Supplementary Online Data

Title: CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in *Arabidopsis*

Yuri Imura, Yasushi Kobayashi, Sumiko Yamamoto, Masahiko Furutani, Masao Tasaka, Mitsutomo Abe, and Takashi Araki

Genotype	Number of rosette	Number of cauline	n
	leaves	leaves	
Col	10.4 ± 1.1	2.8 ± 0.6	12
$Col \times crp-1D F1$	8.7 ± 0.9	3.1 ± 0.5	11
crp-1D	8.1 ± 0.8	2.8 ± 0.7	13
<i>35S::FT</i> #11-1	3.7 ± 0.5	1.4 ± 0.5	15
<i>crp-1D</i> × <i>35S</i> :: <i>FT</i> #11-1 F1	0.7 ± 0.8 *	1.9 ± 0.5	18
<i>35S::FT</i> #1-5C	4.3 ± 0.5	1.1 ± 0.6	15
<i>crp-1D</i> × <i>35S</i> :: <i>FT</i> #1-5C F1	$2.1 \pm 0.3^*$	1.5 ± 0.5	13
SULTR2;1::FT	4.7 ± 0.5	1.3 ± 0.5	15
<i>crp-1D</i> × <i>SULTR2;1::FT</i> F1	$2.6 \pm 0.5^*$	1.4 ± 0.5	10
<i>35S::TSF</i> #4-1	7.7 ± 0.5	2.3 ± 0.5	13
<i>crp-1D</i> × <i>35S</i> :: <i>TSF</i> #4-1 F1	$3.9 \pm 0.4^*$	1.5 ± 0.5	14
Col	10.3 ± 1.0	2.3 ± 0.5	12
crp-1D	6.4 ± 0.8	3.0 ± 0.4	14
Col × <i>soc1-101D</i> F1	5.4 ± 0.6	2.6 ± 0.5	16
<i>crp-1D</i> × <i>soc1-101D</i> F1	4.9 ± 0.5	2.9 ± 0.7	27
Col	10.4 ± 0.7	2.4 ± 0.5	12
crp-1D	7.6 ± 0.8	3.1 ± 0.4	14
35S::LFY	7.7 ± 1.3	4.0 ± 1.8	8
<i>crp-1D</i> × <i>35S::LFY</i> F1	$6.0 \pm 0.7^*$	2.8 ± 0.8	14
35S::AP1	5.8 ± 0.5	2.1 ± 0.6	13
<i>crp-1D</i> × <i>35S::AP1</i> F1	5.4 ± 0.6	2.6 ± 0.5	19
Ler	7.6 ± 0.7	3.3 ± 0.5	14
crp-1D Ler	5.8 ± 0.8	3.3 ± 0.5	16
<i>35S::FT</i> #1-5L	2.9 ± 0.6	2.7 ± 0.5	19
<i>crp-1D</i> × <i>35S</i> :: <i>FT</i> #1-5L F1	1.3 ± 0.9 *	3.4 ± 1.1	11

Supplementary Table S1. Effect of *crp-1D* mutation on flowering time of transgenic plants over-expressing *FT*, *TSF*, *SOC1*, *LFY* and *AP1*.

(Supplementary Table S1 continued)

Statistics for results presented in Fig. 1E, 4A and 4E.

The number of leaves is presented as the average \pm SD.

Plants were grown on 1/2MS medium under long-day conditions.

* Statistically significant difference (Student's *t*-test, P < 0.005) from the respective parental transgenic line.

Genotype	Number of rosette		Numbe	r of cauline	n
	lear	ves	leaves		
	Long	day			
Col	12.5 ±	± 0.9	2.9	± 0.5	15
crp-1D	8.8 ±	± 0.9 *	2.6	± 0.5	12
crp-3	29.1 ±	± 1.7 [*]	8.5	± 0.8	11
crp-4	28.1 ±	± 2.5 *	8.6	± 1.7	12
Ler	6.3 ±	± 0.5	2.4	± 0.5	15
crp-2	10.9 ±	± 0.7 *	5.9	± 0.7	14
mab2-1	10.0 ±	± 0.8 *	3.4	± 0.7	10
	Short	day			
Col	52.9 ±	± 4.2	8.6	± 0.5	14
crp-1D	42.8 ±	± 1.8 *	7.8	± 0.8	14
crp-3	53.9 ±	± 6.0	16	± 3.0	7
crp-4	46.6 ±	± 4.5 *	16.9	± 1.2	10
Ler	16.6 ±	± 0.7	5.8	± 1.0	14
crp-2	18.3 ±	± 1.5	14.7	± 0.6	3
mab2-1	18.8 ±	± 2.0	10.4	± 2.4	9

Supplementary Table S2. Flowering time of *crp* and *mab2* single mutants under long-day and short-day conditions.

Statistics for results presented in Fig. 1E, 2A, 2B, 5A and 5B.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil.

* Statistically significant difference (Student's *t*-test, P < 0.005) between marked genotypes and the respective wild types.

Genotype	Number of rosette	Number of cauline	n
	leaves	leaves	
Col	9.3 ± 0.5	2.7 ± 0.5	12
crp-3	31.5 ± 3.6	8.9 ± 1.4	10
crp-4	30.9 ± 2.4	7.9 ± 2.4	9
SULTR2;1::FT	$4.2 \pm \ 0.4$	1.2 ± 0.4	14
SULTR2;1::FT; crp-3	5.4 ± 0.7 *	1.6 ± 0.5	13
SULTR2;1::FT; crp-4	$7.2 \pm 1.0^{*}$	1.9 ± 0.6	20

Supplementary Table S3. Effect of *crp-3* and *crp-4* mutation on flowering time of *SULTR2;1::FT*.

Statistics for results presented in Fig. 2E.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil under long-day conditions.

* Statistically significant difference (Student's *t*-test, P < 0.005) from *SULTR2;1::FT*.

Genotype	Number of rosett	e Number of cauline	n
	leaves	leaves	
Col	12.5 ± 0.9	2.9 ± 0.5	15
crp-3	29.1 ± 1.7	8.5 ± 0.8	11
crp-4	31.5 ± 2.0	9.7 ± 2.3	14
ft-2	30.9 ± 2.5	6.7 ± 1.3	12
<i>ft-2; crp-3</i>	39.6 ± 4.0 *	15.9 ± 3.3	19
<i>ft-2; crp-4</i>	41.2 ± 3.6 *	17.3 ± 3.6	11
Col	9.6 ± 0.7	2.7 ± 0.5	12
crp-3	31.0 ± 2.0	7.6 ± 1.4	14
crp-4	30.9 ± 3.0	7.5 ± 2.2	12
tsf-1	9.5 ± 0.5	2.8 ± 0.5	14
tsf-1; crp-3	30.7 ± 3.0 **	8.4 ± 1.4	15
tsf-1; crp-4	$31.4 \pm 2.6^{**}$	8.4 ± 1.3	18
Col	10.4 ± 0.5	2.4 ± 0.5	12
crp-3	29.5 ± 2.4	7.1 ± 1.6	15
crp-4	32.5 ± 3.0	9.7 ± 1.7	20
fd-1	16.9 ± 0.8	4.6 ± 0.8	12
fd-1; crp-3	34.5 ± 2.3 *	12.1 ± 3.7	11
fd-1; crp-4	35.6 ± 2.7 *	12.0 ± 2.7	17
Col	9.5 ± 0.7	2.7 ± 0.5	15
crp-3	29.1 ± 2.9	7.6 ± 0.9	8
crp-4	29.5 ± 2.0	6.7 ± 1.1	11
soc1-2	18.4 ± 1.4	3.6 ± 0.7	12
soc1-2; crp-3	39.8 ± 2.5 *	14.6 ± 4.2	16
soc1-2; crp-4	38.6 ± 3.9 *	13.3 ± 3.9	16

Supplementary Table S4. Genetic interaction between *crp* loss-of function mutants and flowering mutants.

Genotype	Number of rosette	Number of cauline	n
	leaves	leaves	
Col	9.9 ± 0.7	$2.7 \pm \ 0.5$	12
crp-3	34.3 ± 2.2	6.3 ± 1.0	12
crp-4	35.9 ± 3.1	6.7 ± 1.6	10
flc-3	7.7 ± 0.5	2.3 ± 0.5	12
flc-3; crp-3	24.2 ± 1.8 *	4.9 ± 1.3	16
<i>flc-3; crp-4</i>	$25.1 \pm 3.0^{*}$	6.2 ± 1.2	18

(Supplementary Table S4 continued)

Statistics for results presented in Fig. 2A.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil under long-day conditions.

* Statistically significant difference (Student's *t*-test, P < 0.005) from the corresponding *crp* single mutants in the same group.

^{**} No statistically significant difference (Student's *t*-test, P > 0.5) from the corresponding *crp* single mutants in the same group.

Genotype	Number of rosette	Number of cauline	n
	leaves	leaves	
	Long day		
Col	10.2 ± 0.7	$2.5 \pm \ 0.5$	12
crp-1D	7.6 ± 0.9	2.8 ± 0.4	12
<i>35S::CRP</i> #11	$12.0 \pm 1.0^{*}$	3.8 ± 0.8	12
<i>35S::CRP</i> #12	11.1 ± 0.8	3.1 ± 0.5	12
<i>35S::CRP</i> #14	10.8 ± 0.6	3.0 ± 0.6	12
<i>35S::CRP</i> #15	9.8 ±0	2.8 ± 0.4	12
	Short day		
Col	52.3 ± 3.4	8.4 ± 1.0	10
crp-1D	48.8 ± 4.8	8.3 ± 1.5	12
<i>35S::CRP</i> #11	54.8 ± 3.9	8.0 ± 0.5	10
<i>35S::CRP</i> #12	54.5 ± 2.2	8.6 ± 1.1	10
<i>35S::CRP</i> #14	52.9 ± 3.1	9.1 ± 1.0	11
<i>35S::CRP</i> #15	52.1 ± 4.3	8.4 ± 0.5	10

Supplementary Table S5. Flowering time of *35S::CRP* under long-day and short-day conditions.

Statistics for results presented in Fig. 3B and 3C.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil.

* Statistically significant difference (Student's *t*-test, P < 0.005) from Col.

Genotype	Number of rosette	Number of cauline	n
	leaves	leaves	
Col	$9.8 \pm 0.8 $	2.4 ± 0.5	12
crp-1D	$6.0 \pm \ 0.9$	2.9 ± 0.3	12
<i>35S::CRP</i> #11	$11.0 \pm \ 0.9$	3.1 ± 0.3	12
<i>crp-1D</i> × <i>35S</i> :: <i>CRP</i> #11 F1	8.6 ± 0.7 *	3.4 ± 0.6	18

Supplementary Table S6. Effect of 35S:: CRP on flowering time of crp-1D plants.

Statistics for results presented in Fig. 3D.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil under long-day conditions.

* Statistically significant difference (Student's *t*-test, P < 0.005) from *crp-1D*.

Genotype	Number of rosette		Number of cauline		n
	leaves		le	eaves	
Col	11.5 =	± 0.8	3.2	± 0.6	12
crp-1D	7.6 =	± 0.8	3.3	± 0.5	12
ft-2	26.1 =	± 1.1	4.9	± 0.8	15
<i>ft-2; crp-1D</i>	25.9 =	\pm 0.8 *	6.0	± 1.2	14
Col	10.2 =	± 0.7	2.3	± 0.5	12
crp-1D	7.2 =	± 0.4	2.9	± 0.5	12
tsf-1	11.0 =	± 1.2	2.6	± 0.5	10
tsf-1; crp-1D	7.4 =	± 0.7	2.9	± 0.3	12
fd-1	18.1 =	± 1.0	4.8	± 0.8	11
fd-1; crp-1D	8.7 =	\pm 0.8 *	3.4	± 0.7	12
Col	9.6	± 0.7	2.5	± 0.5	8
crp-1D	6.1 =	± 0.6	3.3	± 0.5	8
soc1-2	19.3 =	± 0.9	3.3	± 0.5	8
soc1-2; crp-1D	15.3 =	$\pm 1.8^{*}$	4.1	± 1.0	17
Col	9.8 =	± 0.9	3.0	± 0.4	12
crp-1D	6.7 =	± 0.5	3.1	± 0.4	15
ful-2	10.2 =	± 0.9	3.9	± 0.6	10
ful-2; crp-1D	7.2 =	± 0.8	4.2	± 0.4	12
Col	9.4 =	± 0.9	2.9	± 0.5	12
crp-1D	6.4	± 0.8	3.0	± 0.4	14
lfy-1	14.2 =	± 1.3	25.2	± 6.5	14
lfy-1; crp-1D	6.2 =	± 0.7	4.8	± 0.7	12

Supplementary Table S7. Effect of loss-of-function mutation of flowering genes on flowering time of *crp-1D* plants.

Statistics for results presented in Fig. 4C.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil under long-day conditions.

* Statistically significant difference (Student's *t*-test, P < 0.005) from *crp-1D* in the same group.

Genotype	Number of rosette	Number of	n
	leaves	cauline leaves	
Col	10.7 ± 0.8	$2.6 \pm 0.5 $	12
crp-1D	6.9 ± 0.7	3.1 ± 0.7	12
SULTR2;1::FT/-	4.7 ± 0.5	1.4 ± 0.5	12
SULTR2;1::FT/-; crp-1D/+	2.0 ± 0.0	$2.0 \pm 0.0 $	15
SULTR2;1::FT/-; fd-1	9.0 ± 0.4	2.9 ± 0.3	15
SULTR2;1::FT/-; fd-1; crp-1D/+	$3.0 \pm 0.5^*$	$2.4 \pm 0.5 $	8
SULTR2;1::FT/-; soc1-2	8.6 ± 0.8	0.6 ± 0.5	22
SULTR2;1::FT/-; soc1-2; crp-1D/+	$5.2 \pm 0.8^*$	1.5 ± 0.5	13

Supplementary Table S8. Effect of *fd-1* and *soc1-2* mutation on flowering time of *SULTR2;1::FT/-; crp-1D/+* plants.

Statistics for results presented in Fig. 4E.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil under long-day conditions.

* Statistically significant difference (Student's *t*-test, *P* < 0.005) from *SULTR2;1::FT/-; crp-1D/*+.

11 0	0 1	1	
Genotype	Number of rosette	Number of cauline	n
	leaves	leaves	
Ler	5.4 ± 0.5	2.2 ± 0.4	10
mab2-1	12.4 ± 0.8 *	7.1 ± 1.2	7
crp-2	$12.4 \pm 1.3^{*}$	7.7 ± 1.0	9
<i>crp-2; mab2-1</i>	12.7 ± 1.5 *	9.3 ± 1.8	6

Supplementary Table S9. Flowering time of *crp-2; mab2-1* plants.

Statistics for results presented in Fig. 5C.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil under long-day conditions.

* No statistically significant difference (Student's *t*-test, P > 0.5) from among the genotypes.

Genotype	Number of rosette	Number of cauline	n
	leaves	leaves	
	Experiment 1		
Ler	5.9 ± 0.5	$2.0 \pm \ 0.4$	15
mab2-1	12, 13	6, 10	2
<i>crp-1D</i> L	4.1 ± 0.4	2.4 ± 0.5	14
crp-1D L; mab2-1	11.9 ± 1.3	7.4 ± 2.1	9
	Experiment 2		
Ler	6.3 ± 0.8	3.4 ± 0.5	7
<i>crp-1D</i> L	4.3 ± 0.8	3.0 ± 0.8	7
<i>35S::FT</i> #1-5L	2.4 ± 0.5	2.4 ± 0.6	16
35S::FT #1-5L; mab2-1/ mab2-1	4.8 ± 0.7 **	3.9 ± 1.2	10
<i>35S::FT</i> #1-5L/-; <i>crp-1D</i> L/+	$1.1 \pm 0.5^{*}$	2.8 ± 1.1	18
<i>35S::FT</i> #1-5L/-; <i>crp-1D</i> L/+;	$4.6 \pm 0.5^{*,**}$	3.6 ± 1.1	5
mab2-1/ mab2-1			

Supplementary Table S10. Effects of *mab2-1* on flowering time of *crp-1D* L plants.

Statistics for results presented in Fig. 5D and 5E.

The number of leaves is presented as the average \pm SD.

Plants were grown on soil (Experiment 1) or on 1/2MS medium (Experiment 2) under long-day conditions.

* Statistically significant difference (Student's *t*-test, P < 0.005) between marked genotypes.

^{**} No statistically significant difference (Student's *t*-test, P > 0.5) between marked genotypes.

Name	Background	References	Note	
Wild-type				
Col-0	Col		CS6673 (stock name)	
Ler-2	Ler		CS8581 (stock name)	
		EMS mutation		
crp-1D	Col	this study	S99F missense	
<i>crp-1D</i> L	Ler	this study	introgression line	
fd-1	Col	Abe et al. 2005	introgression line	
ft-2	Col	this study	introgression line	
ful-2	Col	Ferrándiz et al. 2000	W91stop nonsense	
lfy-1	Col	Schultz and Haughn 1991	CS6228 (stock name)	
mab2-1	Ler	Ito et al. 2011	W1833stop nonsense	
pid-2	Ler	Bennett et al. 1995	CS8063 (stock name)	
pid-3	Col	Bennett et al. 1995	CS8064 (stock name)	
		Fast neutron deletion		
flc-3	Col	Michaels and Amasino 1999	104-bp deletion that removes the start codon	
	T-DN	A/transposon insertion (loss-	of-function)	
crp-2	Ler	this study	Ds-transposon insertion (SET_3.701) 1	
crp-3	Col	this study	SALK_108241 described as <i>cct-2</i> 2	
crp-4	Col	this study	SALK_124276 described as <i>cct-3</i> 2	
soc1-2	Col	Lee et al. 2000	T-DNA insertion	
tsf-1	Col	Yamaguchi et al. 2005	SALK_087522	
		Transgenic (gain-of-functi	ion)	
<i>35S::FT</i> #1-5C	Col	Kobayashi et al. 1999	weak line	
<i>35S::FT</i> #1-5L	Ler	Kobayashi et al. 1999	introgression line	
35S::FT #11-1	Col	Kobayashi et al. 1999	strong line	
<i>35S::TSF</i> #4-1	Col	Kobayashi et al. 1999	weak line	
<i>SULTR2;1::FT</i> #1-a	Col	Abe et al. 2005		
soc1-101D	Col	Lee et al. 2000	activation-tagging line	
35S::LFY	Col	Weigel and Nilsson 1995	DW151.2.5C	
35S::AP1	Col	Mandel and Yanofsky 1995		

Supplementary Table S11. Plant materials used in this study.

1: Parinov et al. 1999 2: Gilmor et al. 2010

	Sequence		
Gene	Forward	Reverse	References
ACT2	GCTGAGAGATTCAGATGCCCA	GTGGATTCCAGCAGCTTCCAT	Kim et al. 2008
API	GAAGGCCATACAGGAGCAAA	ACTGCTCCTGTTGAGCCCTA	Yamaguchi et al. 2009
CO	CTACAACGACAATGGTTCCATTAAC	CAGGGTCAGGTTGTTGCTC	Nakamichi et al. 2007
CRP	ATACAAGGAAACTGTTGATGGACTT	GCAATCGTTTGTGCTGTTGTG	in this study
FD	TGTTTCTCTTTTGGGGATTGA	CCTTTTCTCTTTCCGGGTCT	Yamaguchi et al. 2009
FLC	CCGAACTCATGTTGAAGCTTGTTGAG	CGGAGATTTGTCCAGCAGGTG	Jiang et al. 2007
FT	CTAGCAACCCTCACCTCCGAGAATA	CTGCCAAGCTGTCGAAACAATATAA	Wang et al. 2009
FUL	TTGCAAGATCACAACAATTCGCTTCT	GAGAGTTTGGTTCCGTCAACGACGAT	Yamaguchi et al. 2009
LFY	ACGCCGTCATTTGCTACTCT	CTTTCTCCGTCTCTGCTGCT	Yamaguchi et al. 2009
NRT1.7	CAACAGTCAGTTTCCAGAGCACAT	CGACAGTCACAAGGAAACTACTAAGGTA	Fan et al. 2009
SOC1	ATAGGAACATGCTCAATCGAGGAGCTG	TTTCTTGAAGAACAAGGTAACCCAATG	Wang et al. 2009
STM	CTCTTGCGCAAGTACAGTGG	GGTGAGGATGTGTTGCGTC	Takami et al. 2010
TSF	GAGTCCAAGCAACCCTCACCAA	CACAATACGATGAATTCCCCGAG	Yamaguchi et al. 2005

Supplementary Table S12. Primer sets used in quantitative RT-PCR.

Supplementary Table S13. Primer sets used in semi-quantitative RT-PCR.

	Sequence		
Gene	Forward	Reverse	References
ACT2	AGAGATTCAGATGCCCAGAAGTCTTGTTCC	AACGATTCCTGGACCTGCCTCATCATACTC	Abe et al. 2005
CRP	CATGAAGGAGTTAGTGAAGC	AGTCCTTTGCTTTCACCTAC	in this study

Supplementary Table S14. Primer sets used in constructs.

Primer	Sequence (5' to 3')	Experiment
CRP pro. 1	ΑΤΑΑΤΑΑΑΑΤGΑΑΤGΑΑΑGTΑΑΤΑΑΑΤΑΑΤ	CRP::GUS
CRP pro. 2	TTCTCCCAACTATATCCAGCATACT	CRP::GUS
CRP ATG	gtcgacATGCAAAGGTATCATGCTGCCAACTG	CRP-GFP, crp-1D-GFP
CRP stop	ttctcgagCCTCAGCTGTCGTCGTCTACTG	CRP::GFP, crp-1D-GFP

	Gene	AGI code
ACT2	ACTIN2	At3g18780
AG	AGAMOUS	At4g18960
AP1	APETALA 1	At1g69120
CLF	CURLY LEAF	At2g23380
СО	CONSTANS	At5g15840
CRP	CRYPTIC PRECOCIOUS	At4g00450
CYC1;1	Cyclin C 1;1	At5g48640
CYC1;2	Cyclin C 1;2	At5g48630
ETT	ETTIN	At2g33860
FD	FD	At4g35900
FLC	FLOWERING LOCUS C	At5g10140
FT	FLOWERING LOCUS T	At1g65480
FUL	FRUITFULL	At5g60910
HEN3	HUA ENHANCER 3	At5g63610
LFY	LEAFY	At5g61850
LUG	LEUNIG	At4g32551
NRT1.7	NITRATE TRANSPORTER 1.7	At1g69870
MAB2	MACCHI-BOU 2	At1g55325
MED8	MEDIATOR COMPLEX SUBUNIT 8	At5g63480
PFT1	PHYTOCHROME AND FLOWERING TIME 1	At1g25540
PID	PINOID	At2g34650
SEU	SEUSS	At1g43850
SOC1	SUPRESSOR OF OVEREXPRESSION OF CO 1	At2g45660
STM	SHOOT MERISTEMLESS	At1g62360
SULTR2;1	SULFATE TRANSPORTER 2;1	At5g10180
TSF	TWIN SISTER OF FT	At4g20370

Supplementary Table S15. Accession numbers of *Arabidopsis* genes used in this study.

Supplementary Figure S1. Mapping and identification of the CRP gene.

The *CRP* locus was mapped to a 33,467-bp region between CER466715 (BAC F5I10) and CER432279 (BAC F6N23) markers on the top arm of chromosome 4 by analyzing CRP^+/CRP^+ progeny from a cross between *crp-1D* (Col) and 35S::*FT* (L*er*). Six genes were predicted in the region. No significant change in expression level of these genes was observed in *crp-1D* relative to wild type. A C-to-T substitution in the coding region of gene 2 (At4g00450) was the found by sequence analysis of these six genes in *crp-1D* mutant.

Supplementary Figure S2. The domain structure of MED12 orthologues.

Red and pink boxes represent MED12 domain and PQL region, respectively.

Supplementary Figure S3. Sequence alignment of MED12 proteins.

Sequence alignment of MED12 domain of CRP and MED12 orthologues. Alignment was done with the CLC sequence viewer 6 for the twenty-two sequences summarized in Table below. Thick lines indicate signature sequence motif (SSM) (Bourbon 2008). Arrowheads indicate the position of *crp-1D* mutation. Arrows indicate from start and end positions of the MED12 domain.

Name		Length	MED12 domain
Arabidopsis thaliana	CRP	2235	158 - 216
Ricinus communis	XP_002511863	2264	161 - 220
Vitis vinifera	XM_002274443	2286	160 - 219
Medicago truncatula	ABD32834	2270	161 - 219
Oryza sativa Indica	EEC82567	2094	162 - 221
Oryza sativa. japonica	EEE67704	2270	232 - 291
Oryza sativa. japonica	AAK43491	2073	107 - 166
Sorghum bicolor	XP_002466024	2201	155 - 214
Physcomitrella patens	EDQ58263	2120	103 - 162
Physcomitrella patens	EDQ80140	2111	94 - 152
Homo sapiens	NM_005120.2	2177	101 - 161
Bos taurus	XP_599229	2176	101 - 161
Canis lupus	XP_538072	2186	101 - 161
Mus musculus	NP_067496	2190	101 - 161
Danio rerio	NP_001034550	2173	101 - 161
Apis mellifera	XP_392792	2243	97 - 157
Drosophila melanogaster	NP_524786	2531	97 - 157
Caenorhabditis elegans	NP_509645	3498	105 - 158
Dictyostelium discoideum	XP_640927	2731	447 - 509
Ostreococcus lucimarinus	XP_001420511	988	165 - 227
Schizosaccharomyces pombe	NP_594066	1134	120 - 183
Saccharomyces cerevisiae	NP_010004	1427	112 - 175

MED12 orthologues.

Supplementary Figure S4. Expression level of *NRT1.7* and *STM* in *crp* mutant plants.

(A) *NRT1.7* expression level (relative to *ACT2*) and expression levels of *CO*, *FLC*, *FT* and *TSF* (normalized by *NRT1.7*) in wild-type Col and *crp* mutants. Aerial parts of seedlings grown under long-day conditions were harvested on days 5, 7, and 10 for qRT-PCR analysis.

(B) *STM* expression (relative to *ACT2*) and expression levels of of *FD*, *SOC1*, *FUL*, *LFY*, and *AP1* (normalized by *STM*) in wild-type Col and *crp* mutants. Shoot apical region of seedlings grown under long-day conditions was harvested on days 10 and 15 for qRT-PCR analysis.

Error bars indicate SE (n=9).

Supplementary Figure S5. Effect of *flc* loss-of-function mutation on expression levels of *FT* and *TSF* in *crp-3*.

NRT1.7 expression level (relative to *ACT2*) and expression levels of *FT* and *TSF* (normalized by *NRT1.7*) in wild-type Col, *flc-3*, *crp-3* and *flc-3*; *crp-3* plants. Aerial parts of seedlings grown under long-day conditions were harvested on days 7 and 10 for qRT-PCR analysis.

Error bars indicate SE (n=9).

Supplementary Figure S6. Effects of *CRP* over-expression on expression levels of *FT* and *TSF*.

FT and *TSF* expression levels (normalized by *NRT1.7*) in wild-type Col and *35S::CRP* #11 plants. Aerial parts of seedlings grown under long-day conditions were harvested on days 5, 7 and 10 for qRT-PCR analysis.

Error bars indicate SE (n=9).

Supplementary Figure S7. Genetic framework of feed-forward regulation by *CRP***.** Arrows indicate transcriptional activation. T-bars indicate transcriptional repression. See text for detailed explanation.

References

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y. et al. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. *Science* 309: 1052-1056.

Bennett, S.R.M., Alvarez, J., Bossinger, G. and Smyth, D.R. (1995) Morphogenesis in *pinoid* mutants of *Arabidopsis thaliana*. *Plant J.* 8: 505-520.

Fan, S.C., Lin, C.S., Hsu, P.K., Lin, S.H. and Tsay, Y.F. (2009) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. *Plant Cell* 21: 2750-2761.

Ferrándiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. *Development* 127: 725-734.

Gillmor, C.S., Park, M.Y., Smith, M.R., Pepitone, R., Kerstetter, R.A. and Poethig, R.S. (2010) The MED12-MED13 module of Mediator regulates the timing of embryo patterning in *Arabidopsis*. *Development* 137: 113-122.

Ito, J., Sono, T., Tasaka, M. and Furutani, M. (2011) *MACCHI-BOU 2* is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. *Plant Cell Physiol.* 52: 539-552.

Jiang, D., Yang, W., He, Y. and Amasino, R.M. (2007) Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. *Plant Cell* 19: 2975-2987.

Kim, S.Y., Yu, X. and Michaels, S.D. (2008) Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. *Plant Physiol.* 148: 269-279.

Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. *Science* 286: 1960–1962.

Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G. et al. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in *Arabidopsis. Genes Dev.* 14: 2366-2376.

Mandel, M.A. and Yanofsky, M.F. (1995) The Arabidopsis *AGL8* MADS box gene is expressed in inflorescence meristems and is negatively regulated by *APETALA1*. *Plant Cell* 7: 1763-1771.

Michaels, S.D. and Amasino, R.M. (1999) *FLOWERING LOCUS C* encodes a novel MADS domain protein that acts as a repressor of flowering. *Plant Cell* 11: 949-956.

Nakamichi, N., Kita, M., Niinuma, K., Ito, S., Yamashino, T., Mizoguchi, T. et al. (2007) Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. *Plant Cell Physiol.* 48: 822-832.

Parinov, S., Sevugan, M., Ye, D., Yang, W.C., Kumaran, M. and Sundaresan, V. (1999) Analysis of flanking sequences from *dissociation* insertion lines: a database for reverse genetics in Arabidopsis. *Plant Cell* 11: 2263-2270.

Schultz, E.A. and Haughn, G.W. (1991) *LEAFY*, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. *Plant Cell* 3: 771-781.

Takami, T., Shibata, M., Kobayashi, Y. and Shikanai, T. (2010) De novo biosynthesis of fatty acids plays critical roles in the response of the photosynthetic machinery to low temperature in Arabidopsis. *Plant Cell Physiol.* 51: 1265-1275.

Wang, J.W., Czech, B. and Weigel, D. (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. *Cell* 138: 738-749.

Weigel, D. and Nilsson, O. (1995) A developmental switch sufficient for flower initiation in diverse plants. *Nature* 377: 495-500.

Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M. and Araki, T. (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. *Plant Cell Physiol.* 46: 1175-1189.

Yamaguchi, A., Wu, M.F., Yang, L., Wu, G., Poethig, R.S. and Wagner, D. (2009) The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of *LEAFY*, *FRUITFULL*, and *APETALA1*. *Dev. Cell* 17: 268-278.