
Supplementary Material

1 Sampling IFs and IFGSs from KEGG for Case Study I

After extracting networks from the KEGG database, IFs and IFGSs are sampled from these networks. The
procedures detailed below are for each network.

1.1 Construct a BFS-Forest for each network

This procedure has been modified from the vanilla Depth First Search Algorithm.

Algorithm 1 BFS-Forest

1: Input: A d× d adjacency matrix A.
2: Output: A d× d BFS-Forest adjacency matrix F .
3: Remove all self-transitions in A.
4: Find all of the roots of A and store them in a vector R.
5: if no roots then
6: Sort all vertices in descending order based on their out degree and store them in R.
7: end if

8: Initialize a d× d Boolean adjacency matrix F with all entries set to false.
9: Initialize a 1× d vector nV to keep track of the not visited vertices with all elements set to true.

10: for each vertex r ∈ R do

11: if nV (r) is true then

12: set nV (r) to false.
13: BFS-Visit(r).
14: end if

15: end for

16: Return F .

Algorithm 2 BFS-Visit

1: Input: A vertex r.
2: Output: The updated matrix F .
3: Initialize a queue Q with the vertex r at its head.
4: while Q is not empty do

5: Pop a vertex v from Q.
6: Find all of the neighbors N of v.
7: if N is empty then

8: continue
9: end if

10: for each neighbor n ∈ N do

11: if nV (n) is true then

12: set nV (n) to false.
13: Add n to Q.
14: set F (v, n) to true.
15: end if

16: end for

17: end while

1



1.2 Generating IFs and IFGSs for each network

To sample IFs and IFGSs, Network2GeneSets [1] is run on the BFS-Forest F .

Algorithm 3 Network2GeneSets

1: Input: BFS-Forest F with n nodes.
2: Output: IFs and IFGSs in F .
3: for i = 1, . . . , n do

4: if node i has no children then

5: continue
6: else

7: if node i has children then

8: add to Queue Q and the Linked List L all the directed pairs consisting of i and a child of i
9: end if

10: while Q is not empty do

11: Pop an IF P from Q

12: if the last node in P , say k, has no children then

13: continue
14: end if

15: add to Q and L, all IFs obtained by appending each child of k to P

16: end while

17: end if

18: end for

19: Prune IFs in L of length < 4.
20: Return L

21: Return all IFGSs obtained by randomly permuting the order of genes within each IF in L, keeping the
end nodes fixed.

2 Hierarchial Arrangement of Genes for Case Study II

In the following tables, we present the hierarchial arrangement of genes present in the ERBB and PMOM
pathways in the KEGG database.

2



Genes
Layer1 EGF, TGFA, AREG, EREG, BTC, HBGEF,

ERBB2, NRG1, NRG2, NRG3, NRG4
Layer2 EGFR, ERBB3, ERBB4
Layer3 SRC, CBL, CBLC, CBLB, NCK1, NCK2

PLCG1, PLCG2, STAT5A, STAT5B, SHC1, SHC2,
SHC3, SHC4, CRK, CRKL

Layer4 PTK2, PAK1, PAK2, PAK3, PAK4, PAK6, PAK7
CAMK2A, CAMK2B, CAMK2D, CAMK2G, PRKCB

PRKCA, PRKCG, GRB2, ABL1,ABL2
Layer5 MAP2K4, MAP2K7, SOS1, SOS2, GAB1
Layer6 MAPK8, MAPK9, MAPK10, NRAS, HRAS, KRAS, PIK3R2

PIK3CA, PIK3R3, PIK3R5, PIK3CB, PIK3CD, PIK3R1, PIK3CG
Layer7 JUN, ARAF, BRAF, RAF1, AKT1, AKT2, AKT3
Layer8 MAP2K1, MAP2K2, BAD, MTOR, CDKN1A, CDKN1B, GSK3B
Layer9 MAPK1, MAPK3, EIF4EBP1, RPS6KB1, RPS6KB2
Layer10 ELK1, MYC

Genes
Layer1 HSP90AA1, HSP90AB1, PLK1, SPDYA, SPDYC
Layer2 MOS, CDK2, CDC25A, CDC25B, CDC25C
Layer3 MAP2K1
Layer4 MAPK1, MAPK3
Layer5 RPS6KA1, RPS6KA2, RPS6KA3, RPS6KA6
Layer6 BUB1, PKMYT1
Layer7 MAD1L1, MAD2L1, MAD2L2
Layer8 FZR1
Layer9 ANAPC1, ANAPC2, ANAPC4, ANAPC5, ANAPC7,

ANAPC10, ANAPC11, ANAPC13, CDC16, CDC23, CDC26, CDC27

Table 1: The hierarchial arrangement of 87 genes from the ERBB signaling pathway (upper) and 35 genes
from Progesterone-mediated oocyte maturation pathway (lower) available from KEGG database. These
representations can be visualized using Cytoscape [2].

3 Computational Complexity

In this section, we first derive the computational complexity of SA. We then present numerical results
comparing the performance of SA and Bayesian network methods in terms of F-score and computational
time. Let us write an IFGS compendium as an m × n matrix, where m is the number of information flow
gene sets (IFGSs) and n is the number of distinct genes in the compendium. As described above, if there
are k (k ≤ n) genes in the ith gene set, then the first k locations in the ith row contain non-zero indices
representing these genes, and the remaining n−k locations are set to zero. The length of the ith IFGS is the
number of non-zero indices in the ith row. If L is the maximum length of IFGSs in the compendium, then the
computational complexity of SA in taking a total of J jumps is O(JmL). We can derive the computational
complexity of SA from Algorithm 1 presented in the main text.

We start with the computational complexity involved in calculating the energy of a signaling pathway
structure. It is the sum of:

1. The computational complexity of estimating the initial probability vector, which is O(m). This is
because we only need to count the frequency of genes appearing as the first node among m Markov
chains.

3



2. The computational complexity of estimating the transition probability matrix, which is O(mL+ n) =
O(mL). Indeed, we first compute the frequency counts of various transitions among m Markov chains,
followed by a normalization of each row in the transition matrix. Moreover, n ≤ mL.

3. The computational complexity involved in computing the likelihood of a Markov chain, which is O(L).
For m chains, the complexity is O(mL).

Thus, the computational complexity of calculating the energy of a signaling pathway structure is O(mL).

It can be observed from the pseudo-code in Algorithm 1 that the total computational complexity of SA
depends on the following computations:

Outside the loop (Before Step 4)

1. We need to calculate the lengths of IFGSs and the maximum of the lengths. As we only consider
non-zero indices in the given matrix, the worst case computational complexity involved in these com-
putations is O(mL +m) = O(mL).

2. At Step 3, we assign random gene orderings to each of the m gene sets and calculate the energy of the
resulting structure. The worst case complexity involved in each of these computations is O(mL).

Thus, the total complexity before Step 4 is O(mL).

Inside the loop (Step 4 onwards)

To jump from jth to (j + 1)th network,

1. We need to consider the complexity involved in generating a network from the neighborhood of jth

network. Since this requires sampling an index i ∈ {1, . . . ,m} and permuting the order of genes in the
ith IFGS, the worst case computational complexity is O(L).

2. We need to consider the complexity involved in calculating the energy of the neighboring network
chosen for evaluation, which is O(mL).

Thus, the total computational complexity involved in (1) and (2) above is O(mL), and for a total of J jumps
it is O(JmL). As a result, the overall computational complexity outside and inside the loop in Algorithm 1
is O(mL) +O(JmL) = O(JmL).

In the following tables, we present the computational time and performance of SA and two Bayesian
network methods K2 and MH using IFGS compendiums of different sizes. Both SA and Bayesian network
methods use search strategies for learning multivariate dependencies. Also, both SA and Bayesian network
methods infer directed network topologies. Therefore, it is relevant to compare SA and Bayesian network
methods in terms of performance and search time.

We use 4 IFGS compendiums among 83 compendiums used in Case Study I. For each algorithm, we
list the type of output, computational time and F-Score. As both SA and MH depend on the number of
jumps/samples specified by the user, we report the performance of these approaches at iteration 103, 104, 105

and 2× 105. We suffix the F-Score (F ) and elapsed time (T ) accordingly. Since this is not applicable in the
case of K2, we report the final values of F (FFinal) and T (TFinal).

4



Method Output Type F103 F104 F105 F2×105 or FFinal

SA Directed 0.57 0.89 1 1
MH-BIC Directed 0.21 0.27 0.45 0.49

MH-BAYES Directed 0.11 0.16 0.17 0.21
K2-BIC Directed * * * 0.41

K2-BAYES Directed * * * 0.32

Method Output Type T103 T104 T105 T2×105 or TFinal

SA Directed 0.02 0.18 1.9 3.7
MH-BIC Directed 0.52 5.1 51.22 103.68

MH-BAYES Directed 0.49 5.14 53.37 118.06
K2-BIC Directed * * * 0.07

K2-BAYES Directed * * * 0.10

Table 2: Comparison of SA and Bayesian network methods in terms of F-Score (upper panel) and computa-
tional time (lower panel). We used IFGS compendium with 54 IFGSs. The lengths of IFGSs varied in the
range 4− 8. Time is shown in minutes. ∗Not Applicable

Method Output Type F103 F104 F105 F2×105 or FFinal

SA Directed 0.69 0.91 1 1
MH-BIC Directed 0.09 0.22 0.30 0.34

MH-BAYES Directed 0.08 0.11 - -
K2-BIC Directed * * * 0.28

K2-BAYES Directed * * * 0.20

Method Output Type T103 T104 T105 T2×105 or TFinal

SA Directed 0.03 0.32 3.2 6.5
MH-BIC Directed 2.6 25.15 244.15 499.59

MH-BAYES Directed 2.12 27.02 Out of Memory Out of Memory
K2-BIC Directed * * * 0.22

K2-BAYES Directed * * * 0.27

Table 3: Comparison of SA and Bayesian network methods in terms of F-Score (upper panel) and compu-
tational time (lower panel). We used IFGS compendium with 108 IFGSs. The lengths of IFGSs varied in
the range 4 − 7. Time is shown in minutes. ∗Not Applicable, − F-Scores which could not be observed due
to memory crash.

5



Method Output Type F103 F104 F105 F2×105 or FFinal

SA Directed 0.45 0.54 0.63 0.74
MH-BIC Directed 0.17 0.39 0.46 0.47

MH-BAYES Directed 0.09 0.14 - -
K2-BIC Directed * * * 0.41

K2-BAYES Directed * * * 0.37

Method Output Type T103 T104 T105 T2×105 or TFinal

SA Directed 0.04 0.39 3.9 7.9
MH-BIC Directed 2.57 24.95 258.28 485.96

MH-BAYES Directed 2.22 21.11 Out of Memory Out of Memory
K2-BIC Directed * * * 0.26

K2-BAYES Directed * * * 0.32

Table 4: Comparison of SA and Bayesian network methods in terms of F-Score (upper panel) and computa-
tional time (lower panel). We used IFGS compendium with 195 IFGSs. The lengths of IFGSs varied in the
range 4 − 10. Time is shown in minutes. ∗Not Applicable, − F-Scores which could not be observed due to
memory crash.

Method Output Type F103 F104 F105 F2×105 or FFinal

SA Directed 0.33 0.48 0.64 0.71
MH-BIC Directed 0.03 0.11 - -

MH-BAYES Directed 0.02 - - -
K2-BIC Directed * * * 0.30

K2-BAYES Directed * * * 0.24

Method Output Type T103 T104 T105 T2×105 or TFinal

SA Directed 0.20 2.00 19.91 39.92
MH-BIC Directed 380.54 2472.71 Too long Too long

MH-BAYES Directed 367.52 Out of Memory Out of Memory Out of Memory
K2-BIC Directed * * * 11.45

K2-BAYES Directed * * * 14.99

Table 5: Comparison of SA and Bayesian network methods in terms of F-Score (upper panel) and computa-
tional time (lower panel). We used an IFGS compendium with 723 IFGSs. The lengths of IFGSs varied in
the range 4− 12. Time is shown in minutes. ∗Not Applicable, − F-Scores which could not be observed due
to memory crash or large computational time.

6



We observe from the above tables that SA benefits from manageable computational complexity and
significantly better performance than Bayesian network methods. In particular, SA has a much reduced
computational load, both in terms of time and memory requirements, compared with sampling based MH
algorithm. Note that both SA and MH depend on the number of jumps/samples specified by the user.
However, the complexity of MH is often unmanageable due a large number of neighboring structures of a
sampled network. SA only needs to keep track of the best-so-far structure and can be run on a standard
desktop.

4 Additional Evaluation Using Gene Sets with Different Pathway

Memberships

We further evaluated the performance of SA using IFGS compendiums that comprised of IFGSs with different
pathway memberships. In this evaluation, we merged a number of IFGS compendiums derived from different
signaling pathway structures into a single compendium. The resulting compendium was given as input to
SA. From the output of SA, we divided the inferred IFs into different groups based on the memberships
of the corresponding IFGSs in different pathways. We reconstructed signaling pathway structures from the
inferred IFs in each group. Finally, we compared the inferred structures with the ones constructed from
the true IFs associated with each group. A similar procedure was used in the case of Bayesian network
methods. Under the parameter setting of Case Study I, we inferred Bayesian networks using binary discrete
data corresponding to IFGS compendiums obtained after merging different compendiums. We divided an
inferred network into subnetworks formed by genes present among the IFGSs sharing the same pathway
membership. We compared the inferred subnetworks with the ones constructed from the true IFs associated
with each group.

We formed three compendiums by merging 5, 10 and 15 IFGS compendiums used in Case Study I. We
then evaluated the performance of SA and Bayesian network method on each compendium by following the
above procedure. Results from this evaluation have been presented in Figs. 1 and 2. Due to increase in
the number of distinct genes and number of IFGSs, it was not feasible to run MH algorithm on the merged
compendiums. Therefore, we only present results from the K2 approach. Clearly, we observe a superior
performance of SA, both in terms of F-Scores and precision, compared with K2.

7



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
−

S
co

re

SA K2−BIC K2−BAYES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
−

S
co

re

SA K2−BIC K2−BAYES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
−

S
co

re

SA K2−BIC K2−BAYES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
−

S
co

re

SA K2−BIC K2−BAYES

Figure 1: Comparison of SA with the Bayesian network approach K2 using BIC and Bayesian score functions.
The number of compendiums merged were set at 5 (Upper Left), 10 (Upper Right) and 15 (Lower Left). The
lower right panel presents a combined view. For each method, we plot the F-Score associated with individual
compendiums that were merged.

8



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on

SA K2−BIC K2−BAYES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on

SA K2−BIC K2−BAYES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on

SA K2−BIC K2−BAYES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on

SA K2−BIC K2−BAYES

Figure 2: Comparison of SA with the Bayesian network approach K2 using BIC and Bayesian score functions.
The number of compendiums merged were set at 5 (Upper Left), 10 (Upper Right) and 15 (Lower Left).
The lower right panel presents a combined view. For each method, we plot the precision associated with
individual compendiums that were merged.

9



References

[1] Acharya,L. et al. (2011). GSGS: A computaional framework to reconstruct signaling pathways from gene
sets. arXiv:1101.3983v2 (Preprint).

[2] Shannon, P. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Research, 13(11), 2498-2504.

10


