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Supplementary materials: 
 
Methodology: 
q-gram Representation   
The following terminology will be used throughout this paper. We use a labeled ordered rooted tree to characterize the molecular 
structure of a glycan. For glycans, the vertex labels stand for the monosaccharide type while the edge labels represent glycosidic 
bonds. Since the order of the children is significant, the tree of glycans is considered ordered. The monosaccharide at the reducing 
end is considered the root. We also define the concept of a layer for subtree rooted at a monosaccharide (i.e. a vertex) as the distance 
of the vertex from the root. 
 
We formulate q-grams for labeled ordered rooted trees. A q-gram is defined as a tree with q nodes isomorphic to a path where every 
node has at most two adjacent nodes, for 1q ≥ . A q-gram representation of a specific glycan is denoted as a vector of length N, 
where N is the total number of q-grams within the glycan data set being investigated. Figure 2 shows the q-gram decomposition of 
the given glycan structure (data not shown, please check with authors).   In total, if the glycan data set contains N glycans 

{ }1 2, , Ng g gL , we denote the set of all q-grams existing in these N glycans to be a q-gram set: { }1 2, , qn
q q q qφ φ φΦ = L . For a specific 

glycan ig  in the data set, the q-gram representation is a column vector 1 2, ,
q

T
q q q q
i i i n ix x x x⎡ ⎤= ⎣ ⎦L where q

lix  is the number of lth q-gram 

in the glycan ig .  
q-gram Similarity in LK-method  
Next, we describe the concept of similarity between two glycans (each represented as a q-gram) as defined in the LK-method.  For 
each q-gram, there are q  monosaccharides and 1q −  glycosidic bonds linking them to one another. When 1q = , we just consider a 

single monosaccharide instead. Suppose a q-gram is characterized by { }, , ,q l M Bφ σ= , where l  is the layer of the q-gram, M  is 
the ordered set of monosaccharides it contains, B  stands for the corresponding chemical bonds and σ  represents the structure 
shape (i.e., linear, branched, etc.) of this q-gram.  
Given two q-grams { }, , ,i i i i i

q l M Bφ σ=  and { }, , ,j j j j j
q l M Bφ σ= , the similarity between the two q-grams are defined as:  

1

1 1
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q q
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q q q k k k k

k k

S S S l l S m m S b bσφ φ σ σ
−
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= ⋅ ⋅ ⋅∏ ∏  

Where ( , )i jSσ σ σ  is the similarity between the shapes of the two q-grams, ( , )l i jS l l  is the similarity between the layers of the 

two q-grams, ( , )M i j
k kS m m  is the similarity of the corresponding monosaccharides, and ( , )B i j

k kS b b  is the similarity of the chemical 
bonds.  
The similarity of shape between two q-grams is defined as:  

1,
( , )

0,

i j
i jS

otherwise
σ σ σ
σ σ
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The similarity of layers is defined using the distance of layers:  

( , ) 1
m ax( )

i j
l i j

l l
S l l

l

−
= −  

The similarity among monosacccharides is obtained from the chemical structure comparison method SIMCOMP developed by [19]. 
For the bond similarity, it is defined according to their chemical meanings (additional data available with authors).  
 
The linkage kernel in the LK-method then can be created by:  

LK T T
q q q q qK V S S V= ⋅ ⋅ ⋅  

Where qV  is the q-gram representation matrix of the glycan data set.  
 
Biochemically-Weighted Kernel Construction: BioLK-method  
In order to bypass the issue of the non-PSD property in kernel construction, the LK-method uses TS S as a replacement for the 
similarity matrix S  However, from a biological standpoint, the kernel should be constructed as follows:  

T
q q q qK V S V= ⋅ ⋅  kq = vtq 

Here our objective is to directly use the indefinite similarity measures to construct both a new one that is PSD and that biologically 
shares more similarity with the original similarity matrix. 
 
Mathematically, the similarity matrix S can be decomposed as follows:  

TS X P X= ⋅ ⋅  
Where X  is the unit eigenvector matrix corresponding to the eigenvalues sorted in ascending order, P is the diagonal matrix of 
eigenvalues sorted in ascending order. Usually the similarity matrix constructed is non-PSD which means there are negative 
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eigenvalues. Taking into consideration the fact that the denoising method and the flipping method (described in the Introduction 
part) both can yield high precision in classification for protein datasets [20], we may get some clues in constructing a new similarity 
matrix based on the original non-PSD one. Basically, we should keep the original positive eigenvalues while avoiding the 
magnification of negative eigenvalues. Therefore, the new similarity matrix is proposed as:  
ˆ ˆ TS X P X= ⋅ ⋅  

where  

1
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ˆ0 0ˆ
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and ˆ , 1, 2,i i nλ = K  are defined as:  
1 1,ˆ
,

i
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e
otherwise
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The newly developed similarity matrix in this context is PSD. It preserves the ascending property of eigenvalues without changing 
most of the positive eigenvalues. Moreover, the effect of negative eigenvalues is also included without magnification.  
 
However, the similarity matrix only considers the similarity of the geometric structure, monosaccharides and glycosidic bonds 
among q-grams. Glycans exhibit the property that substructures near the leaf are more variable. It is therefore desirable that we 
include this biological information in kernel construction. This may play a pivotal role in capturing exact motifs in feature selection. 
 
We measure the importance of q-grams by defining BioWeight for them according to the layer of q-grams.  

[ ]( ) , 0,1
ii l

qBioWeight eαφ α⋅= ∈  
The kernel therefore can be constructed as follows:  

ˆBioLK T
q q qK V BioWeight S BioWeight V= ⋅ ⋅ ⋅ ⋅  

 
For the BioWeight matrix α is a parameter to be predetermined. It endows the q-grams as a unit with significance in the whole 
feature set. The function we choose for BioWeight originates from a weight function used in constructing the similarity matrix for 

the leukemia data set [5]. The two functions 
ileα  and 1

ile α−− share similarity in putting more weight on the substructures in the 
variable region. The reason for α  as a parameter to be predetermined in our paper is that for different data sets, the number of 
features embedded varies from one to another. In the case of large data sets with numerous complicated features, α should be set 
to a smaller value because large α will pose too much significance on the variable part, thereby bringing about side effects to 
extract wrong substructures. On the other hand, relatively smaller data sets contain fewer and simpler structures, under which 
circumstance the data would be less sensitive to largeα . Values of α that are too small, on the other hand, would not help much 
to differentiate different features. Thus, while greater α  may contribute to better feature selection results, they must not be too 
large, but not so small that feature selection cannot be performed well. We have thus developed an algorithm to select the 
appropriate values for α given the size of the feature set (data not shown). 
 
Feature Selection   
For 1, 2, ,9q = K , we use the discriminant score ( )xδ  obtained from the trained SVM to represent the contribution of each q-gram 
pattern. The feature score representing the importance of feature f is defined as follows:  
( ) ( ) ( )x

x X
F f x I fδ

∈

= ⋅∑  

where x  is the glycan, and X  is the whole glycan data set being investigated.  
1,

( )
0, .x

If x contains feature f
I f

otherwise
⎧

= ⎨
⎩

 

The features with higher feature scores may be potential motifs. We select the most likely substructures under this mechanism. 
 

Table 1: Data set composition 
Leukemia 162 Erythrocyte 111 Plasma 73 Serum 85 Total 355 
Cystic 107 Respiratory 89 Bronchial 101  Total 177 
Wildtype 47 FucTIV+VII 50   Total 97 
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Table 2: For each ( 1, 2, ,9)q q = K , the table illustrates the average AUC value over the 10 runs with standard deviations. Both LK-
method and BioLK-method show comparable classification performance. For the leukemia data, the classification performance 
always achieves accuracy greater than 89%.  

q LK-method BioLK-method 
1 0.906±0.002 0.914±0.004 
2 0.952±0.004 0.959±0.003 
3 0.964±0.002 0.959±0.005 
4 0.957±0.003 0.951±0.005 
5 0.948±0.003 0.948±0.005 
6 0.924±0.004 0.934±0.003 
7 0.927±0.003 0.925±0.006 
8 0.900±0.007 0.904±0.004 
9 0.893±0.008 0.893±0.006 
 

Table 3: For each ( 1, 2, ,9)q q = K , the table illustrates the average AUC value over the 10 runs with standard deviations. Both LK-
method and BioLK-method show comparable classification performance. In the cystic fibrosis data set, the classification accuracy 
decreases slightly, but still achieves around 80% on average. For 9q =  in this data set, the performance goes down to 53% which is 
reasonable since this data set is much less complex when compared to the other two data sets, reflecting the fact that the number of 
features involved in 9-gram classification are few. 

q LK-method BioLK-method 
1 0.777±0.011 0.792±0.014 
2 0.78±0.020 0.792±0.016 
3 0.798±0.018 0.798±0.014 
4 0.793±0.015 0.815±0.022 
5 0.788±0.017 0.801±0.021 
6 0.746±0.022 0.755±0.020 
7 0.700±0.025 0.691±0.030 
8 0.613±0.024 0.612±0.031 
9 0.527±0.028 0.521±0.033 
 

Table 4: For each ( 1, 2, ,9)q q = K  , the table illustrates the average AUC value over the 10 runs with standard deviations. Both LK-
method and BioLK-method show comparable classification performance. For the mouse data set, the classification performance is 
also high, achieving accuracies in the 80% range. 

q LK-method BioLK-method 
1 0.718±0.019 0.726±0.02 
2 0.735±0.022 0.742±0.014 
3 0.787±0.016 0.804±0.031 
4 0.916±0.017 0.905±0.015 
5 0.880±0.02 0.885±0.012 
6 0.860±0.012 0.878±0.023 
7 0.875±0.015 0.889±0.019 
8 0.879±0.021 0.897±0.013 
9 0.868±0.013 0.872±0.024 
    


