#### **Supplemental Information**

# Structural conservation of ligand binding reveals a bile acid-like signaling pathway in nematodes

Xiaoyong Zhi<sup>1</sup>, X. Edward Zhou<sup>1</sup>, Karsten Melcher<sup>1,2</sup>, Daniel L. Motola<sup>3,\*</sup>, Verena Gelmedin<sup>4</sup>, John Hawdon<sup>4</sup>, Steven A. Kliewer<sup>3,5</sup> David J. Mangelsdorf<sup>3,6</sup>, and H. Eric Xu<sup>1,7,8</sup>

<sup>1</sup>Laboratory of Structural Sciences, <sup>2</sup>Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA

 <sup>3</sup> Department of Pharmacology, <sup>5</sup> Department of Molecular Biology, and <sup>6</sup>Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390;
 <sup>4</sup>Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Ross Hall 705, 2300 I Street NW, Washington, DC 20037;

<sup>7</sup> VARI-SIMM Center, Center for Structure and Function of Drug Targets, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China

<sup>8</sup>Correspondence: Email: <u>eric.xu@vai.org</u>

\*Present address: Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114

#### **Inventory for Supplemental Information**

#### Table S1

Sequence of peptides used in AlphaScreen assays.

#### Table S2

Structural comparison of AceDAF-12 and mammalian nuclear receptors.

## Fig. S1

AlphaScreen assays to search for *Aca*, *Nam*, and *Sst*DAF-12 interacting peptides in the presence and absence of 1µM DAs.

## Fig. S2

The electron density map of the *Ace*DAF-12 *b* chain ligand binding pocket bound to  $\Delta$ 7-DA. The surrounding amino acids are highlighted in yellow.

## Fig. S3

Structural comparison of complexes AceDAF-12 LBD/(25S)-Δ7-DA and SstDAF-12 LBD/(25R)-Δ7-DA.

# Fig. S4

AlphaScreen assays to search for *Ace*, *Aca*, *Nam*, and *Sst*DAF-12 interacting peptides in the presence and absence of 10  $\mu$ M cholestenoic acids.

# Fig. S5

The electron density map of the *Ace*DAF-12 ligand binding pocket bound to (25S)-cholestenoic acid. The surrounding amino acids are highlighted in yellow.

# Fig. S6

Cholestenoic acids do not induce recovery of hookworm iL3.

 Table S1 Sequence of peptides used in AlphaScreen assays.

| Peptide | Sequence                  |  |
|---------|---------------------------|--|
|         |                           |  |
| SRC1-2  | SPSSHSSLTERHKILHRLLQEGSP  |  |
| SRC1-4  | QKPTSGPQTPQAQQKSLLQQLLTE  |  |
| PGC1a-1 | QEAEEPSLLKKLLLAPANTQ      |  |
| TRAP-1  | GHGEDFSKVSQNPILTSLLQITGN  |  |
| CBP-1   | SGNLVPDAASKHKQLSELLRGGSG  |  |
| NcoR-2  | GHSFADPASNLGLEDIIRKALMGSF |  |
| SHP-1   | PCQGSASHPTILYTLLSPGP      |  |
| SHP-2   | VAEAPVPSILKKILLEEPNS      |  |
| SMRT-2  | ASTNMGLEAIIRKALMGKYDQ     |  |
| SRC2-3  | QEPVSPKKKENALLRYLLDKDDTKD |  |
| SRC3-1  | AENQRGPLESKGHKKLLQLLTSS   |  |
| SRC3-2  | TSNMHGSLLQEKHRILHKLLQNG   |  |
|         |                           |  |

| Mammalian nuclear receptor | PDB ID   | RMSD  |
|----------------------------|----------|-------|
|                            |          |       |
| FXR                        | 10SV     | 1.611 |
| LXR                        | 1P8D     | 1.722 |
| VDR                        | 1DB1     | 1.742 |
| PR                         | 1A28     | 1.803 |
| GR                         | 1M2Z     | 1.821 |
| ROR                        | 1N83     | 1.844 |
| MR                         | 2A3I     | 1.849 |
| ER                         | 1ERE     | 1.85  |
| AR                         | 1I37     | 1.965 |
|                            | <u> </u> |       |

Table S2 Structural comparison between AceDAF-12 and mammalian nuclear receptors by superposition.



AlphaScreen assays to search for *Aca*, *Nam*, and *Sst*DAF-12 interacting peptides in the presence and absence of 1  $\mu$ M (25S)-DAs.



FIG. S2 Zhi et al.

# Fig. S2

The electron density map of the *Ace*DAF-12 *b* chain ligand binding pocket bound to (25S)- $\Delta$ 7-DA. The surrounding amino acids are highlighted in yellow.



FIG. S3 Zhi et al.

Structrual comparison of complexes *Ace*DAF-12 LBD/(25S)- $\Delta$ 7-DA and *Sst*DAF-12 LBD/(25R)- $\Delta$ 7-DA. (A) Superposition of the *Ace*DAF-12 LBD complex *a* (green) onto the *Sst*DAF-12 LBD (magenta) reveals that the only noticeable difference is their ligand conformation, which is probably due to the opposite stereochemistry at the C25 position of ligands. (25R)- $\Delta$ 7-DA in red is more streched than (25S)- $\Delta$ 7-DA in white. (B) (25R)- $\Delta$ 7-DA's extended C27 end forms a single H-bond with R599 (2.8 Å, orange dashed line). (25S)- $\Delta$ 7-DA in the *Ace*DAF-12 LBD complex *a* or *b* makes a slight turn at the C27 end, allowing it to form two H-bonds with R532, one stronger (2.7 Å in *a* and 3.1 Å in *b*, white dashed line) and one weaker (3.4 Å in *a* and 3.5 Å in *b*).



Fig. S4

AlphaScreen assays to search for *Ace*, *Aca*, *Nam*, and *Sst*DAF-12 interacting peptides in the presence and absence of 10  $\mu$ M cholestenoic acids.



FIG. S5 Zhi et al.

The electron density map of the *Ace*DAF-12 ligand binding pocket bound to (25S)-cholestenoic acid. The surrounding amino acids are highlighted in yellow.



Cholestenoic acids do not induce recovery of hookworm iL3. (25S)- and (25R)-cholestenoic acids in the indicated concentrations were tested for their ability to stimulate feeding in infectious *A. caninum* L3 larvae (n= 150). Incubation at host-like temperature (37°C) in medium supplemented with 15 mM S-methyl glutathione (GSM) and 10% canine serum filtrate (FIL) is known to stimulate feeding of approximately 95% (A, positive control). (25S)-cholestenoic acid in concentrations of up to 500  $\mu$ M was unable to induce feeding (A, C). Co-stimulation with GSM and/or FIL in the indicated concentration did not increase the feeding in the iL3 population compared to controls containing the solvent ethanol (EtOH).