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Supplement I. Derivation of Sample Size Formula for

Testing the Trajectory Effect

The sample size formula was derived from the score test following Schoenfeld’s [1] frame-
work. Let D denote the number of subjects who had the event in the clinical trial, and
let N denote the number of subjects in the trial. Let Ti and Ci denote the event and cen-
soring times, respectively; Si = min(Ti, Ci) and ∆i = I(Ti ≤ Ci). Let Zi be a treatment
indicator, and let Xi(u) be the longitudinal process (also referred to as the trajectory in
the paper) at time u ≥ 0. Define

ei{(Xk(Si))
q} =∑N

k=1 I(Sk ≥ Si)exp{βXk(Si) + α̂Zk}(Xk(Si))
q∑N

k=1 I(Sk ≥ Si)exp{βXk(Si) + α̂Zk}

and

Gi{(Xk(Si))
q} =

∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}(Xk(Si))

q∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}

,

where Xk(u) = θ0k + θ1ku + θ2ku
2 + · · · + θpku

p + γZk, and q = 1, 2, . . . . For the hazard
function h(S) = λ0(S)exp{βX(S) + αZ}, the partial likelihood is given by

Li =

{
exp{βXi(Si) + αZi}∑N

k=1 I(Sk ≤ Si)exp{βXk(Si) + αZk}

}∆i

.

The score statistic for Cox’s partial likelihood can be expressed as

Sscore =
N− 1

2

∑
i∈D Xi(Si)−Gi{Xk(Si)}{

N−1
∑

i∈D Gi{(Xk(Si))2} − (Gi{Xk(Si)})2
} 1

2

.

Now, rewrite the score statistic as

Sscore =
N− 1

2

∑
i∈D(Xi(Si)− ei{Xk(Si)}){

N−1
∑

i∈D Gi{(Xk(Si))2} − (Gi{Xk(Si)})2
} 1

2

+
N− 1

2

∑
i∈D(ei{Xk(Si)} −Gi{Xk(Si)}){

N−1
∑

i∈D Gi{(Xk(Si))2} − (Gi{Xk(Si)})2
} 1

2

.

∑
i∈D(Xi(Si) − ei{Xk(Si)}) is the score function of the partial likelihood, and thus,

the numerator of the first term is asymptotically normal with mean 0 and variance
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N−1
∑

i∈D ei{(Xk(Si))
2} − (ei{Xk(Si)})2. As in Schoenfeld [1] and Ewell & Ibrahim [2],

consider alternatives, which are location shifts of known distribution functions, such that
β is O(n−

1
2 ). As ei{(Xk(Si))

q} → Gi{(Xk(Si))
q} when β → 0, the first term → N(0, 1)

when β → 0.

Expanding the numerator of the 2nd term in a Taylor’s series about β = 0 shows
that

ei{Xk(Si)} −Gi{Xk(Si)} ≈
β

{
Gi{(Xk(Si))

2} − (Gi{Xk(Si)})2
}

.

The 2nd term approaches

β

{
D∑

i=1

{Gi{(Xk(Si))
2} − (Gi{Xk(Si)})2

} 1
2

.

Since Zk is a fixed treatment indicator and assuming that each treatment group is large,

Gi{(Xk(Si))
q} =

1
N

∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}(Xk(Si))

q

1
N

∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}

→ E {I(Sk ≥ Si)(Xk(Si))
q}

E {I(Sk ≥ Si)}
. (1)

When β → 0, Sk is independent of the θk’s and I(Sk ≥ Si) is independent of Xk(Si)
conditional on Si, thus (1) → E {(Xk(Si))

q}. Then

Gi{(Xk(Si))
2} − (Gi{Xk(Si)})2 →

E
{
(Xk(Si))

2
}
− {E(Xk(Si))}2 = Var{Xk(Si)}
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as β → 0. It follows that

βD
1
2

{
1

D

∑
i∈D

{Gi{(Xk(Si))
2} − (Gi{Xk(Si)})2

} 1
2

→ βD
1
2

{
1

D

∑
i∈D

Var(Xk(Si))

} 1
2

= βD
1
2

{
1

D

∑
i∈D

(1 Si . . . Sp
i )Σθ (1 Si . . . Sp

i )
T

} 1
2

= βD
1
2

{
1

D

∑
i∈D

Si Σθ ST
i

} 1
2

, (2)

where Σθ is the covariance matrix of (θ0k θ1k . . . θpk). Note that

1

D

∑
i∈D

Sq
i =

N

D

1

N

∑
i∈D

T q
i → E {I(T ≤ t̄f )T

q} /τ,

where τ = D
N

is the event rate, and t̄f is the mean follow-up time in all subjects. It is a
truncated moment of T q, as we do not observe all the Ti’s. Therefore (2) above converges
to

β
{
Dσ2

s

} 1
2 ,

where

σ2
s = Var(θ0k) +

p∑
j=1

Var(θjk)E{I(T ≤ t̄f )T
2j}/τ

+ 2

p∑
j=0

p∑
l>j

Cov(θjk, θlk)E{(I ≤ t̄f )T
j+l}/τ, (3)

and p is the degree of polynomial in the trajectory. For example, when p = 1 (linear
trajectory),

σ2
s = Var(θ0k) + Var(θ1k)E{I(T ≤ t̄f )T

2}/τ
+ 2Cov(θ0k, θ1k)E{I(T ≤ t̄f )T}/τ.

Thus, the score statistic, Sscore, is asymptotically normal with unit variance and

mean equal to β {Dσ2
s}

1
2 as D →∞. It follows that the number of events required for a

one-sided level α̃ test with power β̃ is given by
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D =
(zβ̃ + z1−α̃)2

σ2
sβ

2
,

where σ2
s is defined in (3).

Supplement II. The Full Joint Modeling Approach Ver-

sus the Two-Step Inferential Approach

When the true trajectory is unknown, we examined two joint modeling approaches. The
first one was a two-step inferential approach proposed by Tsiatis et. al. [3], which has been
described in detail in previous sections. The second approach was based on the full joint
likelihood as specified in (2.3) of the main paper. Wulfsohn and Tsiatis [4] developed an
EM algorithm of the model to obtain the parameter estimates. Guo and Carlin [5] develop
a fully Bayesian version and implemented it via Markov chain Monte Carlo (MCMC)
methods using the WinBUGS software. We used a standard SAS procedure, NLMIXED,
which fits nonlinear mixed models by maximizing an approximation to the likelihood
integrated over the random effects using a dual quasi-Newton algorithm (SAS Online
Documentation for Version 9.1.3). Standard deviations for the estimates are based on
the 2nd derivatives of the log-likelihood function. Data was simulated based on a fully
parametric exponential model with constant baseline hazard. The two-step inferential
approach is based on Cox’s partial likelihood. It is expected that the full joint modeling
approach using exactly the same exponential model will have more efficiency over the
partial likelihood model. However, in practice, we rarely use a fully parametric model with
constant hazard to analyze the time-to-event data. To have a fair comparison of efficiency,
we simulated survival data based on a piecewise exponential model with two time intervals
in which the baseline hazard changed from λ01 to λ02 at time tq. We used the same
parameters in both periods, and therefore, β is the same. Five repeated measurements of
the longitudinal data were simulated based on the θ’s. The measurements were set to be
missing after an event or censoring.

We show in Table 1 that the full joint modeling approach based on a parametric
exponential model is more efficient than the two-step inferential approach based on Cox’s
partial likelihood. However, the full joint exponential model is sensitive to whether the
baseline hazard is constant over time. When this is true, it yields an unbiased estimate of β
but yields biased estimates of β when the constant baseline hazard assumption is violated.
In this case, it overestimates the trajectory effect when the baseline hazard increases after
time tq. Furthermore, it underestimates the trajectory effect when the baseline hazard
decreases after time tq. The larger the difference between the two baseline hazards, the
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larger the bias. The two-step inferential approach may be more robust, although less
efficient. The impact is smaller when testing the overall treatment effect. Both approaches
have similar efficiency, but the misspecified exponential joint model yields a slightly biased
estimate of the treatment effect. This finding is not surprising, as it corresponds to known
theory between parametric and semi-parametric modeling. A retrospective power analysis
from a real study data is provided in Section 7 of the main paper.

[Table 1 about here.]

Wulfsohn and Tsiatis [4] found that the asymptotic standard error of β̂ when using
the joint estimation procedure is slightly larger than that from the two-step model. It
was suggested that it might be because the random effects were assumed to be influenced
by the uncertainty in the estimated trajectory parameters, and more variability is incor-
porated. Therefore, although the full joint estimation approach should be more efficient
as compared to the two-step model, since it uses information more efficiently. This may
not turn out to be the case in real data settings if the real data violate the modeling as-
sumptions. Wulfsohn and Tsiatis [4] cited earlier work concerning biased estimates of the
trajectory effect when using the two-step model (slightly towards the null) and suggested
that the estimate from the joint model is further away from the null, and therefore more
likely to reduce the bias. We found in the simulation studies that the trajectory effect
can be over-estimated or under-estimated in the fully parametric joint model if the model
assumptions, such as a constant baseline hazard in the case of the exponential model, is
violated. The two-step model in this case may be more robust. Further studies are needed
to compare the two joint modeling approaches and other parametric or semi-parametric
models.
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Table 1: Comparison of the two-step inferential approach with the full joint modeling
approach in testing β and the overall treatment effect

λ01 λ02 Two-Step Approach Full Joint Modeling
[0, 0.75] (0.75, ∞) Parameter Estimates (StdErr) Power Estimates (StdErr) Power

0.85 0.85 β̂ 0.203 (0.074) 79.9 0.206 (0.054) 96.4

α̂ + β̂γ̂ 0.319 (0.162) 50.0 0.321 (0.163) 49.6

0.85 0.65 β̂ 0.204 (0.075) 78.4 0.164 (0.053) 85.5

α̂ + β̂γ̂ 0.322 (0.164) 50.8 0.328 (0.164) 51.5

0.85 0.45 β̂ 0.208 (0.077) 76.2 0.108 (0.053) 52.0

α̂ + β̂γ̂ 0.326 (0.167) 49.7 0.339 (0.167) 51.6

0.65 0.85 β̂ 0.208 (0.073) 80.10 0.248 (0.054) 99.4

α̂ + β̂γ̂ 0.323 (0.168) 49.1 0.318 (0.170) 45.7

Note: Estimates were based on 1000 simulations, each with 100 subjects per arm. Survival
time was simulated with a piecewise exponential model, minimum follow-up time is 0.75 years (9
months), and maximum follow-up time is 2 years. α = 0.3, γ = 0.1, β = 0.2, E(θ0i) = 0, E(θ1i) = 3,
Var(θ0i) = 0.7, Var(θ1i) = 1.2, Cov(θ0i, θ1i) = 0.2, and σ2

e = 0.16 A maximum of 5 repeated
measurements were simulated with missing data after an event or censoring. Both analyses assumed
an unknown Σθ.
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