Supplementary Information for:

Polar Assembly and Scaffolding Proteins of the Virulence-Associated ESX-1 Secretory Apparatus in Mycobacteria

Samantha E. Wirth¹, Janet A. Krywy², Bree Aldridge³, Sarah Fortune³, Marta Fernandez-Suarez³, Todd A. Gray^{1,2}, and Keith M. Derbyshire^{1,2*}

¹Division of Genetics, Wadsworth Center, Center for Medical Science, New York State Department of Health, Albany, NY 12201, USA ²Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201-2002, USA ³Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA, USA

Keywords: ESX-1/Mycobacteria/Protein localization/Conjugation/Secretion

*Correspondence should be addressed to: Keith M. Derbyshire

Telephone: 518-473-6079

Fax: 518-474-3181

E-mail: keith.derbyshire@wadsworth.org

Supplementary Information

Figure S1.

Figure S1. (A) Similar to observations in the *M. smegmatis* donor strain, *esx1*-encoded proteins localized to the pole of MKD8 recipient cells. FITC image of MKD8 cells expressing $EspE_{ms}$ -YFP (left panel). Quantification of the proportion of $EspE_{ms}$ -YFP-expressing cells that contained zero, one or more than two fluorescent foci (right panel). 630x total magnification. **(B)** Growth in the presence of 0.05% Tween 80 affects the polar localization of SaeA (left panel). 630x total magnification.

Figure S2 A-L. Graphs indicating the number of cells scored with one, two or more or punctate foci, or diffuse fluorescence for each fluorescent protein derivative in either the *M. smegmatis* donor or recipient. The data for these histograms were taken from many fields and independent transformants. The images were read by at least two independent readers, with almost 100% correlation.

EspEme-YFP expressed in M. smegmatis MKD8 recipient

Cellular location

Cellular location

G

Cellular location

Cellular location

SaeA-YFP expressed in *M. smegmatis* MKD8 recipient Cultured in TSBT (N = 18)

Т

J SaeA-YFP expressed in *M. smegmatis* MKD8 recipient Cultured in TSB (N = 232)

K SaeA-YFP expressed in *M. smegmatis* mc²155 donor Cultured in TSBT (N = 30)

30 25 Number of cells 20 15 30 10 5 0 0 0 θ 1 polar/ Punctate > 2 foci Diffuse peripolar focus Cellular location

L SaeA-YFP expressed in *M. smegmatis* mc²155 donor Cultured in TSB (N = 171)

Cellular location

Figure S3. Multi-cell images of *M. smegmatis* expressing EspE_{ms}, EspE_{mt}, EccCb_{mt}, and SaeA_{ms} as YFP fusions.

Figure S3. Widefield images of *M. smegmatis* donor strain indicate that polar localization is a general property of these proteins. **(A-C)** Merged FITC/DIC images showing polar localization of $EspE_{me}$, $EspE_{mt}$, and $EccCb_{mt}$ YFP fusions. **(D)** FITC image showing multiple cells expressing the non-*esx1*-encoded protein, SaeA-YFP. Bacteria were cultured at 37°C in Trypticase Soy Broth with 0.05% Tween80 supplemented with antibiotics, except for cells expressing SaeA-YFP, which were grown without Tween80. 630x total magnification, except panel B, which has been enlarged for clarity.

Figure S4. Western Analysis showing stable expression of EccCb_{ms}-YFP fusion

Figure S4. The EccCb_{ms}-YFP fusion protein was tagged with a 3xHA epitope at its N-terminus to allow detection of the full-length fusion by anti-HA antibodies. Cell lysates were collected from mc²155 and mc²155 Δ eccCb–esxA expressing 3xHA- EccCb_{ms} -YFP. Samples were loaded and separated on a 4-12% gradient SDS-PAGE gel. Proteins were transferred to a PVDF membrane and then probed with appropriate antibodies to detect either EccCb_{ms} or GroEL. Full-length 3xHA- EccCb_{ms} -YFP was detected, along with minor degradation products. An N-terminal 3xHA- EccCb_{ms} fusion without YFP was included as a positive control to indicate the size of the native protein; this sample was run on the same gel, but separate from the experimental samples. GroEL is a marker for cytoplasmic proteins and was included as a loading control. anti-HA antibodies were from Roche and anti-GroEL antibodies from Enzo Life Sciences.

Figure S5. A Western blot showing that SaeC is not secreted by mc²155.

Figure S5. SaeC was tagged with a 3xHA epitope at its C-terminus to allow detection by anti-HA antibodies. Culture filtrates and cell pellets were collected from mc²155 expressing SaeC-3xHA. Following concentration, equivalent cell volumes of each sample were loaded and separated on a 4-12% gradient SDS-PAGE gel. Proteins were transferred to a PVDF membrane and then probed with antibodies to detect either SaeC or GroEL. SaeC was detected in the cell pellet, indicating it is not secreted under these conditions (left panel). GroEL is a 65 kda marker for cytoplasmic proteins and was detected primarily in the cell pellet, indicating very little cell leakage occurred into the culture filtrate. anti-HA antibodies were from Roche and anti-GroEL antibodies from Enzo Life Sciences.

Movies S1 and S2. Images captured during time-lapse fluoromicroscopy of *M. smegmatis* mc²155 showed that SaeC-YFP primarily associates with the old cell pole. Bacteria were grown to mid-log phase in TSBT, and then cell growth and division was visualized using time-lapse fluorescence microscopy. Images were captured every 10 minutes.

Table S1. Plasmids used in this study.

Name of plasmid	Description	Reference	
pMP349	Apy ^R , oriM, oriE, hsp60 promoter	(Consaul & Pavelka, 2004)	
pGD15	YFP cloned into Pvull and EcoRI sites	This study	
pGD15- <i>saeA</i>	saeA gene cloned in frame to a 3' YFPVenus	This study	
pGD15- <i>saeB</i>	saeB gene cloned in frame to a 3'YFPVenus	This study	
pGD15- saeC	saeC gene cloned in frame to a 3' YFPVenus	This study	
pGD15-e <i>spE_{ms}</i>	<i>espE_{ms}</i> gene cloned in frame to a 3'YFPVenus	This study	
pGD15-eccCb _{ms}	eccCb _{ms} gene cloned in frame to a 3'YFPVenus	This study	
pGD15-e <i>spE</i> _{mt}	e <i>spE</i> _{mt} gene cloned in frame to a 3'YFPVenus	This study	
pUAB300- <i>EccCb</i> _{mt}	eccCb _{mt} gene cloned in frame to a 3' YFP Venus	This study	
pYUB854	Hyg ^r gene flanked by $\gamma\Delta$ res sites	(Bardarov et al, 2002)	
pJV53	<i>Che9c60 – 61</i> , Kan ^R , acetamidase promoter, oriE, oriM	(van Kessel & Hatfull, 2008)	

Oligo <u>Name</u>	Oligo number	Oligo sequence	Target, description
YFPFwd	TGD1536	5'GAG <u>CCCGGG</u> CTAGC GGTGGGGGCGGGGGC CA CGTGAGCAAGGGCGAGG 3'	YFPVenus; sense, 5x glycine linker
YFPRev	TGD1563	5'GAA <u>GAATTC</u> ACTTGTACAGCTCGTCCATGCC3"	YFPVenus; antisense, stop codon.
0044Fwd	TGD1542	5'TCC <u>AGGCCT</u> CTGACCTGCACCCCTCC 3'	Msmeg0044; sense,
0044Rev	TGD1543	5'TCC <u>TCTAGA</u> CGCGGTGAGTCG 3'	Msmeg0044; antisense,
rv3864Fwd	TGD1544	5'GGT <u>AGGCCT</u> CGGGTAGCGGTCTTTGC 3'	<i>rv3864</i> ; sense,
rv3864Rev	TGD1545	5'CGG <u>TCTAGA</u> AAGGACGGTCCCCTCCTG 3'	rv3864; antisense,
0045Fwd	TGD1546	5'TCT <u>GATATC</u> GCCAACCTCAGTGGCCTGC 3'	<i>Msmeg0045</i> ; sense,
0045Rev	TGD1547	5'TCT <u>TCTAGA</u> TGCCTGCCTGCCTCCCCGTA 3'	Msmeg0045; antisense,
0046Fwd	TGD1548	5'TGT <u>TGGCCA</u> GCAAGTGCCCGCGGTGC 3'	Msmeg0046; sense,
0046Rev	TGD1549	5'TGT <u>GCTAGC</u> CAGCACGCCGAAGCCCGA 3'	Msmeg0046; antisense,
BAFwd	TGD1552	5'CCG <u>TGGCCA</u> CAGCAATGAATGAATACAGAT 3'	<i>esxBA</i> ; sense,
BARev	TGD1553	5'GGA <u>GCTAGC</u> AAACATTCCCGTGACGCCG 3'	esxBA; antisense,

Table S2. Oligos used in this study. Restriction sites are underlined

<u>Oligo name</u>	Oligo number	Oligo sequence	Target, description
0055Fwd	TGD1625F	5'GAT <u>GATATC</u> GAGTGCTCAGCGATGTCGCCGAT 3'	<i>Msmeg0055</i> ; sense,
0055Rev	TGD1626R	5'GAT <u>TCTAGA</u> CGCACCGCGCGCGCGCGCAG 3'	<i>Msmeg0055</i> ; antisense,
0062Fwd	TGD1627F	5'TGA <u>GATATC</u> CCACAGAAGCTGAACCCC 3'	<i>Msmeg0062</i> ; sense,
0062Rev	TGD1628R	5'TGA <u>TCTAGA</u> ACTGCCCTCTGAAGGTGGTGA 3'	<i>Msmeg0062</i> ; antisense,
0045fragmentFwd	TGD2008F	5'TCC <u>ATCGAT</u> CACCCGACGAACTCGCACA 3'	Msmeg0045, 3' end; sense,
0045fragmentRev	TGD2009R	5'TCC <u>TCTAGA</u> GCCTGCCTGCCTCCCCGT	Msmeg0045, 3' end; antisense,
0047fragmentFwd 0047fragmentRev	TGD1942F TGD1943R	5'CAG <u>AAGCTT</u> GCGTCGGCCGCTTCTCA 3' 5'TGT <u>ACTAGT</u> GCGCGGTCTGAACTATGC 3'	<i>Msmeg0047</i> ; sense, <i>Msmeg0047</i> ; antisense, Spel site to facilitate cloning into pYUB854
0047fragmentRev	TGD1943R	5'TGT <u>ACTAGT</u> GCGCGGTCTGAACTATGC 3'	<i>Msmeg0047</i> , 543-bp downstream of 0046 cloning into pYUB854
0046upstream	TGD2016F	5'CGCGTTGCGCGGATACCGCAAAATGGTCACCAA ACTCTTGGCGCGGGCGCGGGGATTCGCCCTCGCTG ACCGCGCGGCTACGGGGAGGCAGGCAGGCCCTT GACTAGAGGGTACCAG 3'	Sense, Ultramer; 96 bp 5' of of <i>Msmeg0046</i> plus 20 bp of pYUB854 plasmid

 Table S2. (continued)
 Oligos used in this study. Restriction sites are underlined.

Table S3. Bacterial strains used in this study.

Species	Strain	Description and genotype	Source
E. coli	DH5a	F-φ80 <i>lac</i> ZΔM15 Δ(<i>lac</i> ZYA- <i>arg</i> F) U169 <i>recA1 endA1 hsd</i> R17 (rk-, mk+) <i>pho</i> A <i>sup</i> E44 λ- <i>thi</i> 1 gyrA96 relA1	Invitrogen
	XL10Gold	endA1 gInV44 recA1 thi-1 gyrA96 relA1 lac Hte Δ(mcrA)183 Δ(mcrCB-hsdSMR- mrr) 173 tet ^R F'[proAB lacl ¹ ΖΔΜ15 Tn(Tet ^R Amy ^R Cm ^R]	Stratagene
	K12 ER2925	Ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 glaK2 galT22 mcrA dcm-6 hisG4 rfbD1 R(zgb210::Tn10) TetS endA1 rpsL 136 dam13::Tn9 xylA-5 mtl-1 thi-1 mcrB1 hsdR2	New England Biolabs
M. smegmatis	mc ² 155	ept-1 derviative of ATCC 607; Donor strain	(Snapper et al, 1990)
	mc²155∆ <i>saeC</i>	Hyg ^R , Donor strain	This study
	MKD8	mc ² 874, Rif ^R , Sm ^R ; Recipient strain	(Parsons et al, 1998)
	MKD8∆ <i>saeC</i>	mc ² 874, Rif ^R , Sm ^R ;, HygR; Recipient strain	This study
	MKD158	mc ² 155, Hyg ^R (integrated at L5 <i>attB</i> site)	(Flint et al, 2004)
	MKD6	mc ² 155, Km ^R (integrated at L5 <i>attB</i> site)	(Parsons et al, 1998)

Supplementary references

Bardarov S, Bardarov Jr S, Jr., Pavelka Jr MS, Jr., Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs Jr WR, Jr. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. *Microbiology* **148**: 3007-3017

Consaul SA, Pavelka MS, Jr. (2004) Use of a novel allele of the Escherichia coli aacC4 aminoglycoside resistance gene as a genetic marker in mycobacteria. *FEMS Microbiol Lett* **234:** 297-301

Flint JL, Kowalski JC, Karnati PK, Derbyshire KM (2004) The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. *Proc Natl Acad Sci U S A* **101**: 12598-12603

Parsons LM, Jankowski CS, Derbyshire KM (1998) Conjugal transfer of chromosomal DNA in *Mycobacterium smegmatis*. Mol Micro 28: 571 - 582

Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR, Jr. (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. *Molecular Microbiology* **4:** 1911-1919

van Kessel JC, Hatfull GF (2008) Mycobacterial recombineering. Methods Mol Biol 435: 203-215