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1. Materials and manipulation of Caenorhabditis elegans cells 
 

Strains 

C. elegans strains were maintained with the standard techniques [1]. The following strains 

were used in this study: C. elegans embryonic cells expressing GFP::PHPLC1δ1 (OD58) to 

label the cell membrane [2] and zen-4 temperature sensitive (zen-4 ts) cells expressing 

GFP::PHPLC1δ1 (CAL0252) obtained by mating OD58 and EU716 (zen-4(or153) IV) [3]. 

OD58 was kindly provided from K. Oegema (University of California, San Diego) and 

EU716 was from the Caenorhabditis Genetics Center, funded by the National Institutes of 

Health. 
 

AB cell isolation 

In the present study, we used isolated AB cells whose eggshell and vitelline membrane 

surrounding C. elegans embryos were removed to avoid mechanical constraints from these 

structures and cell adhesion (Fig. S1). Removal of the eggshell and vitelline membrane was 

performed as described previously [4,5] with the following modifications. In brief, embryos 

were treated with ~0.25% hypochlorite (Nacalai Tesque, Kyoto, Japan) for 1.5–2.5 min, 

and digested with chitinase (chitinase from Streptomyces griseus; Sigma-Aldrich, St. Louis, 

Mo, USA)/α-chymotrypsin (Sigma-Aldrich) for 3.5–8.0 min. Chitinase/α-chymotrypsin 

were dissolved in Egg HEPES buffer (118 mM NaCl, 48 mM KCl, 25 mM HEPES pH 7.2). 

The chitinase/α-chymotrypsin digestion was performed at ~26°C. Since 26°C is the 

restriction temperature for the zen-4 ts cells, zen-4 ts embryos were digested before 1-cell 

stage cytokinesis occurred, and then moved to the permissive temperature for cytokinesis to 

proceed. The remaining vitelline membrane was then removed by drawing the embryos in 

and out of a glass capillary. Finally, AB and P1 cells were separated with a glass capillary 

(Fig. S1A). Culture medium was used as described previously [5]. 

 

Microscopy 

The isolated AB cells were imaged at ~26°C. GFP fusion proteins were visualized with a 
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spinning-disk confocal system (CSU10; Yokogawa, Tokyo, Japan) mounted on a 

microscope (BX61; Olympus, Tokyo, Japan) equipped with a UPlanSApo 100× 1.40 NA 

objective (Olympus). Digital images were obtained with a CCD camera (iXon; Andor, 

Belfast, UK) controlled by IPLab software (BD Biosciences, Franklin Lakes, NJ, USA). 

Time lapse imaging was performed at 10 s intervals (Fig. S1B–C). 

 

 

2. Image processing 
 

To extract the cell contour, we used GFP::PHPLC1δ1-expressing cells and constructed a series 

of image processing algorithms written in C (Fig. S2A–C). Microscopy images were 

obtained in 14 bit, where 1 pixel corresponded to ~0.165 µm. Before our algorithms were 

applied, by using IPLab software, the dynamic range of each frame was normalized, the 

frames were converted from 14 bit to 8 bit, and the resultant images were saved as TIFF 

files. The overall strategy for our image processing was as follows: Step 1) a smoothing 

filter was applied to the image for noise reduction; Step 2) image binarization was 

performed by picking up pixels with a strong intensity; Step 3) noise that did not form the 

cell contour was removed; Step 4) cell contours were smoothened; and Step 5) the 

boundary between the cell contour and cytoplasmic regions was traced. A detailed 

description of each of these processes is described below. 

Step 1) Microscopic images were smoothed with a 3 × 3 averaging filter [6], 

resulting in a signal intensity for each pixel that was averaged by its 3 × 3 neighboring 

pixels. 

Step 2) Image binarization was performed with a kind of local thresholding [6]. 

We picked up pixels brighter than their neighboring pixels as follows. The intensity of a 

pixel of interest (a) was compared with that of its neighboring pixels (Fig. S2B). The 

neighboring pixels (b1-2-e1-2) were located at a distance of 8 pixels from pixel a. If the 

intensity of a was larger by 10 in the 256-level (8-bit) image (0: white (strongest 

fluorescence signal), 255: black) than that of b1 and b2, pixel a was picked up. A similar 
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decision was performed for the comparison of the intensity of a with that of c1-2, d1-2, or e1-2. 

Note that the 8 pixel distance was a comparable or larger value to the expected width of the 

cell contour, allowing us to extract pixels of the cell contour. 

Step 3) The picked-up pixels were grouped by their connectivity. In general, the 

area of a group that forms the cell contour was larger than that of the other groups that form 

noise. Thus, noise could be removed by erasing groups with a smaller area than 50 pixels. 

The connected components were extracted as previously described [6]. 

Step 4) The cell contour was smoothened with a combination of erosion and 

dilation algorithms [6]. Erosion followed by dilation is called “opening,” and this smoothes 

contours and eliminates sharp peaks [6]. Dilation followed by erosion is called “closing,” 

and this smoothes contours and fuses narrow breaks [6]. We performed opening and 

closing with a 1 and 3 pixel(s) resolution, respectively. Here the pixels that form the cell 

contour are called “CCPs” (Cell Contour Pixels) (Fig. S2A, the 2nd image). 

Step 5) A boundary-following algorithm was used to trace the boundary between 

CCPs and cytoplasmic regions (Fig. S2C) [6]. The obtained pixels forming the boundary 

are called “BP1s” (Boundary Pixels) (Fig. S2C). 

 

 

3. Quantification of cell shape 
 

Quantification procedures 

Using CCPs and BP1s, we quantified cell shape parameters, including the values of the r-z 

coordinate of the cell contour, curvatures (Cm and Cp), and cell volume and surface area 

(Figs. 1 and S2A, D–F). The overall strategy was: Step 1) a small number of pixels were 

selected from the BP1s that mimic the cell contour, and their r-z coordinates were recorded; 

Step 2) the cell shapes were assumed to be rotationally symmetrical, and the rotational axis 

was defined; Step 3) Cm was calculated for each selected pixel; Step 4) Cp was calculated 

for each selected pixel; Step 5) the cell volume and surface area were calculated; and Step 

6) the pixels were resampled so they were equally spaced at 41 points. A detailed 
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description of each of these processes is described below. 

Step 1) A subset of BP1 pixels were selected as “BP2 pixels” (BP2s) to mimic the 

cell contour. By setting the following rules, we selected the BP2s so that a lot or a few 

pixels were selected around acutely curved regions, e.g., the apex of the cleavage furrow or 

around obtusely curved regions, respectively (Fig. S2D). The identity number of the 

selected pixels is presented by “i (i = 1, 2, 3, … N).” If (i-1) and (i) pixels were given, the 

(i+1) pixel was selected so that the distance between (i+1) and Line1, which runs on (i-1) 

and (i), became larger than 2 pixels. Around acutely curved regions, the angle between 

Line1 and Line2, which runs on (i) and (i+1), becomes very small, leading to a large 

curvature calculation error in Step 3. To avoid such an error, we inserted an additional pixel 

(h) between (i-1) and (i) if the angle between Line1 and Line2 was smaller than π/2. This 

additional pixel satisfied that the angle between Line2 and a line, which runs on (h) and (i), 

was larger than π/2. This procedure was done in the clockwise and counter-clockwise 

directions. The number of BP2s (N) was ~several 10s for each sample. 

Step 2) A rotational axis was defined so that sum of the distances between the 

rotational axis and the BP1s on one side of the rotational axis became equal to that between 

the rotational axis and the BP1s on the other side (Fig. S2A, the 3rd image). Since the 

equator of the cells also satisfied this definition, we added another constraint to avoid 

falsely defining the equator of the cell as a rotational axis, i.e., the cell length along the 

rotational axis should be larger than 80% of the cell length along the longest axis, which 

practically avoids this error. 

Step 3) The Cm for each selected pixel was defined as dθ/ds, where θ is an angle 

between a normal vector at the selected pixel and the rotational axis, and s is the arc length 

of the cell contour. Thus, we measured θ by defining a normal vector for each BP2 (Fig. 

S2E–F). The normal vector was calculated by using the neighboring BP2s. A circle that 

runs on a BP2 of interest (i) and 2 sandwiching BP2s (i-1 and i+1) was calculated, and a 

vector connecting the BP2 of interest (i) to the center of the circle was defined as a normal 

vector (Fig. S2E). 

By using the normal vectors of the BP2s, we then calculated Cm. First, we 
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calculated the crossing points for each pair of 2 neighboring normal vectors (Fig. S2F). The 

curvature (dθ/ds) of an arc sandwiched between the 2 neighboring normal vectors is 

basically equivalent to the reciprocal of the distance between the crossing point and the arc. 

 Step 4) The Cp for each BP2 was determined by using the rotational axis and the 

normal vectors for each BP2. A crossing point between the rotational axis and the normal 

vector for a BP2 was calculated, and the Cp for the BP2 was defined as the reciprocal of the 

distance between the BP2 and the crossing point. In general, it is difficult to accurately 

calculate Cp for BP2s near the rotational axis because slight fluctuations of the in vivo cell 

shape or slight calculation errors of the normal vectors are amplified. Thus, it should be 

noted that the calculated values of Cp near the rotational axis, which coincide with s = 

0.0–0.2, have larger errors. 

 Step 5) To measure the cell volume and surface area, we first separated a cell into 

4 quadrants by its rotational axis and cell equator (Fig. S2A, the final image, q1–4). The 

cell equator was defined as the position of the cleavage furrow or the cell center along the 

rotational axis for the early phases when no distinct cleavage furrow had yet emerged. The 

cell volume and surface area were independently calculated for each quadrant. In this 

calculation, we approximated the contour as a broken line connecting the BP2s.  

 Step 6) The BP2s were resampled as 41 equally spaced points, “BP3s,” on the 

broken line connecting the BP2s. Accordingly, the r-z coordinates and the curvatures of the 

BP3s were also determined by using those of the BP2s by linear interpolation of the broken 

line. As mentioned in Step 1, the BP2s were selected in 2 directions, clockwise and 

counter-clockwise, and the curvatures derived from both directions were averaged. 

 

Data analyses 

Utilizing the methods described above, the values of the r-z coordinates, curvatures, 

pole-to-furrow distances, and cell volume and surface area were measured from 14 or 6 

embryos in the wild-type or the zen-4 ts mutant cells, respectively. 14.5µm length was 

normalized to 1 unit. We defined that 1.0 unit length = 14.5 µm, 1.0 unit curvature is 1/14.5 

µm = 0.0691 µm-1, 1.0 unit volume = 4 / 3 × π × 14.53 = 1.27 × 104 µm3, and 1.0 unit area = 
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4 × π × 14.52 = 2.63 × 103 µm2. In Figure 1C–F, the values were averaged for each time 

point, where the time when the furrow radius reached a unit length of 0.5 was defined as 0 s 

(Fig. 1C). In Figures 2B, 4A–B, S3A–D, S4D, S10A–B, and S11, the values were binned 

by every 0.1 furrow radius. In Figure S11, after the binning described above, the values for 

the cell surface area were normalized by multiplying the area [unit area] by (cell volume 

[unit volume])-2/3. In Figure 2B, the values were normalized by multiplying the length [unit 

length] by (cell volume [unit volume])-1/3, and binning was then performed by every 0.1 

furrow radius. The P value at s = 0.7 in Figure 4B was calculated with Student’s t test. 

 

 

4. Construction and analyses of the bending model 

 

4-1. General assumption 

We constructed a model of cytokinesis on the basis of a theory for the bending elasticity of 

the cell surface, which has been applied to explain the shapes of red blood cells and 

liposomes [7,8,9,10]. In addition, bending elasticity has been also considered in cytokinesis, 

mitotic cell rounding, etc. [11,12,13,14,15]. According to previous studies, mathematical 

models based on bending elasticity accurately reproduce the biconcave-disk shape of red 

blood cells and their shape transitions during capillary flow [8,9]. Moreover, the various 

shapes of liposomes (prolate, oblate, stomatocyte, etc.) and their shape transitions by 

cytoskeletal proteins are also reproduced by mathematical models based on bending 

elasticity [7,10]. The major assumption of these mathematical models is that these objects 

favor shapes with global or local minimums of bending energy of the whole surface under 

the constraints that the volume and surface area of the objects are given. On the basis of this 

theory, we assumed that the bending energy for 1 surface area unit of a cell (e) was 

described as: 

€ 

e =
1
2
Kc Cp +Cm −Co( )

2
+KgCpCm     (eq. 1) 

Here, Kc and Kg are the bending modulus and the Gaussian bending modulus, respectively. 
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Kc and Kg represent the elastic properties of the cell surface that reflect the status of the 

actin-based cytoskeleton. In other words, they are indexes of cell surface stiffness. Cm and 

Cp are the curvature along the meridians and along the parallels of latitude, respectively. Co 

is spontaneous curvature. Spontaneous curvature should be considered if the surface of a 

cell intrinsically favors a bent plane, but not a flat one; however, in this study, we assumed 

that Co was zero. The total bending energy (E) of the whole cell surface was given as: 

( ) dACCKCCCKdAeE mpgompc∫∫ ⎭
⎬
⎫

⎩
⎨
⎧ +−+== 2

2
1   (eq. 2) 

Here, A is the surface area of a cell. Analogous to liposomes, we assumed that cells 

transform their shapes while satisfying global or local minimums of bending energy during 

cytokinesis under the constraints of cell volume and surface area. If we defined G as:  

TAPVEG ++=       (eq. 3) 

, where E is the bending energy shown in equation 2, V is the cell volume, A is the cell 

surface area, and P and T are Lagrange multipliers, the conditions that cell shapes should 

satisfy could be derived from the variation δG = 0. P and T can be interpreted as the 

difference of pressure between the outside and inside of cells and surface tension in a 

physical context, respectively. We assumed that cell shapes to be rotationally symmetrical. 

The coordinates are defined as shown in Figure S4A. For these coordinates, Cm is dθ/ds and 

Cp is sinθ /r. Finally, we introduced the contractile ring into equation 3 as a constraint of 

furrow radius only on the furrow, as described by Umeda et al. [10]. To simplify model 

construction, we assumed that cell shapes were symmetric to the equatorial plane where the 

contractile ring is located (Fig. S4A–B). Here we defined H as: 

€ 

H = E + PV +TA + 2πrγ t= t1
     (eq. 4) 

, where γ is a Lagrange multiplier and the position t = t1 corresponds to that of the 

contractile ring. γ can be interpreted as the line tension/constriction force generated by the 

contractile ring. When we assume that the cell contour is smooth at the cell pole and the 

equatorial plane, we can conclude that θ (t0) = 0 and θ (t1) = π/2. 

 The variation of equation 4 is calculated as: 



9 / 23 

HHH −=δ       (eq. 5) 

, where H  was calculated for a shape with small geometric fluctuations. A shape with 

these small fluctuations was described as: 

θξθη cossin ++= rr  

θξθη sincos +−= zz      (eq. 6) 

, where η and ξ are the functions of t to provide the small fluctuations in the normal 

direction and at a tangent to the cell surface, respectively. 

 

4-2. In the case when Kc is spatially constant 

If we assumed that Kc, Kg, Co, and P are spatially constant (Fig. S4B), the variation of 

equation 5, δH = 0, led to the following Euler-Lagrange equation: 

( ) ( )( ) 022222 2 =−−+−−+
⎭
⎬
⎫

⎩
⎨
⎧

− PTHHCKHCHKCH
dt
dr

dt
d

r
K

ooco
c  (eq. 7) 

, which corresponds the force balance in the perpendicular direction to the cell surface. H 

and K are the mean curvature (H = (1/2) (Cm + Cp)) and the Gaussian curvature (K = Cm Cp), 

respectively. Kg does not appear in this equation or in the boundary conditions shown later. 

Note that this equation is essentially the same as previously described [10]. The variation of 

equation 5 also provided following boundary conditions: 

02
0

=
=t

c dt
dHrK       (eq. 8) 

02
1

=+
=

γ
tt

c dt
dHrK       (eq. 9) 

Equation 9 represents the force balance at the position of the contractile ring. Shapes 

satisfying equations 7–9 and the geometric constraints were calculated by solving the 

following ordinary differential equations by using the relaxation method [16]:  

( )( ){ }PrTHrHCKHCHrKt
ds
du

ooc +++−−−= 2222 2
1  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

rK
ut

ds
dH

c21  

⎟
⎠

⎞
⎜
⎝

⎛ −=
r

Ht
ds
d θθ sin221  

θcos1tds
dr

=  

θsin1tds
dz

=  

0=
ds
dT  

0=
ds
dP  

rt
ds
dA

π21=  

θπ sin2
1 rtds

dV
=  

01 =
ds
dt  

Here, t is replaced by s (Fig. S4A. Where t = 0, s = 0. Where t = t1, s = 1). u is 

( )oc CH
dt
drK −2 . The boundary conditions were as follows: 

at position s = 0, 

0=r , 0=z , 0=θ , 0=A , 0=V , 0=u ; 

at position s = 1, 

2
π

θ = , 
2
0AA = , 

2
0VV = , γ−=u . 

Here, A0 and V0 were given, while the boundary conditions u = 0 and u = -γ were obtained 

from equations 8 and 9, respectively. 

 

4-2-1. Calculation of the minimum furrow radii and pole-to-furrow distances 

Shapes were calculated with the constraints that A and V were given from the in vivo 
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measured values. In the case when A and V in the wild-type cells at each furrow radius were 

applied, we calculated the relationship between the magnitude of the contractile ring force 

and furrow radii or between the magnitude of the contractile ring force and pole-to-furrow 

distances (Fig. S4C). As the contractile ring force increased, the values of the furrow radii 

and the pole-to-furrow distances became smaller. Finally, when we applied A and V derived 

from the in vivo cell shapes with a furrow radius < 0.1, the furrow radius became almost 0. 

Conversely, when we applied A and V derived from the in vivo cell shapes with a furrow 

radius > 0.1, the values of the furrow radii and the pole-to-furrow distances reached a 

plateau, and the former never became 0 because of the geometric constraints of A and V. 

Thus, under a given condition of A and V, we were able to determine the minimum furrow 

radius and pole-to-furrow distance that should be achieved for a contractile ring force = ∞. 

In this condition, since P and T also became ∞, the 1st and 2nd elements in equation 7 were 

negligible, resulting in the equation 

€ 

2TH + P = 0 . The solution of this equation was a 

sphere (Fig. S4D, contractile ring force (Force) = ∞ (blue)). The calculated shapes, even 

under Force = ∞ or smaller forces, still had slight differences with that of the in vivo cells 

(Fig. S4D). In Figure 2B, we calculated and plotted the minimum furrow radii and 

pole-to-furrow distances under various conditions with various values of A and V, with or 

without contractile ring force. 

 

4-2-2. Calculation of the magnitude of the contractile ring force required to achieve a given 

furrow radius 

In Figure 4E, by using the relationship between the magnitude of the contractile ring force 

and furrow radii (Section 4-2-1 and Fig. S4C), we determined the magnitude of the 

contractile ring force required to achieve the in vivo furrow radii in the wild-type cells.  

 

4-3. In the case when Kc is not spatially constant 

Next, we examined the case when Kc is not spatially constant. In other words, Kc is a 

function of the cell surface position s. We further assumed that Co is not spatially constant, 

and Kg and P are spatially constant. Consequently the variation of equation 5 led to the 
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following Euler-Lagrange equation: 

  ( ){ } ( )( ) 0222221 2 =−−+−−+⎥⎦

⎤
⎢⎣

⎡
− PTHHCKHCHKCHK

dt
dr

dt
d

r oococ  (eq. 10) 

Kg does not appear in either this equation or in the following boundary conditions. The 

boundary conditions were as follows: 

( ){ } 02
0

=−
=t

oc CHK
dt
dr      (eq. 11) 

( ){ } 02
1

=+−
=

γ
tt

oc CHK
dt
dr      (eq. 12) 

Furthermore, an additional equation that represents force balance in a parallel direction to 

the cell surface was obtained: 

( ) ( ) 02
2

22 2 =−
⎭
⎬
⎫

⎩
⎨
⎧

−−−
dt
dTCH

K
dt
d

dt
dHCHK o

c
oc   (eq. 13) 

In the present study, we assumed that Co is spatially constant, resulting in the following 

equation: 

( )
dt
dKCH

dt
dT c

o
22

2
1

−−=      (eq. 14) 

Under a given spatial distribution of Kc, we obtained cell shapes by solving the following 

ordinary differential equations. 

( )( ){ }PrTHrHCKHCHrKt
ds
du

ooc +++−−−= 2222 2
1  

( )
⎭
⎬
⎫

⎩
⎨
⎧ −

−=
ds
dK

tK
CH

rK
ut

ds
dH c

c

o

c 1
1 2

2
2

 

⎟
⎠

⎞
⎜
⎝

⎛ −=
r

Ht
ds
d θθ sin221  

θcos1tds
dr

=  

θsin1tds
dz

=  
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( )
dt
dK

CH
ds
dT c

o
22

2
1

−−=  

0=
ds
dP  

rt
ds
dA

π21=  

θπ sin2
1 rtds

dV
=  

01 =
ds
dt  

Here, u is ( ){ }oc CHK
dt
dr −2 . Boundary conditions were the same as those in the case 

when Kc is constant. 

 

 

5. Estimation of the spatio-temporal changes in the bending modulus 

 

The spatial distributions of the bending modulus could not be analytically estimated; thus, 

we numerically estimated the spatial distributions of Kc by repeated improvement of the 

distributions. Importantly, the estimation was performed in a dimensionless manner 

because the focus of the present study was the relative spatial differences of the bending 

modulus. 

 

5-1. Overview of the method  

Step 1) An initial spatial distribution of Kc was arbitrarily provided. The value of the 

contractile ring force was also given. A shape with minimum bending energy was then 

calculated as shown in Section 4 (Construction and analyses of the bending model). 

Step 2) The difference between the calculated and in vivo shapes was evaluated with the 

cost function J: 
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 ( ) ( ){ }∑ −+−=
M

rrzzJ
1

22      (eq. 15) 

Here, z and r are the values of the coordinates of the calculated shape for each point on the 

cell contour. z  and r  are the values of the coordinates of the in vivo shape for each point 

on the cell contour, while M is the number of points on the cell contour. 

Step 3) The spatial distribution of Kc was improved to decrease the value of J. The 

improvement was repeatedly performed with the quasi-Newton method [16]; consequently, 

we obtained the spatial distribution of Kc that minimized the value of J. 

 

5-2. Methods in detail 

We assessed 3 methods, all of which were essentially based on the method described in 

Section 5-1. 

 

a. Method 1 

In Step 1) of Section 5-1, the Kc values for each point were independently given. In Step 

3), the ∂A/∂Kc values for each point were calculated by numerical differentiation, and 

the optimal Kc values for each point were identified with the quasi-Newton method. 

However, this method did not work well, that is, the calculated spatial distributions of 

Kc were affected by the initial ones given in Step 1) and were not smooth (data not 

shown). This was a result of over-fitting due to the high freedom of this problem. 

 

b. Method 2 

To decrease the freedom, we presented the spatial distribution of Kc by using cosine 

curves as: 

∑
=

⎟
⎠

⎞
⎜
⎝

⎛
−

−
+=

N

n
nic M

inbBK
1

_ 1
1cos π , ( )Mi ,,,,,,1=   (eq. 16) 

By using cosine curves, the spatial distribution of Kc was expected to be smooth even at 

the position s = 0 and s = 1. To set the overall scale of the Kc values, B was introduced 

and set as 1.0. In Step 1), the values of bn (n = 1~N) were given. In Step 3), the values 
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of ∂J/∂bn (n = 1~N) were calculated by numerical differentiation, and the optimal values 

of bn were calculated with the quasi-Newton method.  

We defined a threshold value of J/M to determine whether the calculated bn 

acceptably reproduced the in vivo cell shapes. We set the threshold value J/M = 0.0001, 

indicating that the average distance between the computationally calculated and in vivo 

shapes for each point is 0.00011/2 = 0.01 in the scale of Figure 1F. This difference is 

visually almost unrecognizable. 

n was set as the minimum value to satisfy J/M < 0.0001. A large n could almost 

always satisfy J/M < 0.0001, but the calculated bn was affected by the initial value given 

in Step 1). In 96% of the samples, the minimum value of n that satisfied J/M < 0.0001 

was less than 5. Under the condition where the constriction force = 0, 88% of samples 

yielded bn that was not affected by the initial value in Step 1) and satisfied J/M < 0.0001. 

The percentages were 93, 60, 20, and 7% for a constriction force = 1.0, 10, 50, and 100, 

respectively; thus, under larger constriction forces, the percentage was rapidly 

decreased. The observation that the optimal distribution of bn was not efficiently 

obtained under higher constriction forces may be due to the high constraint for the 

spatial distribution of Kc because of the use of cosine curves. The calculated spatial 

distribution of Kc for a constriction force = 0 is shown in Figure S5. In the later phase of 

cytokinesis, the Kc around the furrow became very small and almost 0. This overall 

pattern of Kc was similar to that observed in Figure 5A, which was obtained by Method 

3. We occasionally generated bn whose Kc values around the furrow were less than 0, 

although Kc should be >0 in the physical context. This result may imply that the control 

of the Kc value on a very small scale (nearly 0) is critical for shape calculation. To avoid 

Kc < 0 and efficiently obtain Kc values under larger constriction forces, we assessed 

another method. 

 

c. Method 3 

To decrease the freedom, we introduced a cost for the spatial smoothness of Kc into the 

cost function J. When the cost for the spatial smoothness of Kc was formulated, the 
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value of κ  = log (Kc) was used to avoid Kc values < 0, as Kc should be >0 in the 

physical context. We also introduced a cost to set the scale of the Kc values. 

 ( ) ( ){ }∑ −+−=
M

rrzzJ
1

22  

  ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+−+−−+ ∑

−

−+−

1

2

2

1

2

21

2

111 22222
M

MMmmm
κκκκκκκω  

  
2

1
2
1

⎥
⎦

⎤
⎢
⎣

⎡
−+ ∑

M

M
κκω     (eq. 17) 

Here, the 2nd element is the cost for the spatial smoothness of κ , and the 3rd element is 

the cost to set the scale of κ  to a given value κ . ω1 and ω2 are the weights for each 

element. In Step 3), the values of ∂J/∂κ  for each point on the cell contour were 

calculated by numerical differentiation, and the optimal values of κ  for each point 

were calculated with the quasi-Newton method.  

Here, we also defined a threshold value of J/M to determine whether the calculated 

spatial distribution of κ  acceptably reproduced the in vivo cell shapes. We set the 

threshold value J/M = 0.0001. The value of ω2 affected the scale of κ , but essentially 

not the spatial patterns of κ . The value of ω2 was set as 1.0 so that the values of 

(κ -κ ) for the output κ   was <0.01. In the present study, κ  was set as 1.0. The value 

of ω1 was set as 0.05. Larger ω1 values caused the calculated distributions of κ  to not 

satisfy J/M < 0.0001. The percentages of such samples for a contractile ring force = 0 

were <7% and 20% for ω1 = 0.05 and ω1 = 1.0, respectively. Conversely, smaller ω1 

caused the calculated spatial distributions of κ  to be affected by the initial values 

given in Step 1). The percentages of such samples were <7% and 27% for ω1 = 0.05 and 

ω1 = 0.001, respectively. The calculated spatial distributions of κ  were similar under 

conditions with 1.0 > ω1 > 0.01 (Fig. S6).  

In the presence of the contractile ring force, the percentages of the successful 

estimation of κ  were changed to >93, >93, 93, 80, and 47% for a contractile ring force 

= 0, 1.0, 10, 50, and 100, respectively. These changes may be due to the narrower range 
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of optimal magnitudes for the contractile ring force, which appears to be from 0 to ~30, 

as suggested from Figure 4E. 

 

5-3. Data analyses of the estimated spatial distributions of Kc 

Spatial distributions of Kc were estimated in 4 embryos from the wild-type and zen-4 ts 

cells. Figures S6B and S7B show examples of the raw data. In Figures 3, 4C, 5A, S5, S8, 

and S9, the estimated values were binned by every 0.1 furrow radius. The majority of the 

zen-4 ts cells arrested the furrow at a furrow radius of 0.6–0.5; thus, the values in the zen-4 

ts cells for a furrow radius < 0.5 were not estimated. N = 29, 59 (0.9–0.8), 36, 73 (0.8–0.7), 

27, 92 (0.7–0.6), 30, 124 (0.6–0.5), 28, not estimated (n.e.) (0.5–0.4), 17, n.e. (0.4–0.3), 16, 

n.e. (0.3–0.2), 17, n.e. (0.2–0.1), and 8, n.e. (0.1–0.0) for each furrow radius (in 

parentheses) under contractile ring force (Force) = 0 in the wild-type or zen-4 ts cells, 

respectively (Figs. 5A and S9A, Force = 0). N = 19 (0.9–0.8), 38 (0.8–0.7), 28 (0.7–0.6), 29 

(0.6–0.5), 28 (0.5–0.4), 18 (0.4–0.3), 17 (0.3–0.2), 18 (0.2–0.1), and 6 (0.1–0.0) for each 

furrow radius (in parentheses) under Force = 0 in the wild-type cells (Fig. S5). N = 30 

(0.9–0.8), 38 (0.8–0.7), 28 (0.7–0.6), 30 (0.6–0.5), 28 (0.5–0.4), 18 (0.4–0.3), 18 (0.3–0.2), 

13 (0.2–0.1), and 5 (0.1–0.0) for each furrow radius (parenthesis) under Force = 5 in the 

wild-type cells (Fig. 3). N = 26, 70 (0.9–0.8), 37, 82 (0.8–0.7), 27, 93 (0.7–0.6), 30, 117 

(0.6–0.5), 28, n.e. (0.5–0.4), 18, n.e. (0.4–0.3), 19, n.e. (0.3–0.2), 10, n.e. (0.2–0.1), and 0, 

n.e. (0.1–0.0) for each furrow radius (in parentheses) under Force = 20 in the wild-type or 

zen-4 ts cells, respectively (Figs. 4C, S8, and S9A, Force = 20). N = 19 (0.9–0.8), 29 

(0.8–0.7), 27 (0.7–0.6), 29 (0.6–0.5), 24 (0.5–0.4), 16 (0.4–0.3), 14 (0.3–0.2), 8 (0.2–0.1), 

and 0 (0.1–0.0) for each furrow radius (in parentheses) under Force = 50 in the wild-type 

cells (Figs. S8 and S9B). Note that we often failed to obtain the spatial distributions of Kc 

under a stronger contractile ring force at smaller furrow radii, as described in Section 5-2. 

The P value at s = 1.0 in Figure 4C was calculated with Student’s t test. 

 

5-4. Analyses of impaired furrow ingression in zen-4 ts cells 

In Figure 4D, we assessed how the failure in the local reduction of Kc around the furrow in 
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the zen-4 ts cells (Fig. 4C) affected furrow ingression. In other words, we addressed the 

possible disadvantages of the spatial distributions of Kc in the zen-4 ts cells on furrow 

ingression compared with those in the wild-type cells. The spatial distributions of Kc in the 

zen-4 ts and wild-type cells at each furrow radius were applied to calculate cell shapes 

under a given cell volume and surface area derived from the zen-4 ts cells at each furrow 

radius. For example, in the case that we employed the cell volume and surface area at a 

furrow radius = 0.6–0.5 in the zen-4 ts cells, we applied the spatial distributions of Kc at a 

furrow radius = 0.6–0.5 under Force = 20 estimated for the zen-4 ts and wild-type cells 

(Figs. 4C and S9, Force = 20). We then calculated cell shapes and their furrow radii. Note 

that the cell volume and surface area used were the averaged values at a furrow radius = 

0.6–0.5 in the zen-4 ts cells, and the spatial distributions of Kc were not the averaged values 

in each cell strain, but the values for the individual samples in each cell strain (N = 30 and 

117 at a furrow radius = 0.6–0.5 in the wild-type and zen-4 ts cells, respectively). When we 

applied the spatial distributions of Kc estimated in the zen-4 ts cells, the calculated furrow 

radii should be, of course, essentially the same on average to the experimentally measured 

value (0.6–0.5) in the zen-4 ts cells, despite slight errors. In comparison to this calculated 

furrow radii, the application of the spatial distributions of Kc estimated in the wild-type 

cells yielded significantly smaller furrow radii (~2% smaller on average) (Fig. 4D, furrow 

radius = 0.6–0.5; P < 0.05, Student’s t test). Similar analyses were performed for the spatial 

distributions of Kc in the zen-4 ts and wild-type cells at each furrow radius under the cell 

volume and surface area derived from the zen-4 ts cells at each furrow radius (Fig. 4D, 

furrow radius = 0.9–0.8 ~ 0.7–0.6. N = 26, 70 (0.9–0.8), 37, 82 (0.8–0.7), and 27, 93 

(0.7–0.6), in the wild-type and zen-4 ts cells, respectively.). Note that, in Figure 4D, 

ΔFurrow radius (%) indicates the percentage changes from the furrow radii calculated by 

applying the spatial distributions of Kc in the zen-4 ts cells. 

 

5-5. The absolute value of Kc and the contractile ring force 

Our estimation of Kc was performed in a dimensionless manner as shown in Section 5-2. 

Thus, we did not include any information about the absolute values of Kc and the 
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constriction force by the contractile ring. The Kc of amoeba cells, red blood cells, and 

liposomes have been experimentally measured and ranged from 10-18 to 10-19 J 

[17,18,19,20,21]. If we assume that 1.0 A.U. of Kc in our analyses corresponds to 2 × 10-18 J 

[20], 1.0 unit of the contractile ring force in our analyses coincides with ~0.14 pN. A single 

molecule of a motor protein can exert a force of approximately several pN; thus, only a 

slight magnitude of the contractile ring force is sufficient to form a furrow. 

 

 

6. Surface tension model 

 
6-1. Surface tension model with spatially constant surface tension 

We tested whether a surface tension-based model could reproduce the in vivo cell shapes. 

We assumed that surface tension was spatially constant, which is analogous to a liquid 

droplet or a soap bubble [22,23]. In this model, the following equation should be satisfied: 

 

€ 

2TH + P = 0  
Here, T is surface tension, H is the mean curvature (H = 1/2 (Cm + Cp)), and P is the 

difference in pressure between the outside and inside of the cell. Furthermore, T is spatially 

constant throughout the cell surface. The constriction force derived from the contractile 

ring was assumed to be generated just on the furrow. Cell shapes were calculated in the 

surface tension model so that the cell volume and surface area were the same as those 

quantified in the in vivo cells. The calculated cell shape was not consistent with the in vivo 

cell shape at a furrow radius = 0.2–0.1 (Fig. S4D; blue vs. black. Note that the blue shape is 

the same as that in the bending model under a contractile ring force (Force) = ∞), and any 

shape satisfying the constraints with cell volume and surface area was not obtained at a 

furrow radius = 0.1–0.0 (data not shown). To clarify the features of the difference between 

the in vivo and in silico shapes, we focused on the relationship between furrow radii and 

pole-to-furrow distances (Fig. 2B). The plots obtained in the surface tension model were 

inconsistent with those in the in vivo cells (Fig. 2B; green open circles vs. black. Note that 

the green open circles are the same as those in the bending model under Force = ∞). These 
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results indicate that this surface tension model cannot reproduce the in vivo cell shapes. 

 

 

6-2. Estimation of surface tension 

A surface tension model in which surface tension is assumed to be spatially inconstant has 

been constructed where the following equation should be satisfied (Fig. S13A) [24]: 
 

€ 

TmCm +TpCp + P = 0  

Here P is the difference in pressure between the outside and inside of a cell and was 

assumed to be spatially constant. By using this model, spatial distributions of surface 

tension are known to be analytically estimated by using the curvature Cm and Cp as shown 

below [24]: 
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P was experimentally estimated in previous studies [25]; however, in the present study, P 

was set as 1.0 because the values of P does not affect the spatial patterns of surface tension. 

Thus, Tm and Tp for each point on the cell contour could be calculated with the 

experimentally calculated Cm and Cp. The calculated Tm and Tp values in the wild-type cells 

are shown in Figure S13B. A peak of Tp around the furrow can be interpreted as being 

derived from the contractile ring force (Fig. S13B). Around the neighboring region of the 

furrow, with a higher Cm (Fig. S3B; red arrowheads), Tp was reduced. Such a characteristic 

feature was also observed in sea urchin embryos [25], and may contribute to the higher Cm 

region around the neighboring region of the furrow. 

 We also calculated Tp in the zen-4 ts cells (Fig. S14). There were no or only slight 

differences between the spatio-temporal changes in Tp in the wild-type and zen-4 ts cells. 

These results may be consistent with the observation that the accumulation of myosin II 

toward the furrow was not defective in the C. elegans embryonic zen-4 ts cells [26]. 

Together with our findings, the arrest of furrow ingression in the zen-4 ts cells may not be 
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caused by defects in surface tension. 
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