
User Guide

Introduction
 VarSifter is a program designed to view massively parallel sequencing variation
output. It allows sorting on any field (as well as combinations of fields), and filtering on
different types of information (variant type, inheritance, etc). Additionally, it allows
custom filtering. The program is written in Java, and should run on any platform with a
current Java Virtual Machine.

Downloads
 VarSifter is available by anonymous FTP at
ftp://ftp.nhgri.nih.gov/pub/software/VarSifter/".

Requirements
 Basic VarSifter functionality requires Java JRE 1.5 or newer, but Java JDK 1.6 is
recommended, as the custom query/filter functionality requires Java JDK 1.6 or better
(JDK is the full Java Development Kit). Although any operating system with a version of
Java should work, it is known to work on Windows XP and XP 64-bit, Mac OS X, and
the CentOS and Gentoo distributions of GNU/Linux. VarSifter has been successfully
tested on Oracle Java and the IcedTea build of the open source OpenJDK.
 VarSifter runs best with a current 64-bit processor, and a 64-bit Java version. The
amount of RAM required depends on the number of samples you wish to view. A
machine with 1 GB RAM will allow all variants in ~30 exomes; 8GB RAM will allow all
variants in ~180 exomes.
 Additionally, the Java Universal Network/Graph Framework 2 (JUNG2) is also
required (VarSifter has been tested with version 2.0.1.) This is included in the "package"
download, but can also be downloaded from http://jung.sourceforge.net/.

Installation and Start
 To install VarSifter from the package file, download the '.zip' file into the desired
directory on your computer. Unzip the file (usually by double-clicking it.)
Mac OS X users should then double-click the '.command' file.
Windows users should then double-click the '.bat' file.
 This will open a terminal window, and execute the Java commands to run VarSifter.
Leave the terminal window open until you are finished with VarSifter, as important
messages and any detailed error messages will appear here.
 Once VarSifter is started, you should choose a file. To do this, click "File" on the menu
bar, and then "Open File". Then, choose the .vs or .vcf file with the variant data
(descriptions below). Click this file, click 'Open', and you're ready to start sifting! (Data
files can be specified in the helper files - see "Manual Start".)

Manual Start
 To run VarSifter manually, open your Terminal (OS X) or Command Prompt
(Windows), and navigate to VarSifter's location using the command 'cd'. Then, type the
following:
java -Xmx800M -jar VarSifter<version>.jar <data file>

 Xmx800M requests a maximum of 800Mb of RAM, which should be sufficient for
exome analysis of 3-4 samples. If you notice problems, or Java errors involving "heap
space", increase this number (though it should be lower than your total system RAM).
 You can create a helper file, which can be double-clicked to start VarSifter from the
command-line:

Mac OS X users can create a file called vs.command with the following:
#!/bin/bash cd `dirname $0`
java -Xmx800M -jar VarSifter<version>.jar

Windows users can create a file called vs.bat with the following:
java -Xmx800M -jar VarSifter<version>.jar

 The path to a data file can be added at the end of the line starting with 'java', just as can
be done when typing the command manually. Additionally, 'java' can be changed if you
wish to define a specific full-path to the Java executable.
 <version> should be replaced with the VarSifter version you are using, the memory
should be adjusted to the appropriate amount, and the file should be saved in the same
directory as the VarSifter jar. You can now double-click this file to run VarSifter easily
using a desired amount of memory.

Usage
 VarSifter is designed to be easy to use. In the upper main window, you will see all
variant positions, one position per row. This window displays one row per position (and
per gene, per variant). Clicking any one row will display the genotypes, genotype score,
and depth of coverage for each sample in the lower main window.
 The right side of the screen contains the filtering options, as well as the action buttons.
Generally, you select the filters you are interested in, and then click 'Apply Filter'. The
main upper window will now display only those variants that meet your filter criteria.
Note that the row count is displayed on the bottom of the screen next to "Number of
Variant Positions". Clicking 'Clear All' will unselect all filters.
 There are several types of filters. The first box of "Include" filters (Stop, DIV, etc.)
will show any positions that meet any of the checked criteria. These criteria mostly relate
to the type of variant. (If no boxes are checked, none of these filters are applied.) Filters
in the "Exclude" box, when checked, will remove those variants from the display. The
next "Include" box applies more to samples, and includes inheritance filters,
Tumor/Normal pair filters, case/control filters, etc. Some of these boxes may be grayed
out, as the data file does not contain the filter information (inheritance analysis can only
be performed with family data, for example.) Selecting files with the buttons on the
bottom right will activate some of these disabled buttons.
 The box titled "Search gene names for:" is special. It allows you to use Java regular
expression syntax to make your gene name search much more powerful. Regular
expression syntax is beyond the scope of this guide, but worth learning! As of this
writing, Oracle provides a guide at the following Web site:
http://java.sun.com/docs/books/tutorial/essential/regex/index.html.

Columns in the main annotation window and lower sample window are sortable. Click
once on a column header to sort, once to sort in reverse order, and once more to return to
the unsorted state. One can sort hierarchically by CTRL-clicking additional column
headers.
 The annotation window has two views, "Show Variants", which shows the variants by
position, and "Show Genes", which shows genes, and the number of variants in each gene
that pass your filters. Clicking on the 'View Variants for Selected Gene' button will bring
up another VarSifter window showing all the variants for the selected gene (or the gene
the selected variant belongs to).
 There are two file filters available: 'Choose Gene File Filter' and 'Choose Bed File
Filter'. Clicking one of these buttons and choosing an appropriate file will enable the
checkboxes, allowing one to filter using these lists. A bedfile is a list of regions in the
standard BED format (http://genome.ucsc.edu/FAQ/FAQformat.html#format1), and is
useful if you have a list of interesting regions (linkage regions, GWAS peaks, etc). A
gene file is a list of gene names, one per line. Note that the gene names must match
exactly to those in the VarSifter file. (Case is not important.)
 NOTE: After loading a BED or gene file, you still must apply the filter by checking the
appropriate "Include" or "Exclude" box!

Useful Regular Expressions for Gene Name Searches
Note that these searches are case-insensitive.
Regular Expression Search Term Search Term Meaning
^Cftr$ Gene name matches "Cftr" exactly; nothing before or after
 "Cftr". ('^' is the beginning of the line, '$' is the end)
Cftr|Apob Gene name can be either Cftr or Apob (and things like
 vCftr or Apob2 if such genes exist). The '|' (pipe) character
 is used to separate alternate terms.
Apob[12] Apob1 or Apob2 only, not Apob3

Sample Settings
 The last two filters in the lower "Include" box on the right are the Affected/Normal
pair filter and the Case/Control filter. To use these filters, you need to assign sample
status, if this was not already defined in your data file. To define the status of each
sample, click the "File" menu, and then "Sample Settings". You will see a box with one
row per sample, and a number of checkboxes. Check the boxes that apply for each
sample. Note that a sample cannot be Affected and Normal, nor can it be Case and
Control. Also, every affected sample must have a normal pair, and these are assigned in
order (after finishing, reopen the Sample Settings window, and check the "Aff/Norm Pair
Group" column). There must be at least one Case and one Control to activate the
Case/Control filter. After you are finished defining the samples, click "Ok". The
appropriate filters will now be available. To filter using Affected/Normal pairs (such as
for a Tumor/Normal pair), check the box, and select the minimum number of pairs in
which a difference must be observed. For Case/Control, check the box, and define the
minimum number of cases with a variant genotype, and then the maximum number of
controls with the variant genotype.

Preferences
 Preferences are available by clicking the "File" menu, and then "Preferences".
Currently, you can set genotype score and (genotype score / coverage) cutoffs here in the
top part of the window. Note that these are minimum scores, and must be seen in the
indicated number of samples to include a variant. The two filters in the bottom part of the
window control the minimum score for the Aff/Norm, Case/Control filters, and the low-
lighting cutoff. To apply any of these settings, you must click "Apply Preferences", and
then refilter with "Apply Filter"!! Currently, if the coverage is listed as 0, the genotype is
not counted, even with a high score (since we cannot know what the coverage is.)

Custom Query Usage
 If you have correctly unzipped the JUNG files into the same directory as the
Varsifter.jar (or have unzipped the 'package' installation), and are using Java JDK 1.6 or
higher, you can create custom queries/filters. Click 'View' in the menu, and then 'Custom
Query'. There are two types of filters you can create. Sample filters (left side) allow you
to compare sample genotypes. For example, you can click on one sample in the
"Samples:" list, click 'Exactly Matches', and then click on another sample to create a filter
that requires the two samples to have the same genotype. Annotation filters (right side)
allow you to create filters based on the included annotation columns. Start by selecting
and annotation column from "Annotations:". Then, if the data is textual, click either
'Exactly Matches' or 'Does Not Match' in the "Annotation Actions:" box. You can then
either select a value present in the file in the "Annotation Values:" box, or enter a search
term (regular expressions supported) in the "Annotation Actions:" box and click 'Apply
Search Text'. If the column you originally selected contained numeric information, you
can specify numeric relations in the "Annot. Numeric Actions" box. Click a comparison
term, enter a number in the box, and click "Apply Number".
 You now have a box in the middle of the screen. This is a query. You can use it now
by clicking 'Finalize Query' and then clicking 'Apply Filter' back on the main window.
 For more complicated queries, you can add additional query boxes. Query boxes must
be linked with a logical, i.e., if both queries must be passed in order for a variant to pass,
SHIFT-click each test (they will turn yellow), and then click 'AND'. The logic of the
query is displayed for you. Selecting one or more boxes and clicking 'Delete Selected'
deletes those boxes. When ready to run the query, click 'Finalize Query', ensure the
"Custom Query" checkbox is checked, and then click 'Apply Filter' in the main window.
Note that custom queries behave like any other, and can be combined with other filters.
 When the pointer is over the graph window, you can use the middle mouse wheel to
zoom in and out (the zooming is very fast, so scroll slowly!). Also note the pull-down
box with the choices "Picking" or "Transforming". "Picking" allows choosing of boxes to
link with logical statements. "Transforming" allows rearrangement of the boxes, although
the rearrangement is reset on subsequent actions.
 Queries can be saved by clicking 'Save Query'. This creates a binary Java object file.
The query can be loaded by clicking 'Load Query', and choosing the appropriate file.
Note that a saved query will only work on the EXACT data file it was created from!
VarSifter checks this by comparing the data file names. Therefore, you should always use
different names when creating/saving VarSifter data files.

VCF Files
 VarSifter can read VCF files as defined by the VCF Standard 4.0.
(http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-
call-format-version-40). VarSifter shows one variant per line, and therefore splits VCF
lines with multiple alternate alleles. To ensure the proper fields are also split, VarSifter
asks the user to input information about the file before opening.
 If an INFO field can contain multiple values, one for each alternate allele, this is
considered "Multi-Allelic". An allele frequency field is an example of this, as you may
expect to have a separate allele frequency for each alternate allele. For each of these
"Multi-Allelic" fields, users should click the checkbox in the "MultiAllele" column of the
popup window.
 Additionally, if users are using an additional delimiter to further split individual info
fields, VarSifter needs to know this. Enter the character in the "Sub-delimiter" column of
the popup box and hit 'Return/Enter' or click a different box (to get Java to accept your
entry). At the moment, VarSifter does not split these fields, but the presence of a sub-
delimiting character helps to properly determine the type of data in the field.
 When you have finished entering this information, click 'OK'. You will be asked if you
want to save this configuration. If you choose "Yes", a config file will be written. The
next time you open this data file, VarSifter will identify the saved config file, and ask if
you wish to use it, avoiding the need to enter all of this information again. Config files
are saved by appending ".vcf_config" to the original VCF file name.
 Unfortunately, the version 4.0 VCF specification does not define specific tags for
annotations, such as Gene Name, or variant type. If this information is included in a VCF
file, custom queries can be used to filter those annotations.
 VarSifter saves VCF files as VS files, described below.

VS File Format
 VarSifter is also designed to read in "vs" files, a text file with some specific format
rules used at NISC. The file is an uncompressed tab-delimited plain-text file with a single
header line. Different types of data are stored in columns, and different variant positions
are stored in rows. The first row is always a header, which labels the columns. In order
for VarSifter to work most efficiently, data in a column should all be the same type, i.e., a
column with numbers should only have numbers.
 The order and requirement of column types is designed to be flexible, but some rules
must be followed, and some fields are required for VarSifter to work correctly. Sample
fields must come last, and each sample must have three fields in this order: genotype,
genotype score, and coverage.
The headers for each column of sample data must currently end in ".NA" or
".NA.<word>" where <word> is letters or numbers. No other headers can have this
combination!!
 The order of samples in the file dictates order in VarSifter.
To make use of Affected/Norm filters and Case/Control filters, the three column headers
for each sample, in addition to "NA", must have one of the following identifiers:

• aff: Affected member of a pair. This sample must be next to the corresponding
normal sample.

• norm: Normal member of a pair. This sample must be next to its corresponding
affected sample.

• case: This sample is a case.
• control: This sample is a control.

 The Affected/Normal filter (designed for tumor/normal comparisons) requires aff/norm
pairs, where the pairs are next to each other. The Case/Control filter is more flexible: any
number of either tag is allowed, and not all samples need to be tagged.
 Annotation fields precede the sample fields, and must include the following in any
order: "Chr", "LeftFlank", "RightFlank", "Gene_name", "type", "muttype",
"ref_allele", "var_allele".
 Other custom annotation columns are allowed (must precede sample columns), and are
sortable in VarSifter. Note that the column names must be unique!
 If you wish to use the Mendelian filters, you must calculate the status of each variant
row ahead of time, and store the information in these columns, as defined below:
MendHomRec, MendDom, MendHetRec (and Index), and/or MendInconsis.
The following is a list of commonly used, and special column headers:
Required:

• Chr: chromosome
• LeftFlank: The position to the left of the variant. For indels, the position to the

left of the ambiguous bases.
• RightFlank: The position to the right of the variant (and indel, as above).
• Gene_name: The name of the gene. We use the refseq gene symbol.
• type: Variant type. VarSifter uses the entries in the file to create filter buttons.
• muttype: SNP for single nucleotide variant or INDEL for insertion/deletion

variant.
• ref_allele: Reference base at this position (plus strand).
• var_allele: variant base at this position (plus strand).

Reserved (VarSifter uses these for the indicated purpose):
• dbID: dbSNP ID (or other ID), or - if none.
• Comments: An editable field to write comments. Must save the file using File

menu to save comments.
• Index: An numeric index numbering lines is used to allow compound het pairs to

remain linked, even when a subview is saved. It is required if using MendHetRec.
• MendHomRec: Mendelian Homozygous Recessive. 1 if yes, 0 if no.
• MendDom: Mendelian Dominant. 1 if yes, 0 if no.
• MendHetRec: Mendelian Heterozygous Recessive (compound het). Comma

separated list of pair-indices (from Index field) if yes, '0,' if no. Requires Index
field to work properly.

• MendInconsis: Mendelian Inconsistent. Can be either artifacts, or de novo
mutations. 1 if yes, 0 if no.

Tutorial
As part of the "Exome 101" course presented by researchers at NHGRI in the fall of
2011, the author of VarSifter (Dr. Jamie K. Teer) presented a session titled "Variant
Annotation and Viewing Exome Sequencing Data". The full lecture series is available on

YouTube through the GenomeTV channel:
http://www.youtube.com/playlist?list=PL6E6AA89291FBA884
Dr. Teer's session
(http://www.youtube.com/watch?v=I7azpqTWFuM&list=PL6E6AA89291FBA884&inde
x=3&feature=plpp_video) presents a brief demo of VarSifter starting at 26:50.

Troubleshooting

1. VarSifter will not start. I see error messages about "class" or "loading".
• If you've copied and pasted the start command from the internet or E-mail, try

typing it by hand. Sometimes, the minus sign is interpreted as a weird
character that command lines do not recognize.

• If you're using a Windows machine, Internet explorer may be "helpful" and
rename the .jar file as .zip. This is bad. Either use Firefox to "Save As" the file
(making sure it is not changing the filetype) or rename the file. To rename the
file in Windows correctly, you either must be showing file extensions, or you
have to use the "ren" command on the command prompt.

• If you are using a helper file, make sure the VarSifter version in the helper file
matches the version you want to be using (the latest version in your directory.)

2. VarSifter will not start. I see error messages about "heap space" or "memory".
• VarSifter is not being started with enough memory. Increase the memory

requested in the -Xmx command. If using a helper file, change this in the
helper file. Note that this value must be less than the total system memory in
your machine, and you may have to close other programs to be able to use this
memory.

• You may be using a 32-bit Java virtual machine. In 64-bit Mac OSX, open
"Java Preferences" in Applications->Utilities. Make sure that the topmost java
version is 64-bit. Note that any 32-bit operating system (includes Windows
XP) will not be able to run a 64-bit Java, and will be limited in how much
memory can be used!

3. VarSifter gives errors about Custom Querying, but I have the full Java 1.6 JDK
installed.
• Although the full Java Development Kit may be installed, your system may

not be recognizing it. Ensure the 1.6 JDK is the system default. This is
probably defined in your Java settings, which tend to be system specific.
Alternately, find the correct java binary file, and point your scripts at the full
path to that file. On OS X ~10.6, that may be in:
/System/Library/Frameworks/JavaVM.framework/Versions/.

• This can be especially problematic on Windows machines. Here is a
workaround, courtesy of David Adams:
1. Install java JDK
2. Append JDK bin directory to system PATH environmental variable
3. Go into JDK bin directory and make a copy of the java (java.exe if you

have extensions visible) file and name the copy javasdk (javasdk.exe)
4. Start VarSifter at command line with "java -Xmx1000M -jar VarSifter\

.jar"

• Alternatively, one can remove all Java versions, and then install only the Java
JDK 1.6.

