Supplemental Table 1 Yeast Strains

Strain	Genotype	Source
W303	MAT $lpha$, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1	This lab
$mpd1\Delta$	MAT $lpha$, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, mpd1::KANMX	This study
mpd2∆	MAT $lpha$, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, mpd2::KANMX	This study
eug1∆	MATα, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, eug1::KANMX	This study
eps1∆	MATα, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, eps1::KANMX	This study
M4492	MAT α pdi1::HIS3 Δeps1 Δeug1 Δmpd1 Δmpd2::G418 ura3 trp1 his3 [pBH1800 (MPD1 CEN TRP1)]	Norgaard et al., 2001
SRH01	MAT α pdi1::HIS3 Δeps1 Δeug1 Δmpd1 Δmpd2::G418 ura3 trp1 his3 [pSG01]	This study
$pdi1\Delta [PDI1_{ ext{CGHC-CGHC}}]$	MAT $lpha$, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, pdi1::HIS3, [pBH1464]	Luz and Lennarz, 1998
$pdi1\Delta[PDI1_{ ext{SGHS-CGHC}}]$	MAT $lpha$, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, pdi1::HIS3, [pBH1852]	Luz and Lennarz, 1998
$pdi1\Delta[PDI1_{ ext{CGHC-SGHS}}]$	MAT α , ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, pdi1::HIS3, [pBH1630]	Luz and Lennarz, 1998
$pdi1\Delta [PDI1_{222-302\Delta}]$	MATa, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, pdi1::HIS3, [pRS-Δ222-302]	Gillece et al., 1999
M4130	4130 <i>MATα, pdi1::HIS3, ade2, can1, ura3, leu2, trp1, his3,</i> [pCT37]	
ire1∆	$ extstyle{Mat}lpha$, lys2, his3, leu2, ura3, ire1::KAN $ extstyle{MX}$	This lab
SEY6210	EY6210 MAT α , ura3-52, leu2-3,112, trp1- Δ 901, his3- Δ 200, lys2-801, suc2- Δ 9	
htm1∆	$MATα$, $ura3-52$, $leu2-3$,112, $trp1-\Delta901$, $his3-\Delta200$, $lys2-801$, $suc2-\Delta9$, $htm1::HIS3$	
W303	MATa, ade2-1, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1 2011	
KKY415	MATa, pdi1-1, his3-11::HIS3-UPRE LacZ, trp1-1, his3-11,15, ura3-1 , can1-100, ade2-1 , leu2-3,112	Gauss et al., 2011

Supplemental Table 2. Plasmids

Plasmid Name	Notes	Selectable Marker	Reference
pRS316CPY*-3HA	CPY* expression	URA3	Bhamidipati <i>et al.,</i> 2005
pSLW1-B29	ApoB29 expression	URA3	Hrizo <i>et al.,</i> 2007
pBH1800	CEN MPD1	TRP1	Norgaard <i>et al.,</i> 2001
pBH1464	CEN PDI1 _{CGHC-CGHC}	TRP1	Holst <i>et al.,</i> 1997
pBH1852	CEN PDI1 _{SGHS-CGHC}	TRP1	Holst <i>et al.,</i> 1997
pBH1630	CEN PDI1 _{CGHC-SGHS}	TRP1	Holst <i>et al.,</i> 1997
pRS-Δ222-302	CEN PDI1 _{222-302Δ}	TRP1	Gillece et al., 1999
pCT37	Galactose inducible PDI1	URA3	Norgaard <i>et al.,</i> 2001
pFA6a-KanMX6	KanMX	AMP^R	Longtine <i>et al.,</i> 1998
pSG01	CEN PDI1 _{CGHC-CGHC}	LEU2	This Study
pRS426GPD ENaC-HA	ENaC alpha subunit expression	URA3	Buck <i>et al</i> ., 2010
pRS426MET25 ENaC-HA	Methionine repressible ENaC alpha subunit expression	URA3	This Study
pSM36-ppaf∆G-HA	paf expression	URA3	Kim <i>et al.</i> 2005
pKK223	PrA*-Ab expression	LEU2	Kanehara <i>et al</i> . 2010
рЈЈВ20	Vector control corresponding to ApoB29	URA3	Hrizo <i>et al.,</i> 2007
pRS316	Vector control corresponding to CPY*	URA3	Bhamidipati <i>et al.,</i> 2005
pcDNA3.1	Vector control corresponding to PDI, ERp57, and ERp72	Neomycin ^R	Invitrogen, Iowa City, IA
pcDNA3.1-hPDI	Human PDI expression	Neomycin ^R	This Study
pcDNA3.1-hERp57	Human ERp57 expression	Neomycin ^R	This Study
pcDNA3.1-hERp72	Human ERp72 expression	Neomycin ^R	This Study

Supplemental Figure 1. The non-essential PDIs do not contribute to the ERAD of pαf or α-ENaC. Cycloheximide chase reactions were performed as described in the Materials and Methods in wild type (\bullet), $mpd1\Delta$ (\bigcirc), $mpd2\Delta$ (\square), $eug1\Delta$ (\triangle), and $eps1\Delta$ ($^{\circ}$) yeast strains expressing pαf (A) from the pSM36-ppαf Δ G-HA plasmid or α-ENaC (B) from the pRS426GPD ENaC-HA plasmid. Chase reactions were performed at 30°C, and lysates were immunoblotted with anti-HA antibody. Anti-G6PD antiserum was used as a loading control. Data represent the means of 4-6 experiments, \pm SEM. The lack of visible error bars indicates that the SEM is less than the size of the symbol.

Supplemental Figure 2. Pdi1 is necessary for the degradation of p α f, but not α -ENaC.

Cycloheximide chase reactions were performed as described in the Materials and Methods in wild type (\bullet), M4492 (O), or SRH01 (\square) yeast strains expressing p α f (A) from the pSM36-pp α f Δ G-HA plasmid or α -ENaC (B) from the pRS426MET25 ENaC-HA plasmid. For expression of α -ENaC, strains were grown overnight at 26°C in selective medium supplemented with 2mM methionine to repress the expression of α -ENaC. The cells were then harvested and resuspended in selective medium without methionine for 90 min to induce the expression of α -ENaC . Chase reactions were subsequently performed at 30°C, and lysates were immunoblotted with anti-HA antibody. Anti-G6PD antiserum was used as a loading control. Data represent the means of 4-6 experiments, \pm SEM. The lack of visible error bars indicates that the SEM is less than the size of the symbol. Where indicated (**) p<0.01.

Supplemental Figure 3. The chaperone activity of Pdi1 is not necessary for the ERAD of CPY*. Cycloheximide chase reactions were performed as described in the Materials and Methods in $pdi1\Delta$ [$PDI1_{CGHC-CGHC}$] (\bullet) and $pdi1\Delta$ [$PDI1_{222-302\Delta}$] (\bigcirc) yeast strains expressing CPY* (A). Chase reactions were performed at 30°C, and lysates were immunoblotted with anti-HA antibody. Anti-G6PD antiserum was used as a loading control. Data represent the means of 4-6 experiments, \pm SEM. The lack of visible error bars indicates that the SEM is less than the size of the symbol. Lysates were also immunoblotted with anti-Pdi1 antiserum and representative images are shown (B).

Supplemental Figure 4. PDI promotes ApoB secretion independent of ERAD activity.

Following a metabolic labeling reaction in the presence of either DMSO or the proteasome inhibitor MG132, as indicated, a 90 min chase was performed as described in the Materials and Methods in McArdle-RH7777 cells transfected with a vector control (pcDNA3.1 lacking an insert), or containing the PDI gene in pcDNA3.1. The "Relative Recovery of ApoB" indicates the amount of ApoB-precipitable material recovered from cell lysates and secreted into the medium at the completion of the chase divided by the amount of ApoB-precipitable material recovered after 30 min of chase. Data represent the means of 3 independent experiments, \pm SEM. Where indicated (*) p < 0.05.

Supplemental Figure 5. Mutant forms of Pdi1 are able to co-precipitate with ApoB29 and CPY*.

Native immunoprecipitation reactions were performed using anti-HA resin, or unconjugated Sepharose ("Mock"), using lysates from $pdi1\Delta$ yeast strains expressing active site mutant (lanes 1-6 and 7-12) or chaperone mutant (lanes 13-18) forms of PDI1 on a plasmid. As indicated, each strain also expressed (A) ApoB29 ("ApoB"), (B) CPY* ("CPY*"), or harbored an empty vector control ("-"). A total of 1% of the input for the precipitation was also examined ("Lysate"). After precipitation and SDS-PAGE, the indicated proteins were examined by immunoblot analysis. The doublet observed for Pdi1 in some panels is due to differential glycosylation.