-
quired by using an MPRage sequence. Visual stimuli were pre-
sented by means of a mirror mounted on the MRI head coil, and
responses were acquired via an MRI-safe button response pad
(Neuroscan).

ComputationalModeling.To characterize the relative contributions
of reinforcement (RL) and belief-based learning to behavior, we
considered three different models of learning: reinforcement
learning, belief-based learning, and their hybrid, experience-
weighted attraction (EWA). We first describe the hybrid model
because it contains RL and belief learning models as special cases
(2). First, denote ski as strategy k for player i, si(t) is the chosen
strategy by player i at period t, and s−i(t) is the chosen strategy of
the opponent at period t. Player i’s expected reward, Vk

i ðtÞ, for
playing strategy ski in period t is governed by three parameters
and updates according to the following:

Vk
i ðtÞ ¼

8>>><
>>>:

ϕi·Nðt− 1Þ·Vk
i ðt− 1Þ þ πiðski ; s−iðtÞÞ
NðtÞ ; if ski ¼ siðtÞ

ϕi·Nðt− 1Þ·Vk
i ðt− 1Þ þ δi·πiðski ; s−iðtÞÞ

NðtÞ ; if ski ≠ siðtÞ;

[S1]

where parameter ϕi and function N(t) = ρi·N(t − 1) + 1 capture
different aspects of the depreciation of Vk

i   ðtÞ. For example, if
the player believes his opponent is a fast adaptor, he will have

a small ϕi that depreciates past values faster. In contrast, ρi is the
discount rate for the strength of past experience N(t), and con-
trols the influence of the out-of-game prior beliefs. If ρi is large,
the out-of-game prior beliefs will wear off quickly. The third and
most important parameter for our study, δi, is the weight be-
tween foregone payoffs and actual payoffs when updating values,
and reflects one of the key insights of the hybrid model that
belief learning is equivalent to a model whereby actions are re-
inforced by foregone payoffs in addition to received payoffs as in
RL models. Thus, δi can be interpreted as a psychological in-
clination toward belief learning (2). That is, the hybrid model
reduces to the RL model when δi = 0, and the belief learning
model when δi = 1.
In belief learning, we also impose the restriction that the

initial attractions are expected payoffs given some underlying
probabilistic belief inference of the subject, that is, Vk

i ð0Þ ¼P
mq

m
−ið0Þ× πiðski ; sm−iÞ, where qm−ið0Þ is player i’s initial belief

about the likelihood of his opponent adopting sm−i . Hence,
qm−ið0Þ ≥ 0 and

P
mq

m
−ið0Þ ¼ 1. The restriction ensures that in

all of the trials that follow the belief learners update a proba-
bilistic belief inference regarding the next move of the oppo-
nents rather than an unconstrained vector of fictive errors
defined as the discrepancy between forgone payoffs and pre-
vious attraction values.

Behavioral Data Analysis.To calibrate the models given behavior of
the subjects in the game, we estimated parameters of each model
by using responses of subjects by maximizing the logistic log
likelihood of the model predictions. To convert values into
choices, we used a logit or softmax function to calculate the
probability of player i playing strategy k in the next round,
pki ðtþ 1Þ ¼ eλi :V

k
i ðtÞ=PL

l¼1e
λi:V l

i ðtÞ, where λi is a measurement of

sensitivity of subjects to difference in expected reward associated
with the different actions.
Using these choice probabilities, we performed maximum

likelihood estimation with a grid search over a large range of
values for all free parameters in all estimations, because the
likelihood function is not globally concave. Both pooled and
individual-level estimations were performed. For pooled esti-
mation, we aggregated observations conditional on the roles of
the subjects and then fit the choice data by maximizing the log
likelihood of the observed choices over rounds for subject i. That
is,

P
i
P

tlogðpsiðtÞi ðtÞÞ. Although using pooled estimates is more
robust in general, it removes the possible individual variation
in learning, and will bias estimates due to heterogeneity (3).
Therefore, we also performed estimation at the individual level.
The primary challenge of individual estimation is the relatively
small sample size compared with the number of free parame-
ters. We approached this problem with two methods combined:
(i) estimating a common set of initial attractions shared by all
subjects with the same role, from the pooled first period of data,
conditional on the role of the subject and (ii) self-tuning esti-
mation as introduced in Ho et al. (4). As a robustness check, we
also conducted individual level estimation with partially joint
estimates across different roles, assuming each subject shares
a subset of learning parameters (e.g., the decay rate of the
initial belief) regardless of her role in the game. We found that
the estimates to be robust across these different estimation
strategies.

Conversion to Temporal Difference Form. To derive trial-by-trial
predictors for use in neuroimaging analysis, we converted the
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respective models above to a TD form whereby learning results
from updating reward predictions through a prediction error.
Choice probabilities and prediction errors on each trial were then
generated by using the best-fit parameters derived from the be-
havioral data estimation. That is, we separated player i’s expected
reward, Vk

i ðtÞ, for playing strategy ski in period t into a reward
prediction Vk

i ðt− 1Þ, and the prediction error that is the differ-
ence between the expected reward and obtained (foregone) re-
ward πiðski ; s−iðtÞÞ. In the hybrid model, the expected reward thus
evolves according to:

In contrast, RL updates by reinforcing only the chosen strategy,
whereas belief learning updates by reinforcing all available
strategies proportional to the possible rewards:

fMRI Data Analysis. Image analysis was performed by using SPM2
(Wellcome Department of Imaging Neuroscience, Institute of
Neurology, London). Preprocessing included, in order: slice time
correction (centered at TR/2), motion correction, coregistration,
spatial normalization to the Montreal Neurological Institute
(MNI) template, and spatial smoothing using an 8-mm Gaussian
kernel (5). All images were also high-pass filtered in the tem-
poral domain (width 128s) and autocorrelation of the hemody-
namic responses was modeled as an AR(1) process.
Analyses of fMRI time series were done by using standard

random effects models (6), with reward prediction and prediction
error values generated from the respective computational mod-
els calibrated on choices of subjects at the individual level. An
event-related design was used where regressors were included
for the decision and feedback events of the trials (Fig. 1). That is,
for each subject, we constructed a (first level) general linear
model (GLM) consisting of two events: an event at the time of
decision, and one at the time of feedback. Regressors were
constructed by using the trial-by-trial outputs from the TD form
of the best-fitting individual parameter estimates. The decision
event was associated with choice probabilities, which can be re-
garded as relative reward predictions controlled for time in-
fluence. The feedback event was associated with prediction
errors for chosen actions. All analyses were performed on the
feedback event data, except the expected reward region analysis
(Fig. S3). The first eight rounds were excluded from the GLM
analysis to allow initial values to stabilize. Regressors were
convolved with the canonical hemodynamic response function
and entered into a regression analysis against each subject’s
BOLD response data. The regression fits of each computational
signal from each individual subject were then summed across
their roles and then taken into random-effects group analysis.

SI Results
Comparison of Behavior Across Experimental Protocols. To measure
the effectiveness of this protocol, we compared both aggregate
choices and model estimates among (i) our neuroimaging sub-
jects, (ii) our behavioral subjects, and (iii) Rapoport and
Amaldoss’s original experiment (7) (Table S1). Proportions of
choices are similar, as are parameter estimates across the three
different datasets. We found no evidence that the pool player
protocol systematically affected behavior of players.

To further check the robustness of our pool player protocol, we
compared behaviors in our strategic setting versus those in
a matching but nonstrategic reward task. In the reward treatment,
we replaced the human pool players with a computer algorithm.
In contrast to the strategic treatment, subjects in the reward

treatment were told to exceed a random hurdle determined by the
computer to win the prize. Subjects were informed that they are
playing against a computer algorithm. All other aspects of the
instructions remained identical. In terms of the game display, the
only difference was that in the reward treatment, the word
“Opponent” was replaced with the word “Hurdle”.
We found that learning in a reward setting is primarily RL-

based. Using model-based estimates, we found that the hybrid δ
parameter was significantly greater in the strategic treatment
than the reward treatment (P < 0.01, two tailed). Visually, this
difference can be illustrated through the transition matrices of
the choices of players (Fig. S1). These matrices show how players
switched their choices from one trial to the next and are gen-
eralizations of more traditional switch/stay measures (2). The
diagonal elements indicate choices in which subjects stayed,
whereas off-diagonals indicate switches.
The most striking features are the similarities between the

transition matrices of the strategic treatment and the belief
learning simulation (Fig. S1 A and C) and between reward
treatment and RL simulation (Fig. S1 B and D). In particular,
whereas players in the strategic treatment switched quite often,
players in the reward treatment repeatedly played the same
strategies, rarely switching between strategies from trial to trial.
This behavior is apparent in that most of the mass of the tran-
sition matrix for the RL treatment and simulation is located
along the diagonal (indicating stay trials) at investments of 1, 3,
and 5 (Fig. S1B). At the aggregate level, the switch rate in the
strategic treatment was 0.56 (exactly that of the Nash equilibrium
prediction) versus 0.32 for the reward treatment. This finding is
thus is consistent with the hypothesis that learning in the reward
treatment is subserved primarily by reinforcement learning,
which adapts more slowly.

VEWA
i;k ðtÞ ¼

8>><
>>:

VEWA
i;k ðt− 1Þ þ 1

NðtÞ
n
πiðsi;k; s−iðtÞÞ−VEWA

i;k ðt− 1Þ
o

if si;k ¼ siðtÞ

VEWA
i;k ðt− 1Þ þ 1

NðtÞ
n
δi·πiðsi;k; s−iðtÞÞ−VEWA

i;k ðt− 1Þ
o

if si;k ≠ siðtÞ:|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Reward Prediction

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Prediction Error

[S2]

RL : VRL
i;k ðtÞ ¼

8<
:VRL

i;k ðt− 1Þ þ ð1−ϕiÞ
�

1
1−ϕi

πðsi;k; s−iðtÞÞ−VRL
i;k ðt− 1Þ

�
if si;k ¼ siðtÞ

ϕi·V
RL
i;k ðt− 1Þ if si;k ≠ siðtÞ

[S3]

BB : VBB
i;k ðtÞ ¼ VBB

i;k ðt− 1Þ þ 1
NðtÞ

n
πðsi;k; s−iðtÞÞ−VBB

i;k ðt− 1Þ
o
; ∀ si;k [S4]
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Correlation of RL and Belief-Based Prediction Errors. Table S3 shows
the correlation between the prediction errors associated with the
three models under consideration. Crucially, we find that the
correlation between RL and belief prediction errors is low
(Pearson ρ = 0.28). The statistical separation between the
model-generated learning signals indicates the potential to dis-
entangle the unique contributions of the different types of
learning signals. The correlation of reinforcement and belief-
based learning with the hybrid model is not surprising, given the
reinforcement and belief learning are nested models.

Orthogonality Tests on Robustness of Brain Activations.Although the
correlation between RL and belief prediction errors was low, we
nevertheless sought to investigate whether our reinforcement and
belief prediction errors are robust to orthogonalization of the

regressors. We verified that activations in response to RL and belief
prediction errors remain after they are orthogonalized against each
other (Fig. S2). The procedure is same as those described in ref. 8.

Expected Reward Regions. We found activity in ventromedial
prefrontal cortex, extending to rACC and medial orbitofrontal
cortex, to be correlated with the relative expected reward value of
the chosen action (Fig. S3). The relative expected reward is
defined as the probability generated from the different models for
the chosen action at the time of response on a given trial. We used
this notion to remove the possible time trend in the absolute
expected reward values. This result is consistent with existing
evidence on the role of orbital and adjacent medial prefrontal
cortex in encoding predictions of future reward (9, 10).
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Fig. S1. Comparison of strategic and reward learning in Strong role. (A and B) Empirical frequency of transitions for strategic and reward treatments, re-
spectively. (C and D) Transition matrices of simulations using belief and reinforcement learning models, respectively. Note behavior in strategic treatment is
qualitatively more similar to the belief learning simulation, whereas reward treatment is more similar to the RL simulation.
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Fig. S2. Robustness check for orthogonalization between RL and belief learning prediction errors. (A) Belief learning prediction errors after orthogonalization
against RL prediction errors. (P < 0.001, uncorrected, cluster size k > 10 voxels). (B) RL prediction errors after orthogonalization against belief learning pre-
diction errors. (P < 0.001, uncorrected, cluster size k > 10 voxels).
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Fig. S3. Expected reward regions. Activity in ventromedial prefrontal cortex, extending to rACC and medial orbitofrontal cortex, is correlated with respect
to relative expected reward value of the chosen action calculated under the hybrid (red), belief (yellow), and RL (green) models (P < 0.005 uncorrected, cluster
size k ≥ 5).

Table S1. Comparison of Nash equilibrium predictions and empirical distributions from (i) Rapoport and Amaldoss (1), (ii) our behavioral
experiment, (iii) our neuroimaging experiment, and (iv) a reward learning control session

Empirical distributions

Role Investment Equilibrium prediction, % Matrix form, % Behavioral session, % Neuroimaging session, % Reward learning, %

Strong 0 0 1 0 1 1
1 20 17 14 18 11
2 0 5 6 10 6
3 20 9 13 11 16
4 0 13 25 16 11
5 60 55 43 45 54

Weak 0 60 55 49 49 30
1 0 3 3 4 12
2 20 6 10 7 18
3 0 14 10 14 8
4 20 22 28 27 32

Empirical distribution is proportion of all players’ choices over all rounds.

Table S2. Median individual level estimates

Model δ ϕ λ

Reinforcement 0* 0.94 (0.86, 0.96) 0.04 (0.02, 0.07)
Belief-based 1* 0.95 (0.83, 0.98) 0.60 (0.23, 2.11)
Hybrid 0.46 (0.29, 0.69) 0.71 (0.53, 0.81) 0.51 (0.32, 0.70)

Parentheses contain first and third quartile of empirical distribution.
*Parameters constrained by model.
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Table S3. Correlation coefficient between the prediction errors
from different learning models

Model Reinforcement Belief-based Hybrid

Reinforcement — (0.16) (0.10)
Belief-based 0.28 — (0.18)
Hybrid 0.63 0.40 —

Parentheses contain SDs for the correlation coefficients.
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