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Network Processing

The specific network reconstruction used is iAF1260 for Escherichia coli K-12 MG1655 [Feist et al
(2007)] and was sourced from the BiGG database [Schellenberger et al (2010)]. This network contains
1972 unique metabolic compound entries and 1944 reaction entries. Before any pathway analysis the
network was preprocessed into a network of connected reactions. The preprocessing connects neighboring
reactions by their substrate and product compound dependencies. In Diagram la we present an example
compound-reaction network pathway as is presented in many metabolic databases. The example network
in Diagram la connects six compounds {ci,...,cs} by two reactions {Rj, Ro} through the substrate-
product compound dependency of c3. The converted reaction network of Diagram la is presented in
Diagram 1b. For ease of the pathway interpretation we have included additional pseudo-nodes s and t
which flag the entrance substrates s = {c;, c2} and the terminal products t = {c4, ¢5,cg} of the network.
In Diagram 1b the edges are clearly labeled by a tuple containing the initial substrate, intermediate
product and resulting product compounds traversed by each path through the two reactions. By following
the edge labels in Diagram 1b every possible compound transition path within Diagram la can be
recovered. Additionally as each path is uniquely labeled by the compound transitions the direction of
the edge can be maintained. Edge weights w are then assigned between each connected reaction pair
to be the maximum Pearson correlation between the expression profiles computed for all pairwise gene
combinations from the gene sets of each connected reaction gene set space.

Preprocessing in this manner treats each substrate-product pair as equally important and the edge
labeled by the specific substrate-product pairs are used to ensure that information on the specific location
of each pair within the network and edge direction between them is maintained. However, treating each
substrate-product pair as a separate path does violate the requirement that all substrates must be present
before the reaction can proceed. However, as the edge weights that connect the same reactions are
identical, each substrate-product pair resulting from each connected reaction is equally likely. Therefore,
as the specific reactions which are selected to be a member of a maximally correlated path will also
depend on the coordination of the neighboring reactions further down the path, it is assumed that
specific reactions selected within each path will be indicative of the major compound transformations
along the most biologically meaningful path.

Significant Path Ranking

To compute path significance we first define the score of each path 7 to be score s, (1),
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where || is the path length and Prcopr is the empirical cumulative distribution probability of an edge
weight wg, - r,_, given all other edge weights within the network. If we then assume that the edges



along a given path are randomly and independently drawn from the network edge weight distribution,
the p-value of the path can be computed using (2) [Takigawa and Mamitsuka (2008)].
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From [Takigawa and Mamitsuka (2008),Hancock et al (2010)] we know that ranking only by (1) is biased
towards shorter path lengths. However ranking by p-value corrects the path length dependency but
induces an assumption that each edge weight is randomly and independently drawn from the network edge
weight distribution, which given the known network structure is unlikely to hold. In our proposed pathway
ranking algorithm we address both of these concerns with a combination of a dynamic programming
pathway extraction algorithm to extract the path of smallest p-value and a Metropolis sampling regime
to correct underlying assumptions of this p-value computation.

From observation of the p-value computation in (2) we see that if we hold the path length constant,
the task of finding the path of minimum p-value is equivalent to maximizing the path score function
(1). This suggests an algorithm that computing shortest paths in terms of score for all lengths and
then ranking by the p-value of each path would yield an algorithm to find the path of minimum p-value.
To compute the shortest paths (in number of edges) we propose a dynamic programming to efficiently
account for path length.

In Diagram 2 we show a diagrammatic representation of the algorithm for extracting all shortest
paths, in terms of score (1), for all lengths 0 to |7|™®* — 1 between s and t. Diagram 2 shows that if
we have a list of all shortest paths, in terms of score for all lengths, to all nodes directly connected to
t, [Ro...Rg], we can readily find the shortest path to t at all lengths by selecting the edge connected
to t with the minimum weight ss_,r, + wg,—:. This logic can be followed recursively through the
network to find the shortest path of all lengths to all nodes and results in the dynamic programming
algorithm presented in Diagram 3. The algorithm in Diagram 3 defines the weights of edges Ry — Rj41
as WR, Ry, = —108y(wRr, Rr,), and if edge Ry — Rjy1 does not exist, then wg, »g,,, = +00. Once
the shortest path in terms of score for all lengths has been found, the path with smallest p-value can be
easily recovered by ranking all shortest paths with respect to (2).

To correct the p-value computation given that the path edge weights are unlikely to be randomly
and independently drawn from the network edge weight distribution, we employ a Metropolis sampling
algorithm [Metropolis et al (1953)]. The resulting Metropolis algorithm (Diagram 4) randomly samples
candidate paths 7* of all lengths 0 to |r| from the weighted network. The probability p(7*), of each
randomly sampled path 7 is stored and used as a reference distribution to compute the p-value of each
shortest path identified by the algorithm in Diagram 3. We now show that computing the p-value from
this reference distribution overcomes the assumption that path edge is randomly and independently drawn
from the network distribution.

For each path generation step within Diagram 4, using the Metropolis algorithm [Metropolis et al
(1953)], each vertex transition is accepted with probability 1 A % where by pr and p are the

target and proposal distribution respectively. As the target distribution is the uniform distribution, this
p(z)

p(m*)
and the probability p() is not simply equal to a random choice of edges given the degree distribution

simplifies to 1A However, this expression is still not easily evaluated, as indeed algorithm 4 can fail,
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network structure. We now want wish to assess if such a random sampling procedure as described in
Diagram 3 will faithfully reconstruct the distribution of all paths through the network.

Over the course of many trials ¢ € [1, ..., Tnax] the convergence of this generated random distribution,
g(m), to the target distribution of paths through the network p(m) can be assessed by considering the
error between the ¢g(7) and p(7) when going through one path generation step and arriving at a cycle or
at a dead-end. In the cycle case the process arrives at a vertex which has already been chosen, and a



dead-end path occurs when there are no more edges to choose while the objective length has not yet been
reached. In both of these cases no path is produced by our path sampling or shortest path algorithms.
Let us denote h to be the probability of producing no path. We can now evaluate the probability p(m) of
observing the path 7. If one observes m, this can be at the first trial, then it is produced with probability
g(m), and after t trials and then the probability becomes g(m)h!~! and therefore becomes a geometric
progression and can be shown to converge to the network path distribution (3).
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Initially, h is set to 0 as p(m) is considered as being equal to g(7), and then at each sampling trial A is
corrected using the proportion of observed errors and increasingly becomes more reflective of the known
network structure. This ensures the convergence of the algorithm and shows that as the number of trials
increases our sampled path probability distribution will resemble that of the network.
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Supporting Methods Diagram 1. Diagrammatic example of a compound-reaction metabolic
network into a reaction-reaction metabolic network. In this example there are six metabolic compound
{c1,...,c6} and two reactions {R;, Ro} connected by a substrate-product dependency through
compound c3. Edge weights are labeled as w.
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Supporting Methods Diagram 2. Supporting Methods Diagram 3.

Diagrammatic representation of how to choose Algorithm for finding the shortest path

the shortest path. between s and t.

for t in T},.x do
randomly choose a starting vertex from the network s.
v sand T=s
while || <1+ 1 do
choose uniformly randomly a neighbor vertex u of v which does not make a cycle
if v not found then
return ERROR
else
T muand v u
end if
end while
store
end for

Supporting Methods Diagram 4. Pathway sampling distribution construction.
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