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SI Materials and Methods
Bacterial Strains and Preparation. We used Escherichia coli strain
HCB1 for all of the experiments involving aspartate, α-methyl-
aspartate, leucine, and serine and E. coli strain MG1655 (see be-
low) for glucose experiments. Experiments were realized using the
following protocols for the two strains, respectively. Clones were
suspended in LB medium and shaken at 34 °C (37 °C) until satu-
ration was reached. The culture was then diluted 200× in T-broth
(100× in LB) and shaken again at 34 °C (37 °C) until the optical
density OD 600 nm = 0.3 (0.4) was reached. Bacteria were then
centrifuged for 5 min (three times for 10 min) at 2,000 × g and
resuspended in the motility medium MM (1). Finally, the suspen-
sion was further diluted before injection in the experimental setup.
ΔCheZ,ΔCheR, andΔCheRCheBmutants of theMG1655 strain
were produced using standard phage P1 transduction protocols.
The sensitivity of our strain HCB1 to glucose was limited, so we

considered the strain MG1655 and amplified its sensitivity with
a selection on a ring assay. Bacteria were grown on soft agar with
glucose. Bacteria moving on the most advanced edge of the ring
were selected and grown under the same conditions. The selection
was repeated 10 times, yielding the E. coliMG1655 strain that we
used for the experiments presented here.

Tracking Trajectories. ImageanalysiswasperformedwiththeImageJ
(National Institutes of Health) Particle Tracker plugin (https://
weeman.inf.ethz.ch/ParticleTracker). After subtracting the back-
ground, images were smoothed and a boundary detection algo-
rithm was applied. Individual trajectories were obtained with
a minimum distance association between consecutive frames. The
density of bacteria, which we kept deliberately low, prevented
mismatched association, so that bacteria could disappear up to 10
frames and still be tracked. Up to 100 bacteria could be tracked in
thefield of view for acquisition times from20 to 200 s. Images were
taken ∼100 μm above the glass bottom of the setup (about the
midplane). Bacteria close to the surface can easily be detected, as
they tend to swim parallel to the surface, drawing circular trajec-
tories. A few occasional tracks that displayed this behavior were
manually detected and integrally eliminated.
Tumbles were defined on the basis of changes in speed and

direction of motion. The rationale is that a tumble is associated
with an abrupt change in the direction of motion and/or a very
rapid decrease in the velocity of motion. The specific criteria that
we used are as follows. Trajectories were first smoothed with
a running average over a few points; the instantaneous velocity
and the direction of motion were evaluated on the smoothed
trajectories. As for the criterion on the velocity, we first detected
local minima of the absolute velocity (the location of a generic
one is denoted tmin). The location of the two closest local maxima
is denoted by t1 and t2 (t1 < tmin < t2), and we computed the rel-
ative change in speed Δν/ν(tmin), where the variation Δν =
max[ν(t1) − ν(tmin),ν(t2) − ν(tmin)]). If the relative variation was
sufficiently large, namely Δν/ν(tmin) ≥ α with α = 0.7, we con-
sidered that the bacterium was in the tumbling state for those
subintervals, Δt ∈ ½t1; t2�, where the local velocity ν(t) ≤ ν(tmin) +
0.2Δν. A similar criterion was used for variations in the direction
of motion. We first detected local maxima in the absolute value
of the angular deviation. The time where a local maximum was
achieved is denoted by tmax and the two surrounding local min-
ima by t1 and t2. If the total change in direction across the in-
terval was sufficiently large with respect to the typical one due to
pure rotational diffusivity [∑jΔθj ≥ β√2Drot(t2 − t1) with β = 2
and Drot = 0.1 rad2/s], we considered that the bacterium was in

the tumbling state for those subintervals where the angular
variation was close to maximal: jΔθ(tmax) −Δθ(t)j ≤ 0.2jΔθ(tmax)j.
We verified manually over a large number of trajectories that
these definitions give sensible results, in agreement with visual
inspection (Fig. S7).

Microfluidic Setup. Fig. S5 presents the microfluidic setup used for
the experiments described in the main text. Fig. S6 shows an
image of the concentration field within the channel under stable
conditions (Left) and a typical sample of bacterial tracks (Right).

Likelihood Distributions and Numerical Simulations.Two instances of
likelihood distributions for the inferred parameters are presented.
The curves are representative of the two classes appearing in the
inference procedure. In Fig. S3 (Left), the distribution shows
a well-defined maximum, whereas other sets of trajectories may
display (Right) a peaked distribution with a “soft direction”
α0 ∼ λ2, where a slower decrease is observed. Its origin is dis-
cussed in the main text.
Fig. S8 presents two instances of inferred responses to aspartate

with the corresponding errors. In Fig. S9, we show the results of
a numerical test of the efficiency of the inference procedure on
a set of trajectories generated synthetically by using the model
described in the next section.

Mathematical Modeling of the Chemotactic Response Function.
Definitions. The intracellular signaling pathway and the ensuing
chemotactic motion in response to serine and methylaspartate
can be conveniently and accurately summarized by a simple dy-
namical model that is here recalled for completeness (2–9).
The receptor cluster is described by means of the Monod–

Wyman–Changeux allosteric model with activity a = [CheA∼p]/
[CheA]tot. The number of Tar methylaspartate receptors in
a cluster is na and the number of Tsr serine receptors is ns. The
model can also account for the low-affinity binding of methyl-
aspartate to Tsr and of serine to Tar. Methylation occurs at a
rate F(a,m) dependent on activity and methylation. The meth-
yltransferase CheR/methylesterase CheB acts on an assistance
neighborhood of 7/5 receptor dimers (10, 4). The mean meth-
ylation level per receptor monomer lies in the range 0 ≤ m ≤
M = 4 and is considered to be a continuous function. Satu-
ration kinetics of methylation/demethylation is accounted by
Michaelis–Menten terms in F(a,m). The linear dependence of
the methylation-dependent part of the free energy has been
documented in ref. 11. The phosphorylated fraction of CheY is
denoted y = [CheY∼p]/[CheY]tot, and h(y) is the equilibrium
probability that the bacterium is running, a decreasing sigmoidal
function of y. The rate of CheY∼p dephosphorylation by the
phosphatase CheZ is kz, and ka is the rate of CheY phosphory-
lation by the active receptor. Finally, τt is the average duration
of a tumbling event, assumed to be independent of ligand con-
centration. Slightly more refined models account for the phos-
phorylation of CheB by CheA∼p, through the equilibrium
expression [CheB] = [CheB]tot a/(a + Ka). However, significant
deviations from a linear dependence of the methylation rate on
the activity are detectable only for large values of the activity
[larger than ∼0.7 (11)], characteristic of extremely tumbly mo-
tion and therefore largely irrelevant for the present analysis.
Model equations. The model is summarized by the following set of
equations:
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a ¼ Gðm; ½Ser�; ½Asp�Þ

dm
dt

¼ Fða;mÞ

dy
dt

¼ kaað1− yÞ− kzy

dpr
dt

¼ 1− ðpr=hðyÞÞ
τt

The detailed expressions for the functions that appear in the
previous equations are

Gðm; ½Ser�; ½Asp�Þ ¼ ð1þ ef ðm;½Ser�;½Asp�ÞÞ−1

f ðm; ½Ser�; ½Asp�Þ ¼ðna þ nsÞαðm0 −mÞ

þ nsln
1þ ½Ser�=Koff

Ser;Tsr þ ½Asp�=Koff
Asp;Tsr

1þ ½Ser�=Kon
Ser;Tsr þ ½Asp�=Kon

Asp;Tsr

þ naln
1þ ½Asp�=Koff

Asp;tar þ ½Ser�=Koff
Ser;Tar

1þ ½Asp�=Kon
Asp;tar þ ½Ser�=Kon

Ser;Tar

Fða;mÞ ¼ kr½CheR�ð1− aÞ M −m
M −mþ KR

− kb½CheB�a m
mþ KB

In the free energy, f ðm; ½Ser�; ½Asp�Þ, both the specific bindings
Tar/Asp and Tsr/Ser and the less specific ones Asp/Tsr and Ser/
Tar are included. The latter are relevant at comparatively large
ligand concentrations.
Amplification of sensitivity through flagellar bundling. The probability
of being in a run phase given a certain level of intracellular
concentration of CheY∼p, that is, hðyÞ, is set to the probability of
having the majority of motors running counterclockwise (CCW).
We remark that such an admittedly simplistic “voter model” is
used here only for the purpose of illustrating the nontrivial role
that can be played by flagellar bundling, without any claim of
providing a realistic description of multiple motors/flagella dy-
namics. Indeed, as shown in ref. 12, even a single clockwise (CW)
rotating motor can significantly reorient the cell. The degree of
independence of different motors is also not clear. This caveat
made, we show that the voter model of the collective flagellar
dynamics could provide an additional degree of amplification.
Validation of this hypothesis would require a detailed model
including motor switching, correlations among motors, and hy-
drodynamic interactions, beyond the scope of the present work.
The single motor has a probability of CCW rotation given by
hsðyÞ ¼ ½1þ ðy=y0ÞH �−1, with H = 10 (13); therefore, if n = 6 is
an average number of motors, the explicit expression for the run
probability is simply

hðyÞ ¼ hsðyÞ6 þ 6hsðyÞ5ð1− hsðyÞÞ þ 15hsðyÞ4ð1− hsðyÞÞ2

As a consequence of this cooperation, the slope of the curve h(y)
around the equilibrium value is significantly larger (about six
times) than the slope of the single-motor probability hs(y). This
leads to a corresponding increase in the sensitivity of bacteria to
changes in attractant concentration.
Parameters. The parameters used in the numerical simulations are
listed in Table S1.
Chemotactic response function. In the linear response regime, any
change in concentration can be decomposed as the superposition

of responses to elementary stimuli. Therefore, as we shall see, it is
sufficient to focus attention on the response to impulsive changes
in concentration.
For mild variations of chemoattractant concentration around

a uniform level, that is, in the linear response limit, the evolution
of the running probability takes the customary form of a two-state
inhomogeneous Poisson process,

dpr
dt

¼ 1
τt
ð1− prÞ− 1

τt

�
h

1− h

�pr:

Then, developing to first-order around the equilibrium value,
denoted by an asterisk, one obtains

dpr
dt

¼ 1
τt
ð1− prÞ− 1

τ�r

�
1−

h′�Δy
h�ð1− h�Þ

�
pr with

τ�r ¼ τt
h�

1− h�
; and h′� ¼ dh�ðyÞ

dy
:

The modulation of the rate of conversion from run to tumble
when the bacterium is exposed to a variable ligand concentration
L then reads

QðtÞ ≡ h′�ΔyðtÞ
h�ð1− h�Þ ¼

ðt
−∞

Kðt− t′ÞLðt′Þdt′;

whereby we have introduced the linear response function K(t) to
an impulsive change in attractant. If LðtÞ ¼ ΔL·δðtÞ, then the
response reads

KðtÞ ¼ h′�ΔyðtÞ
h�ð1− h�ÞΔL:

The explicit form of this response function is obtained by in-
tegrating the equations (for the sake of simplicity, only specific
ligand/receptor binding is considered):

dΔprðtÞ
dt

¼ −
ðΔprðtÞ−ΔyðtÞh′�p�r =h�Þ

τth�

¼ −
ΔprðtÞ

~τ
þ 1
τt

h′�

h�
ΔyðtÞ

dΔyðtÞ
dt

¼ kað1− y�Þ
�
∂G
∂m

��
ΔmðtÞ− ðkz þ kaa�Þ ΔyðtÞ

¼ kað1− y�Þ
�
∂G
∂m

��
ΔmðtÞ−ΔyðtÞ

τy

dΔmðtÞ
dt

¼
�
∂F
∂a

∂G
∂m

þ ∂F
∂m

��
ΔmðtÞ ¼ −

ΔmðtÞ
τm

with 1
~τ ¼ 1

τ�r
þ 1

τt
, τy ¼ 1

kzþkaa�
, and τm ¼ ð∂F∂a ∂G

∂m þ ∂F
∂mÞ�−1, supple-

mented by the initial conditions

Δmð0Þ ¼
�
∂F
∂a

∂G
∂L

��
ΔL

Δyð0Þ ¼ kað1− y�Þ
�
∂G
∂L

��
ΔL

Δprð0Þ ¼ 0
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that correspond to an impulsive stimulus ΔLδðtÞ. The explicit
expressions for the various partial derivatives appearing in the
previous formulas are�

∂F
∂a

��
¼ − kr½CheR� M −m�

M −m� þ KR
− kb½CheB� m�

m� þ KB
< 0�

∂F
∂m

��
¼ − ð1− a�Þkr½CheR� KR

ðM −m� þ KRÞ2

− a�kb½CheB� KB

ðm� þ KBÞ2
≤ 0

�
∂G
∂m

��
¼ a�ð1− a�Þαðna þ nsÞ> 0

�
∂G
∂L

��
¼ − a�ð1− a�ÞnsððKoff Þ−1

1þ L
Koff

−
ðKonÞ−1

1þ L
Kon
Þ

The solution reads

ΔmðtÞ ¼ Δmð0Þe− t=τm

ΔyðtÞ ¼ Δyð0Þe− t=τy þ kað1− y�Þ
�
∂G
∂m

��
Δmð0Þe

− t=τm − e− t=τy

τ−1y − τ−1m

ΔprðtÞ ¼ 1
τt

h′�

h�

"
Δyð0Þ

 
e− t=τy − e− t=~τ

~τ−1 − τ−1y

!
þ kað1− y�Þ

�
∂G
∂m

��

×Δmð0Þ
 

e− t=τy

ðτ−1y − τ−1m Þðτ−1y −~τ−1Þ þ
e− t=τm

ðτ−1m − τ−1y Þðτ−1m −~τ−1Þ

þ e− t=~τ

ð~τ−1 − τ−1y Þð~τ−1 − τ−1m Þ

!#

whence the result, for example, for the response to an impulsive
stimulus of ligand,

KðtÞ ¼ ka
h′�ð1− y�Þ
h�ð1− h�Þ

�
∂G
∂L

��
ðτ−1y − τ−1m Þ−1

×
��

τ−1y e− t=τy − τ−1m e− t=τm
�
−
�
∂F
∂m

���
e− t=τm − e− t=τy

��

The response is the sum of two exponentials and is here
decomposed into two contributions: The first term inside the
square brackets integrates to zero, whereas the second one,
proportional to ð∂F∂mÞ�, evaluates at zero at the time of impulsive
stimulation.
When the response function is written in the form

KðtÞ ¼ Aye− λyt þ Ame− λmt, the biochemical parameters are
τ−1y ¼ λy, τ−1m ¼ λm, ka

h′�ð1− y�Þ
h�ð1− h�Þð∂G∂LÞ� ¼ Ay þ Am, ð∂F∂mÞ� ¼

− ðAmλyþAyλm
AmþAy

Þ.
From the Response Function to the Bias Response. In the tethering
assay, the bias response function is defined as the fraction of
bacteria whose flagellum turns CCW following an impulse
stimulus (14). In our framework, the bias response reads

KbðtÞ≡ΔprðtÞ=ΔL. From the definition of the response function
KðtÞ ¼ h′�ΔyðtÞ

h�ð1− h�ÞΔL, the linearized equation for the variation of the

bias dΔprðtÞ
dt ¼ − ΔprðtÞ

~τ þ 1− h�
τt

KðtÞΔL is readily integrated to give

KbðtÞ ¼ 1− h�
τt

Ð t
0 Kðt′Þe− ðt− t′Þ=~τdt′.

This expression shows that, although the response K(t) does not
vanish at t = 0, the bias response always starts from zero.
Therefore, the Laguerre expansion of Kb(t) only features poly-
nomials of order larger than one, whereas the expansion of K(t)
starts with a zero-order polynomial, that is, the constant. [The
response K(t) itself has in fact a delay introduced by the receptors’
time of switching between their two possible forms. However, this
time is on the order of milliseconds and therefore not relevant for
the timescales analyzed here.] Because Kb(t) was the curve to be
reproduced in ref. 15, the development in Laguerre polynomials
of Kb(t) was started directly with the linear term. Having now the
curves K(t) experimentally measured, theoretical arguments can
be developed directly on the response function K(t). Its de-
velopment starts with the constant term as KðtÞ ¼ e−λtðα0 − α1λtÞ,
and the same optimization procedure as in ref. 15 is applied. One
then obtains adaptation, that is, α0 ¼ α1, the optimal values
τr ¼ 1=ð3DrotÞ ≈ 1:3s, and λ ¼ 4Drot ≈ 1s−1, and the correspond-
ing optimal response curve shown in Fig. S4, which compares well
with typical experimental curves.
Notice also that if the time integral of K vanishes, the integral

over the bias response vanishes as well. The comparison between
the bias response to aspartate as inferred by the present method
and the one measured in ref. 14 is shown in Fig. 2D of the
main text.
Sensitivity and Adaptation.The behavior of the chemotactic response
is characterized by two quantities that naturally emerge when
considering the response to a small step in attractant concentra-
tion: its sensitivity to fold changes and its precision of adaptation
(or its inverse, the error of adaptation). These are defined as
follows (Fig. S1). The input is the chemoattractant concentration,
I = L, and the output is O ¼ τr=ð1−QðtÞÞ, that is, the inverse of
the instantaneous rate of conversion from run to tumble or,
equivalently, in the linear regime O ¼ τrð1þ ΔL

Ð t
0 Kðt′Þdt′Þ.

Denoting by I1 and O1 the initial, equilibrium values of the input
and output, respectively, by I2 and O2 the final values, and Opeak
the maximum value of the output, one defines
Sensitivity = S ¼ jðOpeak −O1Þ=O1

ðI2 − I1Þ=I1 j ¼ L
Ð tpeak
0 KðtÞdt

Error = E ¼ ðO2 −O1Þ=O1
ðI2 − I1Þ=I1 ¼ L

Ð∞
0 KðtÞdt

Precision = P ¼ jEj−1,
where we used ðOpeak −O1Þ=O1 ¼ ΔL

Ð tpeak
0 KðtÞdt and

ðI2 − I1Þ=I1 ¼ ΔL=L. Above, tpeak is the time when the response
to a step impulse is maximal. By differentiating the integral of
the impulse response, it is easy to see that KðtpeakÞ ¼ 0, giving
tpeak ¼ ðτ−1y − τ−1m Þlnf½τ−1y þ ð∂F=∂mÞ��=½τ−1m þ ð∂F=∂mÞ��g or, in
terms of the output parameters of the inference procedure,
tpeak ¼ α0

α1λ
. As for the error, one has E ¼ LðAmλm

−1 þ Ayλy
− 1Þ. Both

sensitivity and precision are approximately independent of ligand
concentration in the range Koff � L � Kon of ligand concen-
trations (Fig. S2).
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Fig. S1. Definitions of the sensitivity and the precision of the response. The input is the ligand concentration LðtÞ (a step in the case shown here) and the
output is the instantaneous run time O ¼ τr;�=ð1−QðtÞÞ.

Fig. S2. (A) Sensitivity of the response S ¼ L
Ð tpeak
0 KðtÞdt versus the background α-methylaspartate (MeAsp) concentration L. (B) Error of adaptation

E ¼ L
Ð∞
0 KðtÞdt versus the concentrations of MeAsp. The green line corresponds to perfect adaptation.

Fig. S3. The likelihood for the two parameters fα0; λg of an adapted response function, that is, α1 ¼ α0, is shown. The color code is on the right. Note the
direction of slow decay (Right), whose direction agrees with the arguments discussed in the body of the paper. The white areas on the left side of the graphs
correspond to parameter values where the likelihood is not defined (those values generate inconsistencies in the trajectories, e.g., negative probabilities).

Fig. S4. Optimal response function, as predicted by the arguments presented in ref. 15.
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Fig. S5. The chemotaxis setup was designed so as to obtain a stable concentration gradient of chemoattractant without any flow. The gradient is established
through diffusion between two large reservoirs to obtain a stable equilibrium. (Left) The setup is obtained by superposing a glass slide, a thin (200-μm height)
inox steel piece (STEEC) that separates the reservoirs by a channel 1-mm wide and 3-mm long, and a Plexiglas slide with filling holes. The three pieces are
insulated with vacuum grease, and a photo of the experimental setup is shown. (Right) After sequential filling of the chambers, a stable gradient is established
in about 2 h, consistently with attractant (and repellent) diffusion coefficients on the order of 100 μm2/s. A small volume (1 μL) of suspension is then injected.
The ensuing perturbation slightly alters the gradient, which recovers in a few minutes. The resulting stationary state is stable for about 4 h.

Fig. S6. (Left) Normalized intensity of fluorescein gradient inside the channel. (Right) Results of a 100-s data acquisition. We display 51 tracks, marked by
different colors. Only trajectories with residence time in the field of view longer than 20 s are shown.

Fig. S7. (Left) An individual experimental trajectory. Run phases are represented by empty circles, whereas tumbles are indicated by filled red circles. (Right) A
snapshot of 20 s of the trajectory on the left is shown to indicate tumble detections. Absolute instantaneous speed (red line, in μm/s), angular variation (green
curve, in degrees per frame, vertically shifted by −80°), and detected tumble phases (blue line, arbitrary units, positive for tumbles, negative for runs)
are shown.
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Fig. S8. (A) A chemotactic response (black), with the two curves shown in red corresponding to the standard deviations of the error on the estimation of the
amplitude. (B) The same as in A, but the standard deviates are now for the error of the estimation of the memory parameter λ, which affects the decay rate and
the shape of the response function.

Fig. S9. Test of the inference procedure on synthetic trajectories numerically generated by integration of the model equations. The exact chemotactic re-
sponse used to generate the trajectories is shown in black. In red, the inferred response from 10 (Left) and 50 (Right) trajectories of duration 100 s. The gray
envelope shows the statistical error in the inference procedure estimated by computing the local curvature of the likelihood profile at the maximum.

Table S1. Values of the parameters used in the computational
model

Ka
Tar;off 5 μM Ka

Tar;on 160 μM
Ks
Tar;off 7 mM Ks

Tar;on 10 M
Ks
Tsr;off 1:8 μM Ks

Tsr;on 120 μM
Ka
Tsr;off 10 mM Ka

Tsr;on 1 M
α 0:5 m0 2
na 6 ns 12
kr ½CheR� 0:2 s−1 kb½CheB� 0:4 s−1

ka 3:0 s−1 kz 2:0 s−1

H 10 τr;� 1:0 s
τt 0.25 s v 20 μm=s
Drot 0:25 rad2=s y0 0.35
N 7

The response K(t) itself has in fact a delay introduced by the receptors’ time
of switching between their two possible forms. However, that time is on the
order of ms and therefore not relevant for the time scales analyzed here.
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