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SI Text A
Extension to n Modules: Equivalent Modules. Here we develop the
theory for the general case of n equivalent modules. The case of
nonequivalent modules is treated in SI Text B. Thus, consider an
organism consisting of n equivalent modules. Performance is
then a function of an n-dimensional trait vector θ = (θ1, . . . , θn).
Approximating Fi(θ) by a second-order Taylor polynomial around
the maximum in the constrained trait space θ* = (θ*, . . . , θ*)
gives

FiðθÞ≈Fiðθ*Þ þDðFiÞðθ*− θÞ þ 1
2
ðθ*− θÞHðFiÞðθ*− θÞT

≈Fiðθ*Þ þ
Pn
i¼1

∂FiðθÞ
∂θk

ðθ*− θkÞ þ 1
2

Xn
i¼1

∂2FiðθÞ
∂θ2k

ðθ*− θkÞ2

þ
X

k;l∈f1;...;ng
k ≠ l

∂2FiðθÞ
∂θk∂θl

ðθ*− θkÞðθ*− θlÞ;

[S1]

where DðFiÞ denotes the gradient of FiðθÞ and HðFiÞ denotes the
Hessian matrix of FiðθÞ. All derivatives in SI Text A are evaluated
at the point θ ¼ θ*. Then, for equivalent modules

∂FiðθÞ
∂θk

¼ ∂FiðθÞ
∂θl

;
∂2FiðθÞ
∂θ2k

¼ ∂2FiðθÞ
∂θ2l

;
∂2FiðθÞ
∂θk∂θl

¼ ∂2FiðθÞ
∂θm∂θn

for all k; l;m; n∈ f1; . . . ; ng with k ≠ l and m ≠ n. These equal-
ities allow us to introduce the following short-hand notation:

αi :¼ Fiðθ*Þ

βi :¼
∂FiðθÞ
∂θk

for all k∈ f1; . . . ; ng

γi :¼
∂2FiðθÞ
∂θ2k

for all k∈ f1; . . . ; ng

δi :¼ ∂2FiðθÞ
∂θk∂θl

for all k; l ∈ f1; . . . ; ngwith k ≠ l:

If the phenotypes of the modules fall into two discrete groups,
characterized by θ1 and θ2, then the n-dimensional trait space
can be reduced to a 2D trait space. We denote performance of
an organism with pn modules characterized by θ1 and (1 − p)n
modules characterized by θ2 for the ith task by Fi;pðθ1; θ2Þ. Here
p∈½0; 1� is such that pn; ð1− pÞn ∈ ℕ. The approximation Eq. S1
can now be rewritten as

Fi;pðθ1; θ2Þ ≈ αi þ pnβiðθ*− θ1Þ þ ð1− pÞnβiðθ*− θ2Þ

þ1
2
�
pnγiðθ*− θ1Þ2þð1− pÞnγiðθ*− θ2Þ2

þpnðpn− 1Þδiðθ*− θ1Þ2þð1− pÞnðð1− pÞn− 1Þδiðθ*− θ2Þ2

þ2 pð1− pÞn2δiðθ*− θ1Þðθ*− θ2Þ
�
:

[S2]

Let us denote the fitness function of an organism with nmodules,
pn of which are characterized by θ1 and (1 − p)n of which are
characterized by θ2, with ρn;pðF1;p;F2;pÞ:

In the case of equivalent modules the point ðθ*; θ*Þ is an ex-
tremum of the fitness landscape. Its properties are determined
by the Hessian matrix of the fitness function evaluated at
ðθ*; θ*Þ. The Hessian matrix H ¼ ½hij� has entries

h11 ¼ npðxþ pyÞ
h22 ¼ nð1− pÞðxþ ð1− pÞyÞ
h12 ¼ h21 ¼ nð1− pÞpy;

where

x ¼ cðβ1ðγ2 − δ2Þ− β2ðγ1 − δ1ÞÞ; [S3]

y ¼ n

 
cðβ1δ2 − β2δ1Þ þ β21

∂2ρn;p
�
F1;p;F2;p

�
∂F2

1;p

þ 2β1β2
∂2ρn;p

�
F1;p;F2;p

�
∂F1;p∂F2;p

þ β22
∂2ρn;p

�
F1;p;F2;p

�
∂F2

2;p

!
; [S4]

where c is a positive constant. To obtain Eqs. S3 and S4 we use
that ∂ρ=∂F1 ¼ − cβ2 and ∂ρ=∂F2 ¼ cβ1. These equalities can be
derived in the following way. Eq. 3 in the main text, specifying
the value of the critical point θ* in the constrained trait space,
can be rewritten as

0 ¼ ∂p
∂F1

β1 þ
∂p
∂F2

β2:

This equality is equivalent to ð∂ρ=∂F1Þ=ð∂ρ=∂F2Þ ¼ − β2=β1,
which implies ∂ρ=∂F1 ¼ − cβ2 and ∂ρ=∂F2 ¼ cβ1 for some posi-
tive constant c.
In the following we are interested in the dominant eigenvalue

and the corresponding eigenvector of the Hessian matrix. The
first one allows us to determine whether the point ðθ*; θ*Þ is
a saddle point whereas the latter corresponds to the orientation
of a potential saddle point in the ðθ1; θ2Þ plane. The eigenvalues
of the Hessian matrix equal λ1;2 ¼ n=2ða±

ffiffiffi
b

p
Þ with

a ¼ xþ
�
p2 þ ð1− pÞ2

�
y [S5]

b ¼ ðð1− 2 pÞðxþ yÞÞ2þ4 p2ð1− pÞ2 y2: [S6]

Four cases can be distinguished:

iÞ a> 0 and b> a2 ⇔ λ1 > 0 and λ2 < 0 ðsaddle pointÞ
iiÞ a> 0 and b< a2 ⇔ λ1 > 0 and λ2 > 0 ðmaximumÞ
iiiÞ a< 0 and b> a2 ⇔ λ1 > 0 and λ2 < 0 ðsaddle pointÞ
ivÞ a< 0 and b> a2 ⇔ λ1 < 0 and λ2 < 0 ðminimumÞ:

We are interested in the situation where ðθ*; θ*Þ is a saddle point
of the fitness landscape; i.e., λ1 > 0 and λ2 > 0. This is the case if
and only if b > a2. It is easy to show that

b> a2 ⇔ 0> 4ð1− pÞpxðxþ yÞ: [S7]

We are interested in the situation where the point ðθ*; θ*Þ is not
only a saddle point but simultaneously a maximum in the con-
strained trait space. The curvature at ðθ*; θ*Þ in the direction of the
constrained trait space is given by ð1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p ÞHð1= ffiffiffi
2

p
; 1=

ffiffiffi
2

p ÞT:
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Evaluating this expression shows that it is negative if and only if
x + y < 0. Then, provided that x + y < 0, inequality Eq. S7 is
fulfilled if and only if x > 0. To summarize, −y > x > 0 is nec-
essary and sufficient for ðθ*; θ*Þ to be a saddle point of the fit-
ness landscape while simultaneously being a maximum in the
constrained trait space. Condition Eq. 6 in the main text is re-
covered by undoing the substitutions ∂ρ=∂F1 ¼ − cβ2 and
∂ρ=∂F2 ¼ cβ1 in x. Then x > 0 equals condition Eq. 6. This
condition is therefore not restricted to the case of two modules
but applies to any number of modules and any allocation pattern
of modules over the two tasks.
We continue by determining the dominant eigenvector of the

Hessian matrix. This vector calculates to ud = (1, ud2) with slope

ud2 ¼ 2pð1− pÞy
ð1− 2pÞðxþ yÞ− ffiffiffi

b
p ; [S8]

where b is given by Eq. S6. Above we showed that ðθ*; θ*Þ is
a saddle point if 0 < x < −y. For x = 0 the dominant eigenvalue
of the Hessian matrix equals zero and the slope simplifies to
ud2 ¼ − p=ð1− pÞ. Thus, for x = 0 phenotypes ðθ*þ Δ1; θ*−Δ2Þ
(where Δ1 and Δ2 are small and positive) with

Δ2

Δ1
¼ p

1− p
[S9]

have the same fitness as the phenotype ðθ*; θ*Þ whereas all other
phenotypes have lower fitness. Solving Eq. S9 for p gives
p ¼ Δ2=ðΔ1 þ Δ2Þ, which can be rewritten as Eq. 11 in the main
text. In conclusion, if x is just marginally larger than zero, i.e., if
condition Eq. 6 in the main text is just barely fulfilled, then
functional specialization can evolve if genetic variation exists in
the direction of the vector ð1; − p=ð1− pÞÞ.
In the following we investigate several important features of the

saddle point as x increases from zero to −y. First, the dominant
eigenvalue changes according to

dλ1
dx

¼ n
2

 
1þ ðxþ yÞð1− 2pÞ2ffiffiffi

b
p

!
:

It can be shown that the equation dλ1=dx ¼ 0 has no solution in
the real numbers. Thus, dλ1=dx never changes sign and λ1 is ei-
ther monotonically increasing or decreasing as a function of x.
Because for x = −y we have dλ1=dx ¼ n=2> 0, it follows that λ1 is
monotonically increasing in x.
Second, the slope of the dominant eigenvector changes

according to

dud2
dx

¼ 2pð1− pÞð1− 2pÞy
− ðxþ yÞð1− 2pÞ ffiffiffi

b
p þ b

:

Using that ðθ*; θ*Þ is a maximum in the constrained trait space,
i.e., x + y < 0, we see that the denominator is always positive.
The sign of the numerator is determined by p and y. For y <
0 we find

dud2
dx

< 0 for p <
1
2

dud2
dx

> 0 for p >
1
2
:

In both cases, with increasing x the dominant eigenvector is tilted
in the direction of the vector (1, −1). Once x = −y we have
ð1; ud2Þ ¼ ð1; − 1Þ. As noted above, for x > −y the point ðθ*; θ*Þ
ceases to be a maximum in the constrained trait space and turns
into a fitness minimum.

Third, the directions of the zero-contour lines of a saddle point
can be found by solving ð1; uÞHð1; uÞT ¼ 0 for u. This equation
has two solutions:

u1;2 ¼ pyð1− pÞ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ð1− pÞpxðxþ yÞp

− ð1− pÞðxþ ð1− pÞyÞ :

Differentiating u1 and u2 with respect to x gives

du1;2
dx

¼ py
�
∓ððxþ yÞð1− pÞ− pxÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ð1− pÞpxðxþ yÞp �

2ðxþ yð1− pÞÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ð1− pÞpxðxþ yÞp :

For x = 0 we have u1 ¼ − p=ð1− pÞ ¼ u2 whereas for x = −y we
have u1 ¼ 1 ¼ u2. Furthermore, it is easy to show that u1 is
monotonically increasing in x. For u2 the situation is slightly
more complicated. It is monotonically decreasing in x until
x ¼ − ð1− pÞy, where u2 as a function of x has a pole. Here u2
changes sign but continues to be monotonically decreasing in x.
Thus, as x increases from zero to −y, the width of area where
phenotypes have fitness higher than ρn;pðθ*; θ*Þ is monotonically
increasing until the saddle point turns into a fitness minimum.
These results can be summarized as follows. For x = 0, vari-

ation in the direction of the vector ð1; − p=ð1− pÞÞ is neutral and
all other variation is selected against. As x increases, the fitness
advantage of variants that occur in the direction of the dominant
eigenvector increases continuously and the direction of the
dominant eigenvalue approaches (1, −1). Simultaneously, the
range of possible directions in the ðθ1; θ2Þ plane where functional
differentiation is favored becomes wider. In conclusion, as x in-
creases from zero to −y, condition Eq. 11 in the main text be-
comes less stringent. Fig. S1 shows fitness landscapes for an
organism consisting of 10 modules. Fitness landscapes are shown
for three different values of p and parameters are such that x is
just marginally larger than zero.
We conclude our analysis of the case of n equivalent modules

by investigating how the optimal allocation of modules to the
different tasks depends on x. First, we note that the curvature of
the fitness landscape in the direction of a vector (1, u) is pro-
portional to

ð1; uÞHð1; uÞT¼ n
�
x
�
pþ u2ð1− pÞ�þ yðpþ uð1− pÞÞ2

�
: [S10]

Differentiating the right-hand side of Eq. S10 with respect to p
and solving the resulting expression after setting it equal to zero
for p gives

p* ¼ −
xþ uxþ 2uy
2ð1− uÞy :

The value p* gives the allocation pattern that maximizes fitness
for a given vector (1, u). Differentiating p* with respect to x
gives − ð1þ uÞ=2yð1− uÞ. Thus, p* increases with x for 0 > u > −1
and decreases with x for u < −1. In both cases, for x= −y we find
p* = 1/2. We can conclude that with increasing x the optimal
allocation pattern of modules to the different tasks approaches
p = 1/2 regardless of the direction of functional specialization as
given by u ¼ −Δ2=Δ1.

SI Text B
Extension to n Modules: Nonequivalent Modules. In the case of
nonequivalent modules we allow for module-specific effects on
performance. This assumption is implemented into Eq. S2 by
replacing βi(θ* − θ1) and βi(θ* − θ2) with βi1(θ* − θ1) and
βi2(θ* − θ2), respectively, and by replacing γi(θ* − θ1)

2 and
γi(θ* − θ2)

2 with γi1(θ* − θ1)
2 and γi2(θ* − θ2)

2, respectively.
With some abuse of notation we use both ρn,p(θ1, θ2) and
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ρn,p(F1,p, F2,p). The gradient Dρn,p(θ1, θ2) of the fitness function
evaluated at the point (θ*, θ*) has the entries

∂ρn;pðθ1; θ2Þ
∂θ1

¼ − np
�
β21

∂ρn;p
�
F1;p;F2;p

�
∂F2;p

þ β11
∂ρn;p

�
F1;p;F2;p

�
∂F1;p

�
[S11a]

∂ρn;pðθ1; θ2Þ
∂θ2

¼ − nð1− pÞ
�
β22

∂ρn;p
�
F1;p;F2;p

�
∂F2;p

þ β12
∂ρn;p

�
F1;p;F2;p

�
∂F1;p

�
: [S11b]

The derivative of the fitness function in the direction of the
constrained trait space, dρn,p(θ, θ)/dθ, is equal to the sum of the
expressions on the right-hand side of Eqs. S11a and S11b. At θ*
we have dρn,p(θ, θ)/dθ = 0, which implies

∂ρn;p
�
F1;p;F2;p

�
∂F1;p

¼ cðpðβ22 − β21Þ− β22Þ [S12a]

∂ρn;p
�
F1;p;F2;p

�
∂F2;p

¼ cðpðβ11 − β12Þ þ β12Þ [S12b]

for some positive constant c. Inserting Eqs. S12a and S12b into
Dρ gives (1, −1) as direction of steepest fitness increase at the
point (θ*, θ*). The derivative of the fitness function in the di-
rection of the vector (1, −1) equals

∂ρn;pðθ1; θ2Þ
∂θ1

−
∂ρn;pðθ1; θ2Þ

∂θ2
¼ − 2cnpð1− pÞðβ12β21 − β11β22Þ:

[S13]

Thus, the derivative in the direction of the vector (1, −1) is
positive if β11β22 > β12β21 and negative otherwise. This finding
generalizes condition Eq. 7 from the main text to the general
case of arbitrarily many modules. In conclusion, with non-
equivalent modules generically the point (θ*, θ*) is not an ex-
tremum in the extended trait space but directional selection
favors differentiation such that modules predisposed for one task
become even more specialized.

SI Text C
Specialization of Duplicated Genes. Performance is defined as the
total amount of substrate converted and denoted F1(a1,1, a2,1) and
F2(a1,2(a1,1),a2,2(a2,1)). The curvature of the performance land-
scape for the first substrate in the direction orthogonal to the
constrained trait space at a point (a*, a*) is given by Eq. 5 in the
main text where θ1 and θ2 have to be replaced by a1,1 and a2,1,
respectively,

C1 ¼ 1
2

 
∂2F1

�
a1;1; a2;1

�
∂a21;1

þ ∂2F1
�
a1;1; a2;1

�
∂a22;1

− 2
∂2F1

�
a1;1; a2;1

�
∂a1;1∂a2;1

!
;

[S14]

with all derivatives on the right-hand side evaluated at a point (a*,
a*). The first two terms describe whether the amount of con-
verted substrate 1 is an accelerating or a saturating function of
substrate affinity. The third term describes the effect of a possi-
ble interaction between enzymes coded by different loci. The
curvature of the performance landscape for the second substrate
at a point (a*, a*) is more complicated because, due to the
manner in which we introduced the trade-off, F2(a1,2(a1,1),
a2,2(a2,1)) is not directly a function of a1,1 and a2,1 but via the
functions a1,2(a1,1) and a2,2(a2,1),

C2 ¼ 1
2

 
∂2F2

�
a1;2
�
a1;1
�
; a2;2

�
a2;1
��

∂a21;2

�
da1;2
da1;1

�2

þ ∂2F2
�
a1;2
�
a1;1
�
; a2;2

�
a2;1
��

∂a22;2

�
da2;2
da2;1

�2
;

− 2
∂2F2

�
a1;2
�
a1;1
�
; a2;2

�
a2;1
��

∂a1;2∂a2;2
da1;2
da1;1

da2;2
da2;1

þ ∂F2
�
a1;2
�
a1;1
�
; a2;2

�
a2;1
��

∂a1;2
d2a1;2
da21;1

þ ∂F2
�
a1;2
�
a1;1
�
; a2;2

�
a2;1
��

∂a2;2
d2a2;2
da22;1

!
;

[S15]

with all derivatives on the right-hand side evaluated at a point (a*,
a*). Using that at (a*, a*) for equivalent modules ∂F1/∂a1,1 =
∂F1/∂a2,1, ∂F2/∂a1,2 = ∂F2/∂a2,2, ∂2F2=∂a21;2 ¼ ∂2F2=∂a22;2, da1,2/
da1,1 = da2,2/da2,1, and d2a1;2=da21;1 ¼ d2a2;2=da22;1 we find con-
dition Eq. 9 in the main text.
Next we consider the case that enzymes are dimers. By ai,kl we

denote the affinity of an enzyme for the ith substrate where the
dimer consists of one gene product coded by the kth locus and
one gene product coded by the lth locus (k, l ∈ {1, 2}). We in-
vestigate the effect of specialization under the assumption that
both loci specialize to an equal extent but for the alternative
substrates (i.e., ai,11 − a* = a* − ai,22), thus, in the direction
where specialization is most likely to be favored by selection. Our
treatment is based on the assumption that the affinity of heter-
odimers, ai,12, can be described as a function of the substrate
affinity of the two corresponding homodimers, ai,11 and ai,22.
More specifically, sufficiently close to the point (a*, a*) we ap-
proximate ai,12 by

ai;12 ¼ a*þ βi;12
�		ai;11 − ai;22j

�þ 1
2
γi;12

�
ai;11 − ai;22

�2
: [S16]

Performance functions are approximated by

Fi
�
ai;kl
� ¼ Fiða*Þ þ βi

�
ai;kl − a*

�þ 1
2
γi
�
ai;kl − a*

�2
: [S17]

After inserting Eq. S16 into Eq. S17 and neglecting terms of
order higher than two we can, with some abuse of notation, write
performance of heterodimers as

Fi
�
ai;11; ai;22

� ¼ Fiða*Þ þ βiβi;12
�		ai;11 − ai;22j

�
þ 1
2
βiγi;12

�
ai;11 − ai;22

�2þ 1
2
γiβi;12

�
ai;11 − ai;22

�2
:

If homodimers are formed with probability p, heterodimers with
probability 1 − p, and the two different homodimers are equally
likely, then the average affinity equals

�Fi
�
ai;11; ai;22

� ¼ p
2
Fi
�
ai;11

�þ p
2
Fi
�
ai;22

�þ ð1− pÞFi
�
ai;11; ai;22

�
:

Performance of two differentiated loci exceeds performance of
two undifferentiated loci, if

Fiða*Þ< �Fi
�
ai;11; ai;22

�
; [S18]

or, alternatively, using (ai,11 − a*) = −(ai,22 − a*) if
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0 < pγi
�
ai;kk − a*

�2 þð1− pÞ
�
2βiβi;12

�		ai;11 − ai;22j
�

þ �ai;11 − ai;22
�2�

βiγi;12 þ γiβi;12
��

:

Using that jai,11 − ai,22j = 2jai,kk − a*j, we can rewrite condition
Eq. S18 as

0 < pγi þ 4ð1− pÞ
�

βiβi;12
jai;kk − a*j þ βiγi;12 þ γiβi;12

�
: [S19]

This inequality allows for the following interpretations. First, as
jai,kk − a*j approaches zero, only the sign of βiβi,12 decides
whether condition Eq. 6 is fulfilled. Here we are interested in the

case that performance increases with increasing affinity; i.e., βi >
0. Thus, if enzymes consisting of two different gene products are
superior, i.e., βi,12 > 0, then specialization results in increased
performance. Second, if jai,kk − a*j is small but finite, βi,12 > 0,
and γi < 0 (i.e., performance is, for example, due to Michaelis–
Menten kinetics, a saturating function of substrate affinity), then
specialization is favored if heterodimers are formed suffici-
ently frequently. More specifically, condition Eq. S19 can be
rewritten as

p<
1

1− γi=4
�

βiβi;12
jai;kk − a*j þ βiγi;12 þ γiβi;12

�:

Fig. S1. Fitness landscape for the case of n = 10 equivalent modules, with pn modules characterized by θ1 and (1 − p)n modules characterized by θ2, locally
around a point ðθ*; θ*Þ (solid circles). Values of p equal (A) p = 0.2, (B) p = 0.5, and (C) p = 0.7. Shading corresponds to contours of the fitness function with
lighter shades indicating higher values. The expected direction of the evolutionary dynamics is indicated by arrows. Iso-performance curves for F1 and F2,
introduced in the Fig. 1 legend in the main text, are shown as solid and dashed curves, respectively. Functions Fiðθ1; θ2Þ are given by Eq. S2 and ρ(F1, F2) = F1*F2.
Other parameter values: θs = 0.5, α1 ¼ 1 ¼ α2, β1 ¼ −10, β2 ¼ 10, γ1 ¼ 500 ¼ γ2, and δ1 ¼ − 10 ¼ δ2.
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