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Figure S1 (associated with Figure 2)  
 
(A) Stu2, but not Bik1 or Bim1, localizes at CEN3 that is associated with the 
lateral surface of a spindle-pole MT.  

STU2-3GFP (T3680, i), BIK1-3GFP (T3674, ii) and BIM1-3GFP (T3766, iii) cells 

with PMET3-CDC20 PGAL-CEN3-tetOs TetR-3CFP CFP-TUB1 were treated as in Fig 
1C. GFP and CFP images were collected. Image panels show cells with CEN3 
associated with the lateral surface of a spindle-pole MT. 
 
(B) The amount of Stu2 at the KT decreases upon MT rescue distal to, and at 
the KT. 

PMET3-CDC20 PGAL-CEN3-tetOs TetR-GFP YFP-TUB1 STU2-3CFP (T4986) cells 
were treated and time-lapse images were acquired as in Fig 3A. See examples of 
time-lapse images in Fig 3A. Graphs show changes in intensity of the Stu2 signal on 
CEN3 after MT rescue distal to the KT (on CEN3; green, left) and at the KT 
(magenta, right). The amount of change was shown relative to the intensity of the 
Stu2 signal on CEN3 prior to rescue. For rescue at the KT, the Stu2 signal was 
quantified just before the MT end caught up with CEN3 and just after the MT end had 
visibly started growing away from CEN3. For rescue distal to the KT, the Stu2 signal 
was quantified before and after a Stu2 signal had begun transport and moved away 
from CEN3. For controls, the change in Stu2 signal was similarly quantified at 
corresponding time points in the same microscopy field, but in the cells where CEN3 
was on a MT lateral surface and MT rescue/Stu2 transport were not observed during 
the relevant time windows. 
 
(C) End-on attachment/pulling is preceded by MT pausing in some stu2 
hypomorphic mutant cells.  
T9323 and T9345 (see genotypes in Fig 2A legend) were treated and analyzed as in 
Fig 2A. Graph showing the period of MT pausing (as defined in Fig 1D legend), prior 
to end-on attachment/pulling in the stu2 hypomorphic mutant and control cells. 
 
(D) The double mutant stu2 hypomorph plus the ndc80 loop deletion shows 
frequent KT re-detachment from MTs in physiological conditions. 
NDC80 + PSTU2-STU2+ (T9692), ndc80Δ490-510 PSTU2-STU2+ (T9634), NDC80 + 
PSTU2-stu2∆TOG1 (T9621) and ndc80Δ490-510 PSTU2-stu2∆TOG1 (T9555) cells with 
CEN5-tetOs TetR-3×CFP Venus-TUB1 STU2+ were treated with α factor and 
released to fresh YPD medium at 35°C. Images were taken 30 minutes after cells 
were released to YPD medium at 35°C. CFP and Venus images were acquired every 
10 sec at 35°C. (i) Representative time-lapse images of a T9555 cell. (ii) Graph 
shows the proportion of cells showing CEN5 re-detachment from spindle pole MTs, 
following their initial interaction (orange bars). Re-detachment was scored if a cell 
showed CEN5 re-detachment from MTs (following the initial KT-MT interaction) 
before CEN5 was transported to the vicinity of a spindle pole (<0.5 µm) or soon after 
(<50 sec) its arrival in the vicinity. Note that Ndc80 control= NDC80 + wild type, Stu2 
control=two copies of wild-type STU2 (one is at an auxotroph locus), Ndc80 
Δloop=ndc80Δ490-510 and Stu2 hypo (hypomorphic mutant)= PSTU2-stu2∆TOG1 (at 
an auxotroph locus) plus wild-type STU2+. The number of cells analyzed: n= 12, 15, 
15 and 13 (top to bottom). 
Results: We addressed if the double mutant, stu2 hypomorph plus the ndc80 loop 
deletion, showed defects in KT-MT interactions in physiological conditions, similar to 
those in the engineered assay (see Fig 2B). In a control, single mutants (stu2 
hypomorph or the ndc80 loop deletion) and the double mutants, CEN5 detached 
from MTs and moved away from a spindle pole in a similar timing (data not shown), 
presumably upon CEN5 DNA replication (Kitamura et al., 2007). Approximately in 2-3 



  

min, CEN5 interacted again with MTs in all these cells (except for about 10 % of the 
double mutant cells that showed a further delay in this interaction). However, in the 
double mutant, CEN5 often showed re-detachment from MTs (i). Such re-
detachment was less frequent in single mutants and not observed in control cells (ii). 
In the double mutant and single mutants, re-detached CEN5 showed interaction with 
spindle-pole MTs again in 1-2 min (e.g. 270 sec in i).  
Discussion: We also addressed if MT dynamics were altered in mutants of stu2 
hypomorph and the ndc80 loop deletion. We measured nucleation frequency of 
cytoplasmic MTs (extending toward the cell cortex and showing maximum length > 2 
µm) in the three (double and singles) mutants using physiological conditions. These 
mutants showed similar nucleation frequency to control cells (data not shown). We 
also measured other parameters of MT dynamics, such as the polymerization speed 
and maximum length of nuclear MTs, using the engineered assay (see Fig 1A). 
These parameters were also similar in the mutant and control cells (data not shown). 
Based on these results, we reason that KT-dependent MT rescue is more sensitive 
to a reduced Stu2 function than are other MT dynamics studied here. 



  



  

Figure S2 (associated with Figure 3)  
 
(A) A photo-bleaching experiment demonstrates that MT rescue distal to the 
KT is distinct from growth of an overlapping spindle-pole MT and a possible 
KT-derived MT.  
Time-lapse images (i) and kymograph (ii) of a T4986 cell (see Fig 3A legend) 
showing an example of MT rescue distal to the KT. Schematic diagrams are shown 
at bottom of the images (i). The cells were treated in the same way as Fig 1C. 
Images were collected as in Fig 1C, but every 7 sec after photo-bleaching.  
Results: To obtain further evidence that rescue of a CEN3-associated MT is indeed 
distinct from growth of an overlapping MT from a spindle pole, we photo-bleached a 
small MT region between CEN3 and the MT plus end (between 14 and 24 sec). The 
photo-bleached area of the MT was not filled when the relevant MT showed „rescue‟ 
(87-108 sec time points). In contrast, the photo-bleached gap was filled when 
subsequently an overlapping MT grew out (108-164 sec time points). These two 
events were also clearly distinct when displayed as a kymograph. Thus, rescue of a 
CEN3-associated MT (first event) and growth of an overlapping MT (second event) 
are discernibly different. 
Discussion: We previously reported that MTs can be generated at CEN3 with distal 
plus ends before CEN3 becomes associated with a MT extending from a spindle pole 
(Kitamura et al., 2010). Could the „rescue‟ of a CEN3-associated MT be a 
misinterpretation of a MT growth from CEN3? This was not the case because 1) the 
latter would fill the gap of a photo-bleached area (in this Figure) and 2) MTs are no 
longer generated at CEN3 once it becomes associated with a MT extending from a 
spindle pole (Kitamura et al., 2010). 
 
(B) Evidence that Stu2 transport from the KT to the MT end leads to MT rescue 
in physiological conditions.  

Time-lapse images of CFP-TUB1 NDC80-4mCherry MTW1-4mCherry STU2-

3GFP (T8471) showing transport of Stu2 from a KT, along a MT towards its plus 
end, leading to rescue of the MT. The cells were treated with α-factor in YP medium 
containing glucose for 2.5 hrs and released into fresh YP medium containing 
glucose. In 30 minutes after release, images were acquired every 5 sec, using CFP 
(tubulin), GFP (Stu2) and mCherry (Mtw1, Ndc80; KT components) channels. Scale 
bar, 1 µm.  The time-lapse images are interpreted using the schematic diagram 
above.  
Results: We investigated the behaviour of Stu2 in physiological conditions without 
any artificial centromere regulation (i.e. not using the engineered assay) or cell cycle 
arrest. After KTs were reassembled on centromeres, following their disassembly 
caused by centromere DNA replication (Kitamura et al., 2007), Stu2 signals had 
often appeared at KTs (data not shown). KTs were then caught on the lateral side of 
a MT extending from a spindle pole (as seen at 45 sec in this figure). In some cells, it 
seemed that Stu2 was subsequently transported from the KT along the KT-
associated MT towards its plus end (as seen 55-75 sec in this figure). Upon arrival of 
the Stu2 at the MT end, the MT showed conversion from shrinkage to re-growth, i.e. 
the MT was rescued (75-90 sec). We observed 3 discernible events of Stu2 transport 
from the KT towards the MT plus end in physiological conditions and in all of these, 
Stu2 arrival at the MT ends led to MT rescue. This is consistent with a pivotal role of 
Stu2 in KT-dependent MT rescue in physiological conditions, as suggested with the 
engineered assay. 
Discussion: The results in this figure and Figs S1D suggest that the mechanisms for 
KT-dependent microtubule rescue, which we found using the engineered assay (see 
Fig 1A), are relevant to physiological conditions.  
 



  

 



  

Figure S3 (associated with Figure 4) 
 
(A) Western blot analysis of kip3-E345A and wild-type KIP3 expression.  
Yeast whole cell extract was prepared from strains containing either kip3-E345A-

3GFP (T7707) or KIP3-3GFP (T3918). For control, a strain containing no GFP tag 
(K699) was used. As a loading control, the same samples were analyzed using anti 
Cdc28 antibody.  
 
(B) kip3-E345A is synthetically lethal with a kar3-64 mutant.  
Growth of wild-type cells (K699) as well as cells containing either only kip3-E345A 
mutation (T7349) or only kar3-64 mutation (T3932) were compared with cells 
containing both kip3-E345A and kar3-64 mutation (T8096). 10-fold serial dilutions of 
the cells were spotted on YPD plates and incubated at 25° C and at 37° C for 48 
hours. Note that kar3-64 is a temperature sensitive mutant, which is defective at 
37°C (Cottingham et al., 1999). 

Results: Similarly to kip3 (Cottingham et al., 1999), kip3-E345A was synthetically 
lethal with kar3-64 (Kar3 is a kinesin-14 family member) at the restrictive temperature 
(37° C) for the kar3 mutant.  
 
(C) kip3∆ and kip3-E345A show longer MTs than wild-type KIP3.  
Graph showing the maximum MT length (mean ± standard error of the mean) in 
KIP3+ (T3680), kip3∆ (T3776) and kip3-E345A (T8657) cells (see detailed genotypes 
in the Fig 4D legend). Cells were treated and images acquired as in Fig 4D. The 
maximum length of a CEN3-associated MT was measured. 

Results: kip3-E345A showed longer nuclear MTs than wild-type KIP3, as did kip3 
(Miller et al., 1998). 



  



  

Figure S4 (associated with Figure 5) 
 
(A) Western blot analysis of KAR3-VC, KIP3-VC and STU2-VN expression.  
Yeast whole cell extract was prepared from strains containing KAR3-VC (T6747), 
KIP3-VC (T6451) and STU2-VN (T6586). Kar3-VC and Kip3-VC were detected by 
using a monoclonal anti-GFP antibody (a mixture of clones 7.1 and 13.1; Roche; 
shown as anti-GFP1). Stu2-VN was detected by using an N-terminal specific anti-
GFP antibody (Sigma; shown as anti-GFP2). Whole cell extract of K700 was used as 
a negative (No tag) control. 
Results: The expression of Kar3-VC, Kip3-VC and Stu2-VN was confirmed by the 
western blot. Kar3-VC and Kip3-VC were expressed in a similar level.  
 
(B) Venus could be formed rapidly to emit its signal when Stu2-VN and Kip3-VC 
first became closely associated.  

Time-lapse images of STU2-3CFP/STU2-VN mCherry−TUB1 KIP3-VC diploid cells 
(T7093) showing an example of a BiFC signal due to close association between 
Stu2-VN and Kip3-VC at the plus end of a newly formed microtubule. The cells were 
treated in the same way as Fig 1C. Images were collected every 10 sec using 
mCherry (Tubulin), CFP (Stu2) and YFP (BiFC signals from Stu2-VN plus Kip3-VC) 
channels. Scale bar, 1 µm.  
Results: We tested whether Venus could be formed rapidly to emit its signal when 
Stu2-VN and Kip3-VC first became closely associated at the MT plus end. This 
seemed to be indeed the case as Venus signals appeared at the MT end, almost 
immediately after MTs started growing from a spindle pole. 
Discussion: We interpreted this result as Venus being formed at the MT end by Stu2-
VN and Kip3-VC molecules brought there separately. However, an alternative 
possibility is that Stu2-VN and Kip3-VC became closely associated elsewhere, in 
advance, and were brought together to the MT end, only becoming visible due to 
their accumulation. In this alternative case, we would expect that Venus signals 
should appear at any sites where Stu2 molecules are present and are rapidly turned 
over, for example at a free CEN in the engineered assay (see Fig 1A) where Stu2-
GFP signals are intense and rapidly turning over (t1/2 = 20-30 sec), as determined by 
fluorescence recovery after photo-bleaching (data not shown). However, when Stu2-
VN and Kip3-VC were expressed in the same cell, Venus signals were not detected 
at free CEN3. Thus it is unlikely that Venus signals at the MT end in this figure were 
due to pre-formation of Venus from Stu2-VN and Kip3-VC elsewhere.  
 
(C) STU2-VN KIP3-VC, but not STU2-VN KAR3-VC, gives BiFC signals at the MT 
end. 

Images of STU2-3GFP (i; T3680), KIP3-3GFP (ii; T3981), KAR3-3GFP (iii; 
T3733), STU2-VN KIP3-VC (iv; T6736) and STU2-VN KAR3-VC (v; T7029) cells with 

PMET3-CDC20 PGAL-CEN3-tetOs TetR-3CFP CFP-TUB1. The images show 
localisation of Stu2, Kip3 and Kar3 (i, ii and iii, respectively). Stu2-VN and Kip3-VC 
show close association at the plus end of MTs (iv), while no Venus signal was visible 
in cells with Stu2-VN plus Kar3-VC (v). The cells were treated as Fig 1C. Images 
were acquired using CFP (CEN3, tubulin), and GFP/YFP (Stu2, Kip3, Kar3 and 
BiFC) channels. Scale bar, 1 µm. 
Results: A BiFC signal is generated only when two proteins are very closely 
associated (Kerppola, 2008). In fact, although both Stu2 and a kinesin-14 family 
member Kar3 localized at the MT plus ends (Fig S4C i, iii), Stu2-VN and Kar3-VC did 
not give Venus signals (Fig S4C v), in contrast to Stu2-VN and Kip3-VC that 
generated Venus signals at the MT end (Fig S4C i, ii and iv). The results confirm that 
Venus signals are not promiscuously generated from two proteins co-localizing with 
light-microscopy resolution. 



  

(D) Stu2 binds Kip3 in vitro in the presence of nocodazole.  
STU2-HA cells were treated with nocodazole (15 µg/ml). The binding reaction was 
performed as in Fig 5D, but in the presence of nocodazole. Stu2-HA bound to either 
MBP-Kip3 or MBP alone was detected by Western blot.  Input is 1/100 of reaction. 
Note that we have confirmed that, with this nocodazole concentration, no MTs were 
detected in cells with GFB-TUB1 (data not shown).  
Results: Although both Stu2 and Kip3 bind MTs, the Stu2 interaction with Kip3 was 
not merely an indirect association mediated by MTs because it was detected after 
MTs were depolymerised with addition of nocodazole to both cell culture and the 
binding reaction. Nonetheless this result does not exclude the possibility that Stu2-
Kip3 interaction is indirect and mediated by a third protein (other than MTs). 



  



  

Figure S5 (associated with Figure 6)  
 
(A) A larger amount of Kip3 is present at the ends of longer MTs.  
The graph shows the maximum length of MTs and Kip3 intensity at the MT plus ends 
just before catastrophe happens. The line shows liner regression. The images 
acquired for Fig 6A were analyzed for this purpose. AU: arbitrary unit. 
Results: Previous results in vitro show that Kip3 molecules are collected by a MT 
lateral surface then move along the MT to its plus end and accumulate there, leading 
to MT catastrophe (Varga et al., 2006; Varga et al., 2009). If this also occurs in vivo, 
we expect that the amount of Kip3 would be higher at the ends of longer MTs. The 
graph indeed shows a positive correlation between the two values (p < 0.0001). 
Moreover, we could visualize Kip3 signals emerging on the MT lateral surface and 
subsequently moving along a MT in vivo (see Fig 5A i; see also Fig 4 in (Varga et al., 
2006), consistent with the idea that Kip3 is collected by the MT lateral surface. 
 
(B) Longer MTs show a higher frequency of MT catastrophe and this 
correlation is partly dependent on Kip3. 
Graph showing catastrophe frequency (%) plotted against MT length. KIP3+ wild-type 
(T3531) and kip3∆ (T2834) cells with PMET3-CDC20 PGAL-CEN3-tetOs TetR-GFP 
YFP-TUB1 were treated as in Fig 1C, but with CEN3 always active (i.e. incubated 
continuously in glucose-containing media). Images were collected every 15 sec for 
GFP and YFP in the same channel. The MTs emerging from a spindle pole during 
the first 10 min of imaging were analyzed until catastrophe happened (31 and 25 
MTs were analyzed in T3531 and T2834, respectively). The y-axis shows the 
percentage of time points at which catastrophe occurred for MTs when MT length 

was within the ranges 1-2, 2-3, 3-4 m etc (x-axis); out of the time points (their 
number is shown above each plot) at which MT length was within each range. Linear 
regressions and values of their slopes are shown. 
Results: The previous in vitro data suggested that Kip3 accumulation at the MT end 
leads to MT depolymerization/catastrophe with greater frequency the longer the MTs 
(Varga et al., 2006; Varga et al., 2009). We tested whether this is also the case in 
vivo. As seen in this graph, both KIP3+ wild-type and kip3∆ cells showed an increase 
of MT catastrophe frequency as MTs became longer. Compared with kip3∆, KIP3+ 
wild-type showed a greater frequency of MT catastrophes for longer MTs, suggesting 
that the MT length-dependent effect is partly dependent on Kip3.  
 
(C) Estimating the number of Stu2 and Kip3 molecules in a single transport. 

Stu2-3GFP (i, T3680) and Kip3-3GFP (ii, T3981) signal intensity during their 
transport along a microtubule in cells containing PMET3-CDC20 PGAL-CEN3-tetOs 

TetR-3CFP CFP-TUB1 was compared with the Cse4-GFP (T6799) signal intensity 
during metaphase or telophase. T3680 and T3981 cells were treated as in Fig 1C 
and were mixed with an asynchronous culture of T6799 cells before imaging. Graphs 
on left show arbitrary values of signal intensity (mean ± standard error of the mean). 
Scale bar, 1 µm. 
Results: Cse4-GFP shows a bi-lobular localization pattern during metaphase and 
one lobe should contain 32 GFP molecules (Furuyama and Biggins, 2007; Joglekar 
et al., 2006). The Cse4-GFP signal at a spindle pole in telophase should also contain 

32 GFP molecules. We quantified the intensity of Stu2-3GFP and Kip3-3GFP 
signals in a single transport and compared their intensity with the intensity of the 
Cse4-GFP signal (between the cells in the same microscopy field). From this 
comparison, we estimated that about 10-15 Stu2 molecules and 2-3 Kip3 molecules 
moved along a MT in a single transport event. 



  



  

Figure S6 (associated with Figure 7)  
 
(A) Various evaluations of KT-MT interactions from simulations. 
One million simulations were run in „wild-type‟ conditions, i.e. in the presence of MT 
rescue both at, and distal to the KT (condition 4 in Fig 7C). The value at the top right 
corner in each graph shows mean ± SD. Total KT collection time was defined in the 
text and evaluated in individual simulations (i). KT capture time was also defined in 
the text and median (ii), mean (iii) and maximum (iv) KT capture time was evaluated 
in individual simulations. KT capture distance (from a spindle pole) was recorded 
upon encounter of each KT with a spindle-pole MT (v) (along any region of a MT, in 
contrast to Figs 7D and S6C, in which we analyzed KT encounters only with 
extended MT regions following rescue). The number of MT rescue events in 
individual simulations is plotted together (vi) or separately (vii) for rescue at the KT 
and distal to the KT. The number of KTs collected per MT was evaluated for 
individual MTs (viii). The number of KTs caught by rescued and extended MTs (along 
the extended MT region) was evaluated in individual simulations (ix). The binning 
along the x-axis was 0.04 min (i, iii, iv), 0.02 min (ii) and 0.015 μm (v).  
 
(B) The effects of KT-dependent MT rescue on overall KT collection are mainly 
due to capture of other KTs by the extended MT region following MT rescue. 
KT-dependent MT rescue causes a number of changes in MT dynamics, leading to 
capture of other KTs. For example, MTs extend and capture other KTs that localize 
further away from a spindle pole than the point of MT rescue (e.g. capture of CEN13 
and CEN3 in Fig 7B). On the other hand, the MT region between the MT rescue point 
and a spindle pole remains for a longer period following KT-dependent MT rescue, 
and thus also captures other KTs (e.g. capture of CEN16 in Fig 7B). Which effect 
contributes more to shortening KT collection time, as shown in Fig 7C?  
(i) To test this, we imposed settings that disallowed capture of KTs by the MT region 
extended following MT rescue, but still allowed capture using the MT region between 
the rescue point and a spindle pole; we termed this „immunity‟.  
(ii, iii) We ran one million simulations with this „immunity‟ (condition Im.) and 
compared the outcomes with those from simulations having no „immunity‟, in the 
presence and absence (condition 4 and 1 in Fig 7C, respectively) of KT-dependent 
MT rescue (at the KT and distal to the KT).  
Results: The distribution of median KT capture time and total KT collection time with 
„immunity‟ was very similar to that without MT rescue (condition 1). The relative 
difference was also similar between Fig 7C i (bottom) and Fig S6B ii (bottom), and 
between Fig 7C ii (bottom) and Fig S6B iii (bottom). We conclude that the effect of 
KT-dependent MT rescue on overall KT collection is mainly attributed to capture of 
other KTs by the extended MT region following MT rescue. 
 
(C) MT rescue distal to the KT is particularly useful for collecting KTs that have 
drifted further away from a spindle pole.  
Graph (top) shows distribution of the distance form a spindle pole of KT capture by 
the extended region of MTs, following rescue at the KT (red) and rescue distal to the 
KT (blue), in „wild-type‟ conditions (condition 4 in Fig 7C). The binning along the x-

axis was 0.03 m. Contour map (bottom) shows the distribution of KT capture 
position density. Contour levels are 0.95, 0.6 and 0.1 (inside to outside) of the 
maximum value. Capture counts were calculated as cumulative values along the y-
axis, projected to the x-z plane. 
 



  

Supplemental Experimental Procedures 
 
Yeast genetics and molecular biology 
 

The background of yeast strains (W303) and methods for yeast culture and -factor 
treatment were as described previously (Amberg et al., 2005; Tanaka et al., 2007). 
Cells were cultured at 25 ºC in YP medium containing 2 % glucose, unless otherwise 

stated. Constructs of PGAL-CEN3-tetOs (Tanaka et al., 2005), TetR-3CFP (Bressan 
et al., 2004), PMET3-CDC20 (Uhlmann et al., 2000) and TetR-GFP (Michaelis et al., 

1997) were as described previously. To make kip1, cin8, kip2 and kip3, whole 
open reading frames of the relevant genes were replaced with KanMX4 and HIS3 

gene, using a one-step PCR method (Amberg et al., 2005); kip1, cin8, and kip3 
were obtained from EUROSCARF, Frankfurt, Germany.  
 
KIP1, CIN8, KIP2, KIP3, STU2, BIK1, BIM1, KAR3, NDC80 and MTW1 were tagged 
at their C-termini at their original gene loci by a one-step PCR method (Maekawa et 

al., 2003; Tanaka et al., 2005), using 3GFP-KanMX6 (pSM1023; (Maekawa et al., 

2003), 3CFP-HIS3 (pT769), 4mCherry-NatMX6 (pT909) and 6HA-HIS3 (a gift from 
Kim Nasmyth lab, University of Oxford) cassettes as PCR templates. pT909 was 
constructed by multiplying the mCherry gene in pKS391 (Snaith et al., 2005). To 

construct STU2TOG1-3GFP, PCR was carried out with the primers flanking the 

TOG1 domain but in a reverse manner using STU2 (wild-type)-3GFP as a PCR 

template. The STU2TOG1-3GFP plasmid was completed by circularizing the PCR 
product by ligation and was integrated at an auxotroph locus as a single copy.  
 
To construct kip3-E345A mutant, the mutation was introduced to KIP3 gene cloned in 
pGEM T-easy plasmid, using the QuickChange II site-directed mutagenesis kit 
(Strategene). KIP3::URA3 (URA3 inserted within KIP3 gene) was replaced with the 
mutated kip3, using 5-fluoroorotic acid selection. For the BiFC assay, KIP3, STU2 and 
KAR3 were tagged at their C-termini at their original gene loci, using VN-TRP1 and 
VC-HIS3MX3 cassettes, containing N-terminal and C-terminal halves of the gene for 
Venus fluorescent protein (Sung and Huh, 2007). GFP-TUB1 (Straight et al., 1997), 
CFP-TUB1 (Janke et al., 2002), YFP-TUB1 (pDH20, obtained from Yeast Resource 
Centre, Seattle, USA) and mCherry-TUB1 (constructed for this study) plasmids were 
integrated at auxotroph marker loci. Strains with the tagged genes grew normally at 
temperatures used in this study. 
 
 
Live-cell imaging 
 
The procedures for time-lapse fluorescence microscopy were described previously 
(Kitamura et al., 2007; Tanaka et al., 2007). Time-lapse images were collected at 25 
ºC (ambient temperature). For image acquisition, we used a DeltaVision RT 

microscope (Applied Precision), UPlanSApo 100 objective lens (Olympus; NA 1.40), 
a CoolSnap HQ CCD camera (Photometrics) and SoftWoRx software (Applied 
Precision). We acquired 5-9 (0.7 μm apart) z-sections, which were subsequently 
deconvoluted and analyzed with SoftWoRx and Volocity (Improvision) software. For 
figures, z stacks were projected to two-dimensional images. GFP signals were 
discriminated from YFP, using the JP3 filter set (Chroma). CFP, YFP (or GFP) and 
mCherry signals were discriminated with the 89006 ET filter set (Chroma). GFP and 
YFP signals were acquired together, using the YFP channel of the 89006 ET filter 
set.  
 
 



  

Analyzing dynamics of kinetochores, microtubules and associated proteins 
 
To evaluate the length of MTs and position of centromeres, we took account of the 
distance along the z-axis as well as distance on each z plane. To evaluate the period 
of MT pausing at CEN3 (Fig 1D, S1C), CEN3 motion was fit to linear regression 

while it was at the MT end, and the period with MT shrinkage less than 1.0 m/min 
and with no growth was determined; see example in the graph of Fig 2A iv. Statistical 
analyses were carried out with the a) a chi-square test (Figs 2A ii, 2B ii, S1D), b) a 
paired t-test (Fig S1B), c) Fisher‟s exact test (Figs 3B iii, 4B, 4C ii, 4D i), d) an 
unpaired t-test (Figs 4D ii, S3C) and e) p value based on correlation (Fig S5A). The 
null hypotheses in these tests were that the samples were collected randomly and 
independently, from the same population (a to d) or from the population with no 
correlation between X and Y (e). All p values were two-tailed, and the null 
hypotheses were reasonably discarded when p values were < 0.05. 
 
Discerning the „end-on attachment‟: Only after CEN3 was pulled towards a spindle 
pole as the MT shrinks (end-on pulling), we could recognize the KT-MT attachment 
as „end-on attachment‟, because only after end-on pulling started we could confirm 
that the KT on CEN3 was coupled or tethered properly at the MT end. Likewise, if a 
MT end had reached the KT but end-on pulling had not yet begun, we did not yet 
know whether end-on attachment had been formed or was still in an intermediate 
state between lateral and end-on attachment.  
 
 
Protein pulldown assay and Western blots 
 
MBP-Kip3 or MBP in pLous3 (a gift from Jim Naismith lab, University of St Andrews) 
was expressed in E. coli and bound to amylose beads approximately at 0.2 µg/µl. 5 
µl of beads was incubated for 45 mins at 4˚C with an extract of yeast cells expressing 

Stu2-6HA from the endogenous promoter. Yeast extract was prepared by bead 
beating in a buffer containing 50mM HEPES pH7.6, 150mM NaCl, 0.05% Tween20, 

10mM  mercaptoethanol, protease inhibitors (Calbiochem) and phosphatase 
inhibitors (PhosStop, Roche). After the binding reaction, beads were washed, by 
resuspension and centrifugation, once in binding buffer containing 500mM NaCl, 
then a further twice in binding buffer before the beads were eluted by heating at 

100˚C in SDS gel loading buffer. Stu2-6HA was detected on Western blots using 
12CA5 anti-HA antibody (Fig 5D). Where nocodazole was used (Fig S4D), it was 
added to yeast cells for 2 hrs prior to harvesting and to binding reactions at 10 µg/ml. 

To detect Kip3-3GFP, Kar3-VC, Kip3-VC and Stu2-VN proteins (Figs S3A, S4A), 
yeast cell extracts were prepared as above and Western blots were carried out using 
anti-GFP antibodies (G1544, Sigma for Stu2-VN; clones 7.1/13.1, Roche for others). 
 
 
Computer simulation of kinetochore interaction with microtubules 
 

Parameter Symbol Value Source of the value 

Time step t 0.01 min A reasonably small 
value was chosen 

Radius of the nucleus Rnuc 1.25 μm This study 
(visualization of the 
nuclear envelope) 

MT growth speed vgro 1.5 μm min-1 Fig 3b, Tanaka et al. 
2005  

MT shrinkage speed vshr 2.8 μm min-1 Fig 3b, Tanaka et al. 



  

2005 

MT catastrophe rate Kcat 0.6 min-1 This study 

MT nucleation rate Knuc 0.5 min-1 Based on Fig S1E 
etc, Kitamura et al., 
2010 

MT beaming factor  0.7 Based on Fig S1E 
etc, Kitamura et al., 
2010 

Diffusion constant D 0.1 μm2 min-1 Fig S1, Kitamura et 
al., 2007 

KT lateral sliding speed vlat 1 μm min-1 Fig 7C, Kitamura et 
al. 2007 

KT end-on pulling speed vpul 1.7 μm min-1 Fig 2D, Tanaka et al. 
2007 & Fig 7C, 
Kitamura et al. 2007 

KT slow end-on pulling speed vspul 0.35 μm min-1 This study 

KT rescue delay td 8 sec This study 

Stu2 sending rate Kstu2 0.3 min-1 This study 

Stu2 speed Vstu2 2.1 μm min-1 Fig S9, Tanaka et al. 
2005 & this study 

KT capture radius RKT 0.4 μm Fig 6A, S6A Kitamura 
et al., 2010 

KT capture speed vcap 5 μm min-1 Fig S1C, Kitamura et 
al., 2010 

Probability of MT rescue at the 
KT 

Pres 0.6 Fig 4B, Tanaka et al., 
2007 

KT reassembly position Rass 1.4  0.2 μm 

(mean  SD)  

Fig 1, Kitamura et al., 
2007 

List 1. Parameters used in the computer model of KT-MT interaction. Values of 
parameters were obtained from our previous studies (Kitamura et al., 2007; Kitamura 
et al., 2010; Tanaka et al., 2007; Tanaka et al., 2005) or newly evaluated in this 
study. 
 
 

Centromeres Replication timing (min) 

CEN2 0 

CEN3 1.53 

CEN13 1.65 

CEN10 2.66 

CEN4 2.89 

CEN16 3.46 

CEN5 3.49 

CEN7 3.77 

CEN1 3.83 

CEN9 3.91 

CEN12 4.05 

CEN11 4.40 

CEN15 5.22 

CEN6 6.49 

CEN14 6.54 

CEN8 7.49 

List 2. Replication timing of centromeres relative to CEN2 that replicates earliest. The 
values were obtained from (Yabuki et al., 2002). 



  

We created a computer model and carried out simulation of the initial KT-MT 
interaction (Fig 7A), based on configuration in the physiological conditions (Kitamura 
et al., 2007); i. e. MTs extend from a single spindle pole, capture KTs and bring them 
back to the vicinity of the spindle pole. In this simulation, we used the parameters 
shown in List 1. The values of the majority of the parameters were defined in our 
previous studies of live-cell imaging and electron tomography (Kitamura et al., 2007; 
Kitamura et al., 2010; Tanaka et al., 2007; Tanaka et al., 2005), and unknown 
parameters were measured in the current study. Whenever possible, the parameter 
values were estimated in the physiological experimental conditions (Kitamura et al., 
2007). Only when it was difficult to estimate them in physiological conditions, did we 
use an engineered condition (see Fig 1A).  
 
The model was computed as a discrete simulation of a series of events on a constant 

time step t. All objects (MTs, KTs and Stu2) were located in a 3-dimentional space 
in a Cartesian reference frame with the z-axis pointing “up”. The nucleus was 
represented by a sphere of radius Rnuc, centred along the z-axis at the distance of 
Rnuc from the origin. A spindle pole was located at the origin. Each MT was a line 
segment extending into the nucleus from the spindle pole. Each KT was a point 
inside the nucleus. A group of Stu2 proteins in a single transport event was a point 
on a MT. 
 
MTs could grow and shrink with speed vgro and vshr, respectively. A catastrophe 
(conversion from growth to shrinkage) could happen randomly at a rate of Kcat, 
calculated only over the growth stage. When a growing MT hit the nuclear envelope, 
it started to shrink. When an empty MT shrank to the spindle pole, it could start 
growing at a certain nucleation rate Knuc, unless there was an excessive KT waiting at 
the spindle pole (see below), in which case the MT captured the KT and they showed 
no further change. The value Knuc was determined so that the 5-10 long MTs (> 0.7 
μm) appeared during KT collection, as estimated from electron tomography images 
in early S phase (e.g. Fig S1E in Kitamura et al., 2007). When Stu2 moving along a 
MT reached its distal end, a shrinking MT was rescued i.e. shrinkage was converted 
into growth. When the distal end of a shrinking MT caught up with a laterally sliding 
KT, it could be rescued with probability Pres. Otherwise end-on pulling was 
commenced; MTs were not rescued during end-on pulling (Tanaka et al., 2007).  
 

MT direction was represented by two angles, the azimuth angle, , and the zenith 

angle (measured from the z-axis), . MTs grew and re-grew in random directions with 
angular distribution concentrated towards the centre of the nucleus. We assumed the 
MTs did not change direction as they grew, as such changes were relatively small in 
live cell imaging (data not shown). To simulate this situation, we initially generated an 

isotropic direction,  = R[0, 2] and cos  = R[0, 1], where R[a, b] was a random 
number uniformly distributed between a and b. We transformed the zenith angle with 

a “beaming” factor, : 






cos1

cos
cos




  

 

The angles  and ‟ give the desired distribution, which is isotropic for  = 0 and 

becomes increasingly more concentrated towards the centre of the nucleus as 1. 

The value for  was estimated so that MTs extending from a spindle pole formed a 
configuration to images of electron tomography acquired in early S phase (e.g. Fig 
S1E in (Kitamura et al., 2007),  
 
Time 0 was defined as the time of replication of the first CEN (CEN2) and therefore 
its detachment from a spindle pole. At -10 min, 5 MTs started growing from a spindle 



  

pole (this number was set so that 5-10 long MTs [> 0.7 μm] appeared during KT 
collection; see above). Each new MT became available for growth and shrinkage 
when replication of each centromere (List 2; Yabuki et al., 2002) caused KT 
disassembly and centromere detachment from a MT. One minute after this, a KT was 
reassembled at each detached centromere and became capable of reattaching to a 
MT. We assumed that KTs were reassembled at random positions at a distance 
defined by Rass (showing Gaussian distribution) from the spindle pole. 
 
KTs moved freely inside the nucleus following a random walk with a diffusion 
constant D. Once attached to a MT, a KT slid laterally towards the spindle pole or 
was pulled by the distal end of the MT with speed vlat or vpul, respectively. When a 
sliding KT reached the spindle pole, it was transferred to a waiting pool where it 
remained until an empty MT shrank to zero. Then, the KT was caught at the end of 
this MT and the „arrival‟ of KT to the spindle pole was completed, after which no 
further change occurred to such KT and MT. The same happened immediately when 
an end-on pulled KT reached the spindle pole. 
 
Before centromere DNA replication caused KT disassembly and after a reassembled 
KT was transported to the vicinity of the spindle pole, the relevant KT stayed in the 
vicinity of a spindle pole. In this circumstance, KTs were tethered with the plus ends 
of short MTs (< 300 nm), which however were considered to have zero length for 
simplicity in simulation. 
 
A KT, which was sliding on a MT or waiting for end-on establishment at the spindle 
pole, could send Stu2 along the MT at a rate of Kstu2. Stu2 moved along the MT away 
from a spindle pole at a speed of vstu2. The arrival of Stu2 at the MT plus end led to 
rescue of the MT (rescue distal to the KT). When the MT plus end caught up with a 
KT, which was associated on the lateral side of this MT, MT rescue (rescue at the 
KT) occurred with probability of Pres, following a delay period of td, during which the 
KT was pulled by slow-speed “end-on pulling” (speed vspul) (discussed as MT pausing 
in text). The duration of the delay was estimated based on the duration of transient 
co-localization of the Dam1 complex with CEN in physiological conditions (see 
Kitamura et al., 2007). 
 
In the condition lacking MT rescue at the KT, end-on attachment was established 
(Pres=0) and the KT was pulled towards a spindle pole at a speed of vpul (without prior 
„pausing‟). Here we did not assume KT detachment occurred from a MT, although 
the stu2 hypomorphic mutant, which was defective in MT rescue at the KT, showed 
such detachment in 16 % of cases (Fig 2A ii). This is because our aim in the 
simulation was to find the benefit of MT rescue at the KT, independent of the 
prevention of the KT detachment. 
 
Although Kstu2 and Kcat (see above) might change depending on the position of the KT 
(see Discussion) and MT length (Fig S5B; Varga et al., 2006) respectively, we set 
them as constants for simplicity. Accordingly, the approximate values of Kstu2 and Kcat 

were estimated, based on our measurement in the engineered assay system (see 
Fig 1A) and in physiological condition (Kitamura et al., 2007), respectively (note that 
it was hard to estimate Kstu2 in physiological conditions). 
 
The interaction between KT-generated and spindle-pole MTs was simplified by 
assuming a certain capture radius, RKT, around each KT. If a KT was found at a 
distance RKT from any part of a spindle-pole MT, the KT-derived MT connected to this 
spindle-pole MT by the shortest distance and brought the KT towards the spindle-
pole MT, usually on its lateral side, at a speed vcap, which we assumed to be the 
same as the depolymerization rate of a KT-derived MT (Fig S1C in Kitamura et al, 



  

2010). Once capture was completed, the KT began sliding, which was converted to 
end-on pulling if end-on attachment was subsequently established. The entire 
simulation was completed once all 16 reassembled KTs reached the spindle pole 
and established end-on attachment. 
 
If an end-on pulled KT caught up with another KT that was sliding along the same 
MT, in our simulation the sliding KT detached from the MT, because 1) end-on 
pulling was faster than sliding and 2) a single MT is thought to establish end-on 
attachment only for one KT (Winey et al., 1995). We assumed that the detached KT 
was not able to re-attach to a MT until the KT generated a MT from it at its maximum 
length RKT; i.e. for RKT/vgro min (note that KT-derived MTs showed a similar growth 
rate to a spindle-pole MTs; Fig S1C in Kitamura et al, 2010). 
 
The code for the simulation was written in Perl and simulations were run in a Linux 
environment. We ran 1,000,000 individual simulations in each condition. In Fig 7C, 
we tested four conditions with Pres= 0 or 0.6 combined with Kstu2=0 or 0.3. In Fig S6B, 
we tested the „immunity‟ of rescued MTs for capture of other KTs. With this 
„immunity‟, after a KT induced rescue of its associated MT, the rescued MT could not 
capture any additional KTs using the MT region acquired by the relevant MT rescue 
and subsequent MT extension. In Fig 7D, the position of KT capture by a spindle-
pole MT was defined as the first KT contact point with a spindle-pole MT (usually on 
its lateral side). 
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