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S| Materials and Methods

1. Model. Two probability models were used to analyze bivariate
allelic ratios of mutant genomic DNA (gDNA) and mutant
cDNA. The first model was a discrete Gaussian mixture model
that provides for model-based clustering of the samples into three
tumor classes. The class-specific mean parameters were con-
strained, and therefore, the expected gDNA value in the main-
tenance of heterozygosity of adenomatous polyposis coli (Apc) in
gDNA and cDNA (gMOH/cMOH) class equaled the expected
gDNA value in the gMOH/complementary loss of heterozygosity
(cLOH) class; similarly, the expected cDNA values in classes
gL.OH/cLOH and gMOH/cLOH were constrained to be equal,
which was justified by the measurement process. Otherwise, each
class was allowed to have an unconstrained 2 X 2 covariance
matrix. Owing to mean constraints, standard software could not
be applied to fit the probability model; custom R code was de-
veloped to implement the expectation maximization algorithm
and thus, estimate the means, covariances, and mixing pro-
portions by the method of maximum likelihood. Data from
normal tissues were included in the estimation but forced to arise
from the gMOH/cMOH class.

A second model was developed to analyze the allelic ratios.
This admixture model aimed to go farther than the discrete
mixture model by representing each tumor as a mixture of cells
of three different pure cell types. Computations in this ad-
mixture model were more complex than the computations re-
quired for the first model, and they are developed fully here. We
analyzed the polyposis in the rat colon (Pirc) and Rb9 data
separately. The n tissue samples from one experiment provided
bivariate data, DAT = {(X;,Y;):i=1,2,...,n}, measuring
mutant allele ratios in gDNA and cDNA, respectively. In the
admixture model, the samples {i} produced mutually in-
dependent data points. Furthermore, sample i was considered
to be comprised of fractions of three pure cell types, with the
fractions U; ; > 0 and ZleUi ; = 1. None of these fractions were
observed, except for cases i that were normal tissue controls, for
which we assumed U; = (U, 1, U2, U;3) = (1, 0, 0). For each
tumor, the admixture vector U; itself was viewed as a random
draw from an unknown distribution =(u) over the simplex
83 ={u = (ur,uz,u3): u; > 0,> u; = 1}.  Computations were
enabled by taking a finite-grid approximation to S3 and thus,
a vector approximation to z.

Cell type Fraction
1 gMOH/cMOH Ui
2 ¢LOH/cLOH Ui
3 gMOH/cLOH Ui s

We supposed that measurements of gDNA and cDNA on
a pure tissue comprised only of cells of one type would be
bivariate normal, with means and variances that depended on
the cell type but without any correlation in the measurement
error. The lack of correlation between gDNA and cDNA
measurements on pure tissue was a key assumption that al-
lowed us to infer admixture rates in the actual tissue samples. It
was justified considering that pyrosequencing was performed
separately for gDNA and cDNA material and that variation
attributable to the initial isolation of all nucleic acids from the
tissue was probably negligible. We also assumed that the dis-
tribution of data in one channel (gDNA or cDNA) was not
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affected by state of the other channel. In other words, for mean
parameters aq, a,, by, and by, the mean gDNA measurement
in pure gMOH cells was a;, and the mean gDNA measurement
in gLOH cells was a,. Similarly the mean cDNA measurement in
¢cMOH cells was b;, and the mean cDNA measurement in cLOH
cells was b,. Fig. S4 shows these parameters as estimated from the
Pirc dataset.

The contribution to gDNA/cDNA measurements (X, Y;) from
the pure cells of one type was assumed to be normally distrib-
uted, where the bivariate mean depended on the type and there
was one variance parameter for gDNA and one variance pa-
rameter for cDNA, regardless of type. A key element was having
independent measurement errors in these pure cells (the ap-
parent marginal correlation in data arose from admixture). Thus,
X; and Y; were treated as independent given admixture rates Uj,
with gDNA data following (Eq. S1)

Xi|(Ui =u) ~ Normal{mean = (w1 +usz)ay + usas,

variance = o, (u; +us +u3)}  [S1]

and cDNA data following (Eq. S2)

Yi|(U; = u) ~ Normal{mean = u1b; + (uz + u3)b,

variance = o (uf +uj +u3)}.  [S2]

Conditional on the admixture rates, the unknown parameters
— 2 2
were 0 = (ay,by,a2,b3,0;,07%).

2. Inference. The unknown objects were mean and variance
parameters in the vector 6, admixture vectors {U; = (U; 1, U, >,
U, 1)}, and the probability distribution z(u) over the simplex Ss.
We placed a prior distribution on 6 and z(x) and developed
Bayesian computations by Markov chain Monte Carlo to sim-
ulate the distribution of these unknowns conditional on data
DAT. We approximated the simplex S3 by a finite grid of
proportion vectors, denoted ugrid in the R code. This matrix
was size 861 X 3 holding row vectors that represent possible
realizations of each admixture vector U;. K = 861 came by
taking a regular 40 x 40 grid over the unit square, keeping
coordinates for which the values sum to less than one and
considering these two values to be the first two entries of
a possible admixture vector (the third being one minus the
sum). Thus, = was a length K = 861 vector holding the prob-
ability distribution governing the U; values. In the Bayesian
analysis, we placed a conjugate exchangeable Dirichlet prior
over r, using a small prior mass a = 1 (S3):

7 ~ Dirichlet (I% 1% o 1%) [S3]
Next, we placed a noninformative flat prior on the mean
parameters ay, a,, by, b, in 0, except that we insisted that all
mean values exceed zero. We placed a weakly informative con-
jugate inverse-Gamma prior for the two variance parameters o2
and ¢7. We used a prior guess 03 = 25, with ny = 1. That is, the
prior for each inverse variance was Gamma with shape (/2 and

rate ngo3/2. Evidently, the posterior information was relatively
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high, and we would have computed very similar estimates for
a wide range of prior hyperparameters.

We developed a systematic scan Gibbs sampler with separate

updates for the means and variances in 6, the admixture vectors,
and the mixing proportions z. (The following three subsections
describe details of the Gibbs sampler.) After preliminary testing,
we ran the sampler for 500,000 scans, saving 1 in each 100 states
and basing posterior estimates on 5,000 putative draws from the
joint posterior distribution. Output analysis indicated very good
mixing of the Markov chain. Mean values of the output were
used for parameter estimation.
2.1. Updating 6. The gDNA and cDNA measurements X; and Y;
were conditionally independent given the admixture vector U,.
The parameters ay, a, aﬁ refer to the distribution of X;, and by,
b,, a,% refer to the distribution of Y;. Considering the similarity
of gDNA and cDNA models, we show here only the Gibbs
sample update rules for the parameters governing X;. Re-
expressing the observation model from the previous section, we
have (S4)

X;lelse ~ Normal(c/ y, dio}), [S4]

1

holds the pure cell means, and (Eq. S5)

(e _ (U1+Us
¢ = (Cm) - ( i ) (551

(In both ¢; and d, the roles of U; ; and U, ; are reversed when
considering the cDNA data Y;.) Using standard Bayesian argu-
ments and a flat prior, we find the full-conditional distribution
for the mean parameters a; and a, is (S6)

(al> else ~ Normal{ (ml ), [sl’l Sl’z} }7 [Sé6]
a my S12 8§22

where posterior means are (Eq. S7)

where d; = U} + U2, + UZ; multiplied by variance u = (a1, a2)"

1 (A AC
= Cc? (Bl Ble> [57]
BB,
and (Eq. S8)
1 (4, AC
mz—l_ = (Bz Ble)' [S8]
BB,

The posterior covariance matrix is (Eq. S9)

S11 812 1 B, -C
Sl [ — . $9
[51,2 52,2} BB, —C? [ -C B ] [59]

The contributing quantities are (Eq. S10)
1

Al = g —XiCi1, S10

1 i—1 di”z%xc’l (5101

(Eq. S11)

Amos-Landgraf et al. www.pnas.org/cgi/content/short/1120753109

R |
Ay =) ——xci, [S11]
;didg
(Eq. S12)
"1
B = 12
= Xagt stz
(Eq. S13)
n 1 )
B, = —Ciy, [S13]
Py dlﬂg 2
and (Eq. S14)
C= 1 Ci1Ci [S14]
= - dio'g i,1¢i2-

Thus, the Gibbs update of a; and a, arose from the bivariate
normal posterior given in expression S6. We sampled it by sam-
pling the marginal of a; and then, the induced conditional of a,
given a;. We imposed the constraint of a;, a, > 0 in both updates.

Under the conjugate inverse-Gamma prior indicated above, the
variance parameter o> has an inverse-Gamma full-conditional
distribution. More specifically (Eq. S15),

1
—|else ~ Gamma{ shape = M, rate
o5 2
2
1 2 N~ i=clp) > }
== |noog+ Y ) 5.
et 505
[S15]

Analogous updates for the Y; parameters by, b,, and aﬁ are as
above but with the roles of U; ; and U; , reversed.
2.2. Updating admixture vectors. Tumor i has admixture vector U,
which has a complicated but discrete conditional distribution
over the K possible rows in ugrid given the data and the pa-
rameters 0 and 7 = (z,,). For a row u of ugrid, we have (Eq. S16)
P(U; = u|DAT, 8, x) o p(xi|us, O)p (yilu, 0),. [S16]
In our implementation, we find the logarithm of the right-hand
side by invoking the normal model from SI Materials and Meth-
ods, 2.1. and the estimated sampling model for U;. We renorm-
alize for each i to get the full conditional distribution for each U;
and then run the Gibbs update by sampling these discrete dis-
tributions one time each in parallel.
2.3. Updating mixing proportions. Given everything else, the vector =
depends only on how many admixture vectors take each of the
possible values in ugrid. By conjugacy of the Dirichlet relative to
these multinomial counts (S17),

a
—+852,...

X [S17]

. a a
r|else ~ Dirichletg (E + 81, K + sK) ,
where s; counts how many U; values take value ugrid[j,]. This
sample is by renormalizing independent and properly Gamma-

distributed variables.
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Fig. S1. RT-PCR for the ribonuclear protein subunit Rp/70a in mouse Rb9-Multiple intestinal neoplasia (Min) tumors to assess cDNA qualitatively. Lanes 1 and 2

n are tumors that maintained heterozygosity of Apc in the DNA fraction but were below the level of detection by pyrosequencing of cDNA for Apc. Lanes 3-6 are
" other mouse tumors, both positive and negative for cDNA.
[ ]
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Fig. S2. Array comparative genomic hybridization (aCGH) was performed using Nimblegen rat whole-genome arrays and two-color labeling (Cy5 and Cy3)
with tumor and normal spleen DNA. Two male F344-Pirc animals and one age-matched male F344/Tac WT rat were killed at 9 mo of age. From each F344-Pirc
animal (P1 and P2), DNA was isolated immediately after necropsy, starting with 50 mg from the largest single colonic tumor and spleen. DNA was extracted
using the Qiagen DNeasy tissue kit. Comparative genomic hybridizations were performed by Nimblegen Systems in their manufacturing facilities in Iceland
using the Nimblegen RGSC 3.4 isothermal rat aCGH chip with 385,000 unique sequence features and a median probe density of 5,303 bp. One aliquot of tumor
(T) and spleen (S) DNA from each animal was labeled with Cy5, and a second aliquot was labeled with Cy3. Spleen DNA sample P1S was hybridized against WT
spleen DNA (A). Reciprocal hybridizations of Cy5 and Cy3 were performed: P1T vs. P1S (B and C). Similarly, Reciprocal hybridizations of P2T and P2S were
performed (D and E). aCGH plots were generated using NimbleScan software, and the data were analyzed using SignalMap v1.8.
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Fig. S3. LOH analysis of F1-Pirc tumors for markers on chromosomes 4, 7, 10, 15, 16, and 18q, not including markers for chromosome 1 (Table S2) using SNPs
listed in Table S1. Each point represents a tumor. Not all tumors were tested for all markers. No significant loss of the F344 or ACI alleles was seen in any tumors.
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Fig. S4. Bivariate pyrosequencing data from normal tissue (open circles) and Pirc tumors (filled circles). Components of the fitted admixture model are shown.
Pure cells of each of three types would yield bivariate Gaussian measurements from the three bivariate normal distributions (contours show regions holding
95% probability in the fitted component). The means are constrained (gray lines). Each tumor sample is viewed as an unknown mixture of the three cell types.
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Table S1. LOH analysis of gDNA from F1-Pirc tumors using
quantitative allele-specific pyrosequencing

Contribution of F344 allele (%)

Marker  Chr Position (Mb) Tumor X Other tumors (mean + SD)

SNP-76 1p 7 48.1 49.3 + 3.0
SNP-102 1q 46 47.8 ND
SNP-82 1q 131 84.7 534 + 0.6
SNP-75 1q 159 78.7 495+ 1.4
SNP-83 1q 232 78.3 435+ 1.8
SNP-2 1q 233 85.8 54.8 + 3.1
Pirc 18p 27 85.0 83.5 + 15.1*
SNP-33  18q 83 49.4 512+ 3.3

SNPs across the genome were used to detect significant deviations from
the expected 50% contribution from each of the parental strains. Tumor X
showed LOH on Chr 1q, with a cross-over between 46 and 131 Mb. Allele
ratios in bold show gLOH on one arm of the salient chromosome. Seven
other tumors from the same animal serve as controls. Chr, chromosome;
ND, not done.

*Six tumors were evaluated for Pirc.

Table S2. Mutations to Apc in gMOH/cMOH F1-Pirc tumors

Mutation type  Position on Chr. 18  Position in Apc ~ Treatment

TtoC 26,782,134 Intron 13 DSS
CtoT 26,783,847 Exon 15 None
CtoT 26,784,615 Exon 15 DSS

The mutation type and base pair position (rat genome build Baylor 3.4,
November 2004) of the three identified Apc mutations of the 12 gMOH
tumors sequenced. Chr, chromosome; DSS, dextran sulfate sodium.

Table S3. Admixture probabilities for Rb9-Min and F1-Pirc tumors
Model  Tumor category Probability (majority) Probability (plurality)

Rb9-Min  gMOH/cMOH 0.33 0.45
Rb9-Min  gLOH/cLOH 0.43 0.51
Rb9-Min  gMOH/cLOH 0.02 0.04
F1-Pirc gMOH/cMOH 0.19 0.19
F1-Pirc gLOH/cLOH 0.63 0.68
F1-Pirc gMOH/cLOH 0.12 0.13

The admixture probabilities for the majority or plurality of cells of each of
the three tumor cell classes present in a given sample for both Rb9-Min and
F1-Pirc as described in SI Materials and Methods.
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