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The Recap Method. In The Recap Method in the paper, we de-
scribed a schedule in terms of a depth-first traversal of a full
binary tree, and claimed that it conformed to the spacing con-
straints

ak ¼ 2k

bk ¼ 2k−1ðkþ 1Þ:
We also claimed that for this schedule, which we refer to as the
recap schedule, the number of time steps before n distinct educa-
tional units have been introduced, denoted in the paper as tn,
grows as Θðn log nÞ, and that for a certain class of functions
rðnÞ we can explicitly construct schedules for which tn grows
as Θðn · r−1ðnÞÞ.

First we prove the results about the original recap schedule in
The Recap Schedule, and then we generalize these results in The
Generalized Recap Schedule. In both subsections we use notation
slightly different from the paper by subtracting one from all the
indices of the educational units, so that the lowest index is zero.
This notational change will make calculations easier and will
allow for a cleaner generalization later on.

The recap schedule. We begin by reiterating how to construct the
recap schedule. To find the first ðkþ 1Þ2k entries of the schedule,
consider a depth-first postorder traversal of a full binary tree of
height k with 2k leaves labeled u0, u1;…;u2k−1 from left to right
(see Fig. S1). Begin with an empty sequence. Every time a leaf is
visited, append the sequence with the corresponding educational
unit. Every time a nonleaf node is visited (after both children
have been visited), append the sequence with the units corre-
sponding to all of the descendant leaves, in left-to-right order.
To be clear, we mean for the leaves to have height zero, their
parents to have height one, etc.

Thus, using k ¼ 2, we have that the first 12 entries of the sche-
dule are

u0;u1;u0;u1;u2;u3;u2;u3;u0;u1;u2;u3:

It should be noted that, by the properties of depth-first post-
order traversal, this description defines a unique sequence, be-
cause the first ðkþ 1Þ2k elements of the sequence are the same
regardless of whether one considers a tree of height k or one of
height greater than k. Thus in the discussion and proofs below we
simply assume that the tree being discussed is always of sufficient
height to include all of the relevant nodes.

The following lemma, which should be clear from the diagram
in Fig. S1, is justified by the fact that a depth-first postorder tra-
versal of a tree will visit, in order of increasing height, each node
on the path from any given leaf to the root. The lemma follows
from this fact and from basic properties of a full binary tree.

Lemma 1. (The Recap Lemma). In the construction of the recap
schedule, the left-most node at height k corresponds to the ðkþ 1Þst
occurrences of units u0, u1;…;u2k−1, and the sibling of that node
corresponds to the ðkþ 1Þst occurrences of units u2k ;…;u2kþ1−1.

To make the discussion below more concise, we introduce
some notation. Let TiðkÞ be the index of the kth occurrence of
unit ui in the sequence. Note that tn ¼ Tnð1Þ by this definition.
Thus the recap lemma states that in the recap schedule, the
left-most node at height k corresponds to Tiðkþ 1Þ for

i ∈ ½0;2k − 1�, and the sibling of that node corresponds to
Tiðkþ 1Þ for i ∈ ½2k;2kþ1 − 1�.

We are now ready to prove the statements about the recap
schedule from the paper.

Theorem 1. (Asymptotics of the Introduction Time Function.) In the
recap schedule, tn ¼ Tnð1Þ grows as Θðn log nÞ.

Proof:By the recap lemma and properties of depth-first postorder
traversal, at time step T2k ð1Þ units u0, u1;…;u2k−1 have each
occurred exactly kþ 1 times, and nothing else has occurred at
all. Therefore,

T2kð1Þ ¼ 2k · ðkþ 1Þ;

and so

Tnð1Þ ¼ n · ðlog2 nþ 1Þ
for n of the form n ¼ 2k, which establishes that Tnð1Þ grows as
Θðn log nÞ when considered as a function of integers of the form
n ¼ 2k.

Because Tnð1Þ increases monotonically in n, it follows that that
Tnð1Þ grows as Θðn log nÞ when considered as a function of all
positive integers.

Theorem 2. (Bounds on the Introduction Time Function.) In the
recap schedule,

Tnð1Þ ≤ n · ð⌊ log2 n⌋þ 1Þ

and

1

2
· n · ð⌊ log2 n⌋þ 1Þ ≤ Tnð1Þ

for all n.

Proof: In general, by time step Tnð1Þ, only units u0, u1;…;un−1
have already occurred at all, by the properties of depth-first post-
order traversal, and each at most ⌊ log2 n⌋þ 1 times, by the recap
lemma. Therefore,

Tnð1Þ ≤ n · ð⌊ log2 n⌋þ 1Þ:
Furthermore, by time step Tnð1Þ, all units with index less than 1

2
n

have occurred exactly ⌊ log2 n⌋þ 1 times, again by the properties
of depth-first postorder traversal and the recap lemma. There-
fore,

1

2
· n · ð⌊ log2 n⌋þ 1Þ ≤ Tnð1Þ:

Theorem 3. (Adherence to Spacing Constraints.) The recap schedule
adheres to the spacing constraints

ak ¼ 2k

bk ¼ 2k−1ðkþ 1Þ:
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Proof: Our goal is to show that

ak ≤ Tiðkþ 1Þ − TiðkÞ ≤ bk;

for all i, k. We will establish these bounds by calculating the mini-
mum and maximum possible values of Tiðkþ 1Þ − TiðkÞ.

Because the tree is a full binary tree, we have that for any k
all the subtrees with roots at height k are identical. Therefore
all values of Tiðkþ 1Þ − TiðkÞ which occur in the context of
any given subtree at height k must occur in the context of the
subtree rooted at the left-most node at height k. Thus, for any
k, we only need to consider i < 2k in order to find the minimum
and maximum values of

Tiðkþ 1Þ − TiðkÞ:

By construction

Tjðkþ 1Þ − Tiðkþ 1Þ ¼ j − i

whenever i < j < 2k. Also, because TiðkÞ is monotonic in i,

TjðkÞ − TiðkÞ ≥ j − i

whenever i < j. Therefore, for all i and j such that i < j < 2k we
have that

Tjðkþ 1Þ − TjðkÞ ≤ Tiðkþ 1Þ − TiðkÞ:

Thus, the maximum value of Tiðkþ 1Þ − TiðkÞ must occur when
i ¼ 0 and the minimum value must occur when i ¼ 2k − 1.

Thus if we can show that

T2k−1ðkþ 1Þ − T2k−1ðkÞ ≥ 2k

and that

T0ðkþ 1Þ − T0ðkÞ ≤ 2k−1ðkþ 1Þ

for all k, then we will be done. We will in fact show that we have
equality in both cases; we will show that

T2k−1ðkþ 1Þ − T2k−1ðkÞ ¼ 2k

and

T0ðkþ 1Þ − T0ðkÞ ¼ 2k−1ðkþ 1Þ

for all k.
By construction, the last entry of the schedule due to the left-

most node at height k corresponds to T2k−1ðkþ 1Þ, and the last
entry of the schedule due to the right child of that node corre-
sponds to T2k−1ðkÞ. Because in depth-first postorder traversal
each node is visited immediately after its right child, we have that

T2k−1ðkþ 1Þ − T2k−1ðkÞ ¼ 2k;

corresponding to the 2k entries of the schedule due to the left-
most node at height k.

Meanwhile, T0ðkþ 1Þ and T0ðkÞ refer to the first entry of the
schedule due to the left-most nodes at heights k and k − 1, respec-
tively. Thus T0ðkþ 1Þ − T0ðkÞ will be equal to the number of
entries in the schedule due to the left-most node at height
k − 1, plus the number of entries due to the subtree whose root
is the right sibling of the left-most node at height k − 1.

The first quantity is 2k−1, by construction. As for the second
quantity, because the subtree in question corresponds to k occur-
rences of 2k−1 units, we have that the second quantity is equal to
k · 2k−1. Thus

T0ðkþ 1Þ − T0ðkÞ ¼ 2k−1 þ k · 2k−1

¼ 2k−1ðkþ 1Þ:

Corollary 1. (Window Growth.) The minimal window length required
for the general recap schedule, bk − ak, grows as Θðk · 2kÞ.

Proof: This proof follows from the bounds above, because

bk − ak ¼ 2k−1ðkþ 1Þ − 2k

¼ 2k−1ðkþ 1 − 2Þ

¼ 1

2
· 2k · ðk − 1Þ:

The generalized recap schedule. We now move on to generalizing
these results by considering a class of schedules which we call
the “generalized recap schedule.” To that end, we consider a class
of trees more general than the full binary tree; we consider trees
where at any given height all of the nodes have the same number
of children, but where this number is not necessarily two for every
height (as it is in a full binary tree).

To construct a generalized recap schedule, begin with any
sequence of positive integers

fqðiÞg;

such that qðiÞ ≥ 2 for all i. Then define a sequence

frðiÞg

by setting rð0Þ ¼ 1 and letting

rðiÞ ¼
Yi
j¼1

qðjÞ

for i ≥ 1.
Now, to find the first ðkþ 1ÞrðkÞ entries of the schedule, con-

sider a depth-first postorder traversal of a tree of height k with
rðkÞ leaves labeled u0, u1;…;urðkÞ−1 from left to right, and such
that all the nodes at height j have exactly qðjÞ children. Begin with
an empty sequence. As before, every time a leaf is visited, append
the sequence with the corresponding educational unit. Every time
a nonleaf node is visited (after all of its children have been vis-
ited), append the sequence with the units corresponding to all of
the descendant leaves, in left-to-right order. Again, we mean for
the leaves to have height zero, their parents to have height
one, etc.

Thus, for example, using qðiÞ≡ 2, we simply have the original
recap schedule, whereas using

fqðiÞg ¼ 3;2;…;

as in the diagram in Fig. S2, we have that the first 18 entries of the
schedule are

u0;u1;u2;u0;u1;u2;
u3;u4;u5;u3;u4;u5;
u0;u1;u2;u3;u4;u5:
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Again it should be noted that, by the properties of depth-first
postorder traversal, this description defines a unique sequence,
because the first ðkþ 1ÞrðkÞ elements of the sequence are the
same regardless of whether one considers a tree of height k or
one of height greater than k. Thus in the discussion and proofs
below, we simply assume that the tree being discussed is always of
sufficient height to include all the relevant nodes.

We would like to extend r−1 so that it has an inverse defined for
all positive integers. Where r−1 is not naturally defined [i.e., for
positive integers n such that rðiÞ ≠ n for any i], we define r−1ðnÞ to
simply be r−1ðmÞ where m is the largest number less than n such
that rðiÞ ¼ m for some i. [Thus, for example, if qðkÞ≡ 2, then we
have that rðkÞ ¼ 2k and r−1ðnÞ ¼ ⌊ log2 n⌋.]

We note that r−1ðnÞ þ 1 can be interpreted as the height of the
lowest ancestor of leaf un that is the left-most node at that height.
Thus, by the properties of depth-first postorder traversal, when
leaf un is visited, only nodes of height less than or equal to
r−1ðnÞ have already been visited.

The generalization of the recap lemma is evident from the
diagram in Fig. S2.

Lemma 2. (The Recap Lemma—Generalized.) The left-most node at
height k corresponds to the ðkþ 1Þst occurrences of units

u0;u1;…;urðkÞ−1;

and in general the jth node at height k, counting from left to right,
corresponds to the ðkþ 1Þst occurrences of units

uðj−1ÞrðkÞ;…;ujrðkÞ−1:

In other words, the left-most node at height k corresponds to
Tiðkþ 1Þ for i ∈ ½0;rðkÞ − 1�, and the jth node at height k corre-
sponds to Tiðkþ 1Þ for

i ∈ ½ðj − 1ÞrðkÞ;jrðkÞ − 1�:

With this lemma in hand, we prove the main results about the
generalized recap schedule. The structure of all of the proofs
mirrors the structure of analogous proofs in The Recap Schedule.

Theorem 4. (Asymptotics of the Introduction Time Function—
Generalized.) In the generalized recap schedule, Tnð1Þ grows as
Θðn · r−1ðnÞÞ.

Proof: By the properties of depth-first postorder traversal and the
recap lemma, at time step TrðkÞð1Þ, units u0, u1;…;urðkÞ−1 have
each occurred exactly kþ 1 times, and nothing else has occurred
at all. Therefore,

TrðkÞð1Þ ¼ rðkÞ · ðkþ 1Þ;

and so

Tnð1Þ ¼ n · ½r−1ðnÞ þ 1�

for n of the form n ¼ rðkÞ for some positive integer k. Thus Tnð1Þ
grows as Θðn · r−1ðnÞÞ when considered as a function over inte-
gers of the form n ¼ rðkÞ.

Because Tnð1Þ increases monotonically in n, it follows that
Tnð1Þ grows as Θðn · r−1ðnÞÞ when considered as a function of
all positive integers, so long as ðnþ 1Þ · r−1ðnþ 1Þ grows as
Θðn · r−1ðnÞÞ. This last statement is true because r−1ðnÞ grows
at most logarithmically [because, by construction, rðkÞ ≥ 2k for
all k], and so we are done.

Theorem 5. (Bounds on the Introduction Time Function—General-
ized.) In the generalized recap schedule,

Tnð1Þ ≤ n · ½r−1ðnÞ þ 1�

and

1

2
· n · ½r−1ðnÞ þ 1� ≤ Tnð1Þ

for all n.

Proof: In general, by time step Tnð1Þ only units u0, u1;…;un−1 have
already occurred at all, by the properties of depth-first postorder
traversal, and each at most r−1ðnÞ þ 1 times. Therefore,

Tnð1Þ ≤ n · ½r−1ðnÞ þ 1�:

Furthermore, by time step Tnð1Þ, all units with index less than
1
2
n have occurred exactly r−1ðnÞ þ 1 times. To see why, consider

an arbitrary n and let j represent the left-to-right index
of the ancestor of leaf un that is at height r−1ðnÞ. [Thus, if the
ancestor of leaf un at height r−1ðnÞ is immediately to the right
of the left-most node at that height, then j ¼ 2, whereas if it is
the right-most sibling of the left-most node at that height, then
j ¼ qðr−1ðnÞ þ 1Þ. Note that j ≥ 2 because, as noted earlier,
r−1ðnÞ þ 1 is the height of the lowest ancestor of un that is the
left-most node at that height.]

By the properties of depth-first postorder traversal, when leaf
un is visited, all j − 1 nodes at height r−1ðnÞ to the left of the
ancestor of un at that height will have been visited already, as will
all of the descendants of these j − 1 nodes. Such leaves will have
indices zero through

ðj − 1Þ · rðr−1ðnÞÞ − 1.

[Note that by construction, rðr−1ðnÞÞ is not generally equal to n,
but rather to the greatest numberm less than n such that rðkÞ ¼ m
for some k.] Thus, at Tnð1Þ, we have that all units with index less
than

ðj − 1Þ · rðr−1ðnÞÞ

have been seen r−1ðnÞ þ 1 times. Because

n < j · rðr−1ðnÞÞ

and j ≥ 2, it follows that at least 1
2
· n units have been seen at least

r−1ðnÞ þ 1 times by Tnð1Þ. Thus

1

2
· n · ½r−1ðnÞ þ 1� ≤ Tnð1Þ:

Theorem 6. (Adherence to Spacing Constraints—Generalized.) The
recap schedule adheres to the spacing constraints

ak ¼ rðkÞ
bk ¼ rðk − 1Þ · ðkþ 1Þ:

Proof: Our goal is to show that

rðkÞ ≤ Tiðkþ 1Þ − TiðkÞ ≤ rðk − 1Þ · ðkþ 1Þ;
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for all i, k. We will establish these bounds by calculating the mini-
mum and maximum possible values of Tiðkþ 1Þ − TiðkÞ.

For any k, all the subtrees with roots at height k are identical
except for a shift in the labels on the leaves, by construction.
Therefore all values of Tiðkþ 1Þ − TiðkÞ that occur in the context
of any given subtree at height k must occur in the context of
the subtree rooted at the left-most node at height k. This subtree
corresponds to units u0;…;urðkÞ−1. Thus, for any k, we only need to
consider i < rðkÞ in order to find the minimum and maximum
values of

Tiðkþ 1Þ − TiðkÞ:

By construction

Tjðkþ 1Þ − Tiðkþ 1Þ ¼ j − i

whenever i < j < rðkÞ. Also, because TiðkÞ is monotonic in i,

TjðkÞ − TiðkÞ ≥ j − i

whenever i < j. Therefore, for all i and j, such that i < j < rðkÞ,
we have that

Tjðkþ 1Þ − TjðkÞ ≤ Tiðkþ 1Þ − TiðkÞ:

Thus, the maximum value of Tiðkþ 1Þ − TiðkÞ must occur when
i ¼ 0 and the minimum value must occur when i ¼ rðkÞ − 1.

Thus if we can show that

rðkÞ ≤ TrðkÞ−1ðkþ 1Þ − TrðkÞ−1ðkÞ

and that

T0ðkþ 1Þ − T0ðkÞ ≤ rðk − 1Þ · ðkþ 1Þ

for all k, then we will be done. We will in fact show that we have
equality in both cases; we will show that

TrðkÞ−1ðkþ 1Þ − TrðkÞ−1ðkÞ ¼ rðkÞ

and

T0ðkþ 1Þ − T0ðkÞ ¼ rðk − 1Þ · ðkþ 1Þ

for all k.
By construction, the last entry of the schedule due to the left-

most node at height k corresponds to TrðkÞ−1ðkþ 1Þ, and the last
entry of the schedule due to the right-most child of that node
corresponds to TrðkÞ−1ðkÞ. Because in a postorder depth-first
traversal each node is visited immediately after its right-most
child, we have that

TrðkÞ−1ðkþ 1Þ − TrðkÞ−1ðkÞ ¼ rðkÞ;

corresponding to the rðkÞ entries of the schedule due to the left-
most node at height k.

Meanwhile, T0ðkþ 1Þ and T0ðkÞ refer to the first entry of the
schedule due to the left-most nodes at heights k and k − 1, respec-
tively. Thus T0ðkþ 1Þ − T0ðkÞ will equal the number of entries in
the schedule due to the left-most node at height k − 1, plus the
number of entries due to all the subtrees whose roots are siblings
of the left-most node at height k − 1.

The first quantity is rðk − 1Þ, by construction. As for the second
quantity, because the subtrees in question each correspond to k
occurrences of rðk − 1Þ units, we have that the second quantity is
equal to k · rðk − 1Þ. Thus

T0ðkþ 1Þ − T0ðkÞ ¼ rðk − 1Þ þ k · rðk − 1Þ
¼ rðk − 1Þ · ðkþ 1Þ:

The Slow Flashcard Schedule. Here we examine the slow flashcard
system in detail. In particular, we show that the slow flashcard
schedule adheres to the spacing constraints

ak ¼ k

bk ¼ k2:

We also present evidence which suggests that the slow flashcard
schedule even adheres to the more stringent constraints

ak ¼ k

bk ¼ 2k:

We also show that for the slow flashcard schedule, tn is bounded
below by Ωðn2Þ and bounded above by Oðn3Þ, and we present
evidence that in fact tn grows as Θðn2Þ.

We begin by reexamining the construction. We consider an in-
finite deck of flashcards, indexed by positions 1, 2, 3,… We call
position 1 the top or the front of the deck, we say that a flashcard
in position i is behind another flashcard in position j if and only if
i > j. Otherwise, it is in front of the other flashcard. Each flash-
card corresponds to an educational unit ui, and at the beginning
of the construction, flashcard u1 is in position 1, flashcard u2 is in
position 2, etc.

We construct the schedule as follows. At a given time step t,
suppose that the flashcard at the top of deck corresponds to edu-
cational unit ui, and that ui has appeared in the sequence k − 1
times so far. Then we include ui in the sequence at time step t
(resulting in its kth occurrence), and we move the flashcard con-
taining ui to position kþ 1 in the deck of flash cards.

Thus the configurations of the deck in the first few time steps
are as follows:

u1;u2;u3;u4;u5;u6;…
u2;u1;u3;u4;u5;u6;…
u1;u2;u3;u4;u5;u6;…
u2;u3;u1;u4;u5;u6;…
u3;u1;u2;u4;u5;u6;…
u1;u3;u2;u4;u5;u6;…
u3;u2;u4;u1;u5;u6;…
u2;u4;u3;u1;u5;u6;…
u4;u3;u1;u2;u5;u6;…
u3;u4;u1;u2;u5;u6;…

resulting in the schedule

u1;u2;u1;u2;u3;u1;u3;u2;u4;u3;…;

which simply corresponds to the units at the top of the deck (the
left entries in the sequences above) at each time step.

As in the last section, we let TiðkÞ be the time step of the kth
occurrence of unit ui in the schedule. Thus, for example, here we
have that T2ð3Þ ¼ 8, T4ð1Þ ¼ 9, and T3ð3Þ ¼ 10.

Note that, by construction, at every time step, each flashcard
except for the one being reinserted either maintains its position
or moves up in the deck, decreasing its position by one. The for-
mer happens if the presented flashcard is reinserted in front of
the flashcard in question, and the latter happens if the presented
flashcard is reinserted behind the flashcard in question. We call
this the “slow marching property,” because informally it says that
once a flashcard is inserted into position n, it will “slowly march”
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to the front of the deck, moving up at a rate of at most one posi-
tion per time step.

Note also that if ub is behind ua in the deck at time step t, then
ub will also be behind ua at time step tþ 1, unless ua is in position
1 at time step t, and is reinserted behind ub at the end of time
step t. We call this the “no-passing property.”

Now we move on to proving the main results of this section.

Theorem 7. (Adherence to Spacing Constraints.) The slow flashcard
schedule adheres to the spacing constraints

ak ¼ k

bk ¼ k2:

Proof: To prove the theorem, we need to show that

n ≤ Tiðnþ 1Þ − TiðnÞ ≤ n2

for all i and n. The left inequality follows from the slow marching
property as follows. At TiðnÞ, the flashcard ui has been reinserted
into position nþ 1 of the deck, by construction. Thus it will be at
least n time steps until it is in position 1 by the slow marching
property; it will be at least n time steps until Tiðnþ 1Þ. So

Tiðnþ 1Þ ≥ TiðnÞ þ n;

and from this we get the left inequality.
For the right inequality, again consider the time step TiðnÞ,

where ui is presented for the nth time and then removed from
the deck and reinserted into position nþ 1. Immediately after
TiðnÞ, flashcard ui is in position nþ 1. Because there is no pas-
sing, the part of the schedule in between TiðnÞ and Tiðnþ 1Þ will
consist only of the flashcards that are in front of ui at TiðnÞ.

Each time one of these flashcards is presented, it may be re-
inserted either in front of or behind ui. Once it has been rein-
serted behind, it will not be shown again until at least Tiðnþ 1Þ,
again by the no-passing property. Meanwhile, each time it is re-
inserted, it is reinserted further back in the deck than the previous
time it was reinserted, by construction. Thus any flashcard can be
presented/reinserted at most n times in between TiðnÞ and
Tiðnþ 1Þ, one time for every position less than nþ 1 into which
it could be reinserted. So in between TiðnÞ and Tiðnþ 1Þ, the pos-
sible reinsertions are limited to each of the n flashcards that are
in positions 1, 2,…, n at TiðnÞ, each being reinserted at most n
times. Thus

Tiðnþ 1Þ − TiðnÞ ≤ n2:

In fact, because flashcards cannot be reinserted into position 1,
we have

Tiðnþ 1Þ − TiðnÞ ≤ nðn − 1Þ:

In any case, our proof is done.

Theorem 8. (Asymptotics of the Introduction Time Function.) In the
slow flashcard schedule, Tnð1Þ grows as Ωðn2Þ and Tnð1Þ grows
as Oðn3Þ.

Proof: We prove this by first showing that

T1ðn − 1Þ < Tnð1Þ < T1ðnÞ

and then showing that T1ðnÞ grows as Ωðn2Þ and T1ðnÞ grows
as Oðn3Þ.

First, note that

T1ðnÞ < TiðnÞ

for i > 1, for all n. Thus the first flashcard to be inserted into any
given position will be the one corresponding to u1. Thus for any n,
flashcard un, which began in position n, will remain in position n
until flashcard u1 is reinserted into position n, at T1ðn − 1Þ. Only
after that can un make its way to the front of the deck and be
presented for the first time. Thus,

T1ðn − 1Þ < Tnð1Þ:

At time T1ðn − 1Þ þ 1, flashcard u1 is right behind flashcard un.
By the no-passing property, then, we get that

Tnð1Þ < T1ðnÞ:

Thus we have that

T1ðn − 1Þ < Tnð1Þ < T1ðnÞ:

Now note that, from the theorem above, we have that

n ≤ Tiðnþ 1Þ − TiðnÞ ≤ n2:

Thus T1ðnþ 1Þ − T1ðnÞ grows asΩðnÞ and asOðn2Þ, and so T1ðnÞ
grows as Ωðn2Þ and as Oðn3Þ.

We believe that both results above can be strengthened, and so
we finish with two conjectures.

Conjecture 1. For the slow flashcard schedule, Tnð1Þ grows as Oðn2Þ,
which would imply Tnð1Þ grows as Θðn2Þ.

This conjecture is true if and only if Tnþ1ð1Þ − Tnð1Þ grows as
OðnÞ, and so as evidence for this conjecture, we plot in Fig. S3
Tnþ1ð1Þ − Tnð1Þ against n.

Conjecture 2. The slow flashcard schedule would exhibit infinite
perfect learning with respect to spacing constraints with ak ¼ k
and bk ¼ 2k.

This would be true if and only if

n ≤ Tiðnþ 1Þ − TiðnÞ ≤ 2n

for all i and n. So as evidence for this conjecture, we plot in Fig. S4
Tiðnþ 1Þ − TiðnÞ for all i.

Cramming. Here we establish bounds on how much can be
crammed in a limited amount of time. Assume that spacing con-
straints fakg and fbkg are given, as well as a positive integer T,
and suppose there is a cramming sequence of length T that ex-
hibits bounded learning of order n with respect to the given
spacing constraints. We will derive an upper bound on n.

By the definition of bounded learning of order n, (i) the se-
quence adheres to the spacing constraints, and (ii) the sequence
contains at least n distinct educational units such that, if the unit
occurs a total of k times in the sequence, then its last occurrence is
within bk positions of the end of the sequence. (To be clear, this
is to be interpreted to mean that the last element in the sequence
is defined to be one position from the end of the sequence,
not zero.)

Assume, without loss of generality, that these n units are la-
beled in reverse order of their last occurrences in the sequence.
Thus unit u1 is the last unit to appear in the sequence. Unit u2
occurs for the last time before unit u1 occurs for the last time, and
so u2 occurs for the last time at time step t ¼ T − 1 at the latest. In
general, for each i, unit ui must appear for the last time at time
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step t ≤ T − iþ 1 at the latest—that is, at least i time steps from
the end of the sequence.

Let mðiÞ denote the smallest number k such that bk ≥ i. Then,
for every i, unit ui must occur at least mðiÞ times in the sequence,
because otherwise the sequence would not satisfy part (ii) of the
definition of bounded learning.

Because each of the n units must occur at least mðiÞ times in
the sequence, where i represents the label of the educational unit,
and because each time step can afford at most one occurrence of
one educational unit, we have that

∑
n

i¼1

mðiÞ ≤ T:

This represents an upper bound on n, because nmust be such that
this inequality holds true. [Note that the function mðiÞ depends
implicitly on the numbers in fbkg.]

Now consider just unit un. When it occurs last, it is for at least
the mðnÞth time. Because the spacing constraints must have been
adhered to with respect to un, it follows that the mðnÞth occur-
rence of un must occur after a minimum of

∑
mðnÞ−1

j¼1

aj

time steps. And because it can occur no later than n time steps
from the end of the sequence (that is, at time step t ¼ T − nþ 1),

we have another statement on the minimum possible length of
the sequence. Namely,

�
∑

mðnÞ−1

j¼1

aj

�
þ n ≤ T:

Thus we have two inequalities, each of which represents an
upper bound on n. In the language of scheduling theory, the first
inequality represents a “volume bound,” assuring that there is
enough time for every unit to be seen as many times as it needs
to be seen, and the second inequality represents a “path bound,”
assuring that the sequence is long enough to allow for even the
unit which requires the longest time from the first occurrence to
the end of the sequence.

Together the bounds incorporate the spacing constraints as
well as the given amount of time. Nevertheless, for a given set of
spacing constraints and a given T, the actual maximal n (that is,
the maximal n such that a sequence of length T can exhibit
bounded learning of order n with respect to the given spacing
constraints) could be lower than the lower of these two upper
bounds. This is because the bounds do not address the actual con-
struction of cramming sequences, which appears in general to be
a difficult scheduling problem that hinges on the particulars of
the spacing constraints. How to design general and efficient algo-
rithms for constructing sequences which provably maximize
cramming, so to speak, remains an open problem.

Fig. S1. The full binary tree on the left has each node labeled with the corresponding educational units in the construction of the recap schedule. The tree on
the right is identical, except the nodes are labeled with the corresponding time steps. The corresponding schedule, up to and including the left-most node at
height k ¼ 2, is u0;u1;u0;u1;u2;u3;u2;u3;u0;u1;u2;u3;…

Fig. S2. A tree made using qð1Þ ¼ 3, qð2Þ ¼ 2, and qð3Þ ¼ 3, with each node labeled with the corresponding educational units in the construction
of the general recap schedule. The corresponding schedule, up to and including the left-most node at height k ¼ 2, is
u0;u1;u2;u0;u1;u2;u3;u4;u5;u3;u4;u5;u0;u1;u2;u3;u4;u5…
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Fig. S3. This figure shows Tnþ1ð1Þ − Tnð1Þ plotted against n. The data are taken from the first 1 million time steps of the slow flashcard schedule. A linear
regression gives a line with slope 1.7, with a correlation coefficient of r > 0.9997.

Fig. S4. This figure shows Tiðnþ 1Þ − TiðnÞ plotted against n, for all i for which data were collected. The data are taken from the first 100,000 time steps of the
slow flashcard schedule. Also shown are the lines going through the origin with slopes 1 and 2. All data points lie between the two lines.
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