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Bayesian peptide detection

Let θ , {λk, ck,ij ; k = 1, . . . , N, i = 1, . . . , cs, j = 0, . . . , iso} be the set of unknown model parameters.

Given the observed denoised spectra y, we apply Gibbs sampling [1] to determine the value of θ. Gibbs

sampling uses the popular strategy of divide-and-conquer to sample a subset of parameters at a time while

fixing the rest at the sample values from the previous iteration, as if they were true. In other words, for the

l-th parameter group θl, we sample from the conditional posterior distribution P (θl|θ−l,y), where

θ−l , θ \ θl, with values obtained from the previous iteration. After this sampling process iterates among

the parameter groups for a sufficient number of cycles (i.e., the “burn-in” period), convergence is reached.

The samples collected afterwards are shown to be from the marginal posterior distribution P (θl|y) which is

independent of θ−l, and thus these samples can be used to estimate the target parameters.

The Gibbs sampling process for the kth peptide candidate and the derivations of the conditional posterior

distributions of model parameters are given below.

• Sample the apex vector ck , [ck,ij ; i = 1, . . . , cs, j = 0, . . . , iso]T for the kth candidate

By the Bayesian principle, the conditional posterior distribution of ck is proportional to the

likelihood times the prior, that is,

P (ck |y, θ−ck ) ∝ P (y|θ)Prior(ck), (1)
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where θ−ck , θ \ ck.

It is easy to show the likelihood satisfies

P (y|θ) ∝ exp {−1

2
(y −Gλ(0) − λkgk)TΣe

−1(y −Gλ(0) − λkgk)}, (2)

where
y = [y(x1, 1), y(x1, 2), . . . , y(x1, T ), y(x2, 1), y(x2, 2), . . . , y(x2, T ), . . . ,

y(xM , 1), y(xM , 2), . . . , y(xM , T )]T
(3)

is the observed denoised spectra vector.

λ(q) , [λ1, . . . , λk = q, . . . , λN ]T , q ∈ {0, 1}, (4)

is an indicator vector for peptide existence.

Σe = diag
(
[σ2

1 , . . . , σ
2
T ;σ2

1 , . . . , σ
2
T ; . . . ;σ2

1 , . . . , σ
2
T ]1×MT

)
, (5)

with σ2
t being the variance of the t-th spectrum.

G = (g1,g2, . . . ,gN ), (6)

whose k-th column is given by

gk = [gk(x1, 1), gk(x1, 2), . . . , gk(x1, T ), gk(x2, 1), gk(x2, 2), . . . , gk(x2, T ), . . . ,

gk(xM , 1), gk(xM , 2), . . . , gk(xM , T )]T ,
(7)

which is a MT × 1 vector with the entry gk(xm, t) =
cs∑
i=1

iso∑
j=0

ck,ij lk(t)Ixm=αk,ij , m = 1, 2, . . . ,M ,

t = 1, 2, . . . , T, representing the signal at (xm,t) generated by peptide candidate k.

The heights of the isotopic peaks of peptide candidate k at charge state i follow a multinomial

distribution [2], which by the Central Limit Theorem can be approximated by a Gaussian

distribution as below:

P (ck,ij , j = 0, . . . , iso |ak, ηk,i, πk ) = MN(akηk,i, πk) (8)

≈ N(akηk,iπk, akηk,i[diag(πk)− πTk πk]), (9)

where ak is the total apex intensity of candidate k, ηk , [ηk,1, ηk,2, . . . , ηk,cs]
T denotes the candidate’s

charge state distribution, and πk , [πk,0, πk,1, . . . , πk,iso]
T is the theoretical isotopic distribution

estimated by the Averagine approach [3, 4].
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Thus the prior distribution of the peak height vector ck is given by:

Prior(ck) = P (ck |ak, ηk, πk ) ≈ N(µck ,Σck), (10)

where

µck = [akηk,1π
T
k , akηk,2π

T
k , . . . , akηk,csπ

T
k ]T , (11)

Σck = diag(Σi), (12)

with

Σi = akηk,i[diag(πk)− πTk πk], i = 1, 2, . . . , cs. (13)

Substituting Eq. 2 and Eq. 10 into Eq. 1 and it can be shown by algebraic manipulations [5] that the

conditional posterior distribution of ck is also Gaussian, with the mean vector and covariance matrix

given below:

Σck|y,θ−ck
= (I−KHk)Σck , (14)

µck|y,θ−ck
= µck + K(y −Gλ(0) −Hkµck), (15)

where Hk = [hms,(i−1)×(iso+1)+j+1]MT×cs(iso+1) is the elution profile matrix of candidate k. The

[(i− 1)× (iso+ 1) + j + 1]th column contains the normalized elution profile of candidate k at charge

state i and isotopic number j which has been estimated in preprocessing steps. And

K , ΣckH
T
k

(
HkΣckH

T
k + Σe

)−1
is known as the Kalman gain matrix [6].

Note that the matrices involved in the above equations have huge dimensions which make the

calculation almost infeasible. Thus, to update each peptide’s signal, the related matrices K,G,H,y

and Σe are restricted to the corresponding peptide signal regions. This does no harm to the

calculation accuracy while dramatically increases the speed.

• Sample ak, the total apex intensity of candidate k

The conditional distribution of ak takes different forms for different values of λk.

When λk = 1 (the kth candidate is inferred to be present), by definition,

ak |(ck,ij , λk = 1) =

cs∑
i=1

iso∑
j=0

ck,ij · Ick,ij>0. (16)
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When λk = 0 (the kth candidate is inferred to be absent), the distribution of ak, which is

independent of the observation ck, is modeled by a uniform distribution as below:

P (ak |ck,ij , λk = 0) = Unif(0, uk), (17)

where uk is the upper bound of ak.

• Sample ηk , [ηk,1, ηk,2, . . . , ηk,cs]
T , the charge state distribution of candidate k

Unlike the isotopic distribution, the charge state distribution cannot be theoretically predicted even

when the peptide sequence is given. Thus ηk needs to be estimated by the Gibbs sampling process.

Let bk , [bk,1, bk,2, . . . , bk,cs]
T , where bk,i is the total apex abundance of peptide k at charge state i.

Given the charge state distribution and the total apex abundance of peptide k, the likelihood of bk is

multinomial:

P (bk|ηk, ak) = MN(ak, ηk). (18)

As is well known, the conjugate prior to a multinomial likelihood is Dirichlet, which is also a

reasonable choice for the prior of ηk. Thus, let the prior of ηk be a Dirichlet distribution with

parameter wα, where w is a weight parameter that controls the strength of the prior information. A

small w is preferable if uncertainty resides in the prior, and vice versa. Then the posterior

distribution of ηk is given by

P (ηk |bk ) ∝ P (bk |ηk )Prior(ηk) (19)

= Dirichlet(wα+ bk). (20)

• Sample the peptide existence indicator variable λk

The conditional posterior distribution of λk is given by

P (λk |y, θ−λk ) ∝ P (y |θ )Prior(λk)

∝ exp {−1

2
(y −Gλ)TΣ−1

e (y −Gλ)}Prior(λk), (21)

where G is defined in Eq. 6.

The log-likelihood ratio (LLR) of λk can be calculated as below

LLRλk = ln
P (λk = 1 |y, θ−λk )

P (λk = 0 |y, θ−λk )

= −1

2

[
(y −Gλ(1))TΣ−1

e (y −Gλ(1))− (y −Gλ(0))TΣ−1
e (y −Gλ(0))

]
+ ln

P (λk = 1)

P (λk = 0)
,

(22)
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where λ(q), q ∈ {0, 1} is defined by Eq. 4.

If no prior knowledge is available about which peptide candidates are more likely to be present in the

sample, then a reasonable choice for the prior of λk could be the uniform distribution. But we would

like to be a bit conservative about the existence of peptide candidates. The idea is that by adding

more candidates, it is possible to reduce the mean squared error (MSE) between the inferred spectra

and the observed denoised spectra, but at the same time the chances of overfitting increases as the

model becomes more complex. Thus, a prior based on Bayesian information criterion (BIC) [7] is

adopted to resolve the problem by introducing a penalty term for the number of parameters of the

model. And the above equation can be rewritten as:

LLRλk = −1

2

[
(y −Gλ(1))TΣ−1

e (y −Gλ(1))− (y −Gλ(0))TΣ−1
e (y −Gλ(0))

]
− ln(MT )

2
∆, (23)

where ∆ = Card(θ)− Card(θ−λk,−ck) = Card(ck) is the difference between the number of free

parameters of the two models – with and without candidate k, respectively.

The conditional posterior distribution of λk is then obtained based on the log-likelihood ratio as

follows:

P (λk = 1 |y, θ−λk ) =
1

1 + e−LLRλk
, (24)

P (λk = 0 |y, θ−λk ) = 1− P (λk = 1 |y, θ−λk ). (25)

The pseudocode of the Gibbs sampling process is given in Table 1.

Table 1: The Gibbs sampling process
1. Cluster candidates into S clusters.
2. Sort clusters by their importance in descending order.
3. For iteration r = 1 toR
4. For cluster s = 1 toS
5. For peptide candidate k = is1 to isNs
6. Draw crk based on its conditional posterior distribution.
7. end of k loop
8. Draw λrk, k = 1 . . . , isNs for the cluster according to the

joint conditional posterior distribution.
9. end of s loop
10. end of r loop
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Figure 1: Mass deviation of reported features that can be matched to the ground truth peptide list using a 20
ppm mass window (along with other criteria imposed on the retention time as mentioned in the paper). Each
panel represents a detection algorithm as suggested by the subtitle. The plot was obtained by normalizing
the mass deviation histogram by the total number of true peptides. It can be seen that BPDA2d has a much
higher mass accuracy than the other two algorithms: the density around 0 ppm given by BPDA2d increased
by around 4 times compared to BPDA and msInspect; and the SD of mass deviation is 3.7, 4.6, and 6.9 ppm
for BPDA2d, BPDA and msInspect, respectively.

Table 2: Statistics of detection results
TP FP TN FN ACC1 SPC2

BPDA2d 16 16 102 0 0.88 0.86
BPDA 15 58 207 1 0.79 0.78

msInspect 12 4 1 4 0.62 0.2
1 Accuracy: ACC , TP+TN

P+N

2 Specificity: SPC , TN
FP+TN

Supplementary results
Figure 1: Mass accuracy of different algorithms in the 100-mix LC-MS data sets
Table 2: Synthetic LC-MS data set with 8 pairs of overlapping peptides
Table 3: Running time on test datasets

References
1. Geman S, Geman D: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6:721–741.

2. Kaur P, O’Connor PB: Use of statistical methods for estimation of total number of charges in a mass
spectrometry experiment. Analytical Chemistry 2004, 76:2756–2762.

3. Senko MW, Beu SC, McLafferty FW: Determination of monoisotopic masses and ion populations for
large biomolecules from resolved isotopic distributions. J Am Soc Mass Spectrom 1995, 6:229–233.

Table 3: Running time
100-mix 16-mix QTOF LC-MS/MS

BPDA2d 35 min 4 hr 6 hr
BPDA 25 min 20 min 2.25 hr

msInspect 0.5 min 2 min 4 min

6



4. Horn DM, Zubarev RA, McLafferty FW: Automated reduction and interpretation of high resolution
electrospray mass spectra of large molecules. Journal of the American Society for Mass Spectrometry
2000, 11(4):320–332.

5. Anderson BDO, Moore JB: Optimal filtering. Englewood Cliffs, NJ, USA: Prentice-Hall 1979.

6. Burgers G, Leeuwen PJ, Evensen G: Analysis scheme in the ensemble Kalman filter. Monthly Weather
Review 1998, 126:1719–1724.

7. Schwarz G: Estimating the dimension of a model. Ann. Stat. 1978, 6:461–464.

7


