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ABSTRACT

We have cloned and sequenced transcripts from the
X- and Y-linked zinc-finger genes ZFX and ZFY
respectively and discuss a possible mechanism of post-
transcriptional control by which these genes can be
widely expressed but translated in only specific tissues.
We report the identification of a novel 3'UTR
(untranslated region) present in ZFY which is highly
conserved among primates and contains a series of
motifs implicated as mRNA instability determinants.
These sequences can be substantially removed by
polyadenylation directed from consensus (AATAAA)
and non-consensus (AATATAAA) sequences in adult
testis. The DNA-binding domains of the ZFY and ZFX
proteins are compared using present models for zinc-
finger/DNA interactions. Additionally, the genomic
organisation of the ZFY coding sequence is presented
as compared to that of ZFX.

INTRODUCTION

Early hopes that ZFY was the testis determining factor (TDF)
have receded in the light of strong evidence to the contrary. First,
the homologous sequences in tested marsupial genomes are
autosomal despite a primary sex-determining role for the Y in
these mammals (1); second, ZFY is absent from the genomes
of a distinct class of XX male and all XX true hermaphrodites
thus far examined (2); third,the mouse homologue (Zfy) is not
expressed in somatic cells of the developing gonad but is confined
to germ cell lineages (3); finally, three ZFY-negative XX males
and an XX true hermaphrodite have been shown to contain a
35Kb segment of the Y immediately proximal to the
pseudoautosomal boundary which does not include ZFY (4) thus
indicating that TDF must lie in this more distal part of the Y.
Recently it has been shown that this region of the Y contains
a plausible new candidate for TDF (referred to as SRY, the sex
determining region of the Y) which contains a putative DNA
binding domain similar to that identified in the RNA polymerase
I transcription factor hUBF (5). Furthermore, its pattern of
expression in the differentiating mouse gonad is entirely consistent
with a sex-determining role since its expression occurs in the
somatic components of the embryonic gonad and correlates with
the differentiation of Sertoli cells (6).

Although testicular tissue can develop in the absence of ZFY,
it nevertheless continues to be a gene of some developmental
interest. In the mouse, Zfy-1 transcripts first appear at about 10.5
days post coitum, coinciding with the migration of germ cells
into the differentiating gonad (3). The transcripts are absent in
the testes of embryonic mice homozygous for the W¢ mutation
which lack germ cells (3). Thus the gene may have a role in early
germ cell development. In adult mouse testis, its expression is
mainly restricted to germ cells, persisting even in post-meiotic
spermatids (7). In this paper, we have examined and compared
the sequences of the human ZFY and ZFX transcripts and provide
evidence that somatic ZFY transcripts contain a long 3’
untranslated region (UTR) which is substantially removed in germ
cells and may be an important element of post-transcriptional
control.

MATERIALS AND METHODS
General methods

Restriction enzyme digests, Southern analysis, purification and
subcloning of DNA fragments, bacterial transformations and
bacteriophage manipulations were carried out by standard
methods (8). Oligonucleotides were synthesised on a Pharmacia
LKB Gene Assembler Plus, treated for 24 hours with 30%
ammonia solution at 55°C and purified by precipitation. DNA
sequencing with denatured double-stranded template was carried
out by extension from a primer in the presence of
dideoxynucleoside triphosphate chain-terminating inhibitors (9).
The sequencing reactions were carried out using a Pharmacia
DNA sequencing kit, T7 DNA polymerase and alpha 35S
dATP.Sequence was analysed using the Genetics Computer
Group (GCG) software and database searches carried out with
the FASTA software. Low stringency Southern hybridisation was
carried out for 48 hours at 37°C in standard 50% formamide
buffer as described previously (10) with washing at 40°C in
1xSSC;0.1% (w/v) SDS.

Polymerase chain reaction

Amplification reactions were carried out in 25 ul volumes
containing 10 mM Tris.HCI pH 8.3, 50 mM KCl, 1.5 mM
MgCl,, 0.01% (w/v) gelatin and 200 uM of each dNTP.
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Figure 1. Section A: Alignment and orientation of the cDNA clones CMPXY4, L24A, CMPXY3 and the genomic clones CMPXY1 and c¢600. HindIIl (H), Pstl
(Ps) and BamHI (M) restriction sites are shown, as are splice junctions (Sp). Clones L24A and CMPXY4 contain 5’ ends of autosomal origin which are not included
in this diagram. Section B: The splice junctions positioned from sequence comparison and analysis of the clones described above (and aligned with the clones in
section A) allowed some of the intron/exon structure of ZFY and ZFX to be determined. The sizes of some of the introns (calculated from the PCR experiments
listed below) are shown. NLS = Nuclear Localisation Signal. Section C: PCR primers were designed to flank introns and successful amplification products are
illustrated schematically in section B. Lanes a and b are male and female genomic DNA (respectively) amplified with the primers 5’ TAGCATAATAATCTCTAAAA
3’ (derived from the second most 5’ exon) and 5 AACACGATGGTTCTTCTGAA 3’ (derived from the 3’ flanking intron sequence of the third most 5’ exon which
is contained in clone c600) leading to the synthesis of an X-specific 600 bp product. From the known length of exon sequence in this product, the Xintron size can
be calculated as 270 bp. Analysis of cosmid L37 suggests that on the Y these two exons are separated by an intron of similar size. Lanes c, d and e are L37 cosmid
DNA, male genomic DNA and female genomic DNA (respectively) amplified with the PCR primers 5' TCTTCCCACAAATCATGCAAGG 3’ (from the 3’ end
of the exon containing the NLS) and 5'GAGAAGACCTGATTCCAGGCA 3’ (from the 5’ end of the zinc finger exon) leading to the synthesis of an 800 bp Y-specific
product and a 1100 bp X-specific product. Lane f is cosmid L37 DNA amplified with the PCR primers 5’ GAGGGCACTTGCAGTGCCATT 3’ (from the 3’ end
of the c600 exon) and 5’ GTGTTCCCAGGGAAAAGATGG 3’ (from the 5’ end of the NLS exon) leading to the synthesis of a 2300 bp Y-specific product. The
size of the equivalent ZFX intron has not been determined as no PCR product was obtained on genomic DNA suggesting it may larger than that of the Y. All
PCR reactions were carried out under the following cycling conditions: 94°C, 60 seconds; 50°C, 120 seconds; 72°C, 300 seconds. Section D: The partial genomic
organisation of ZFY in cosmid L37 with the positions of HindIII (H) and EcoRI (R) sites shown as well as those exons detected by various subfragments (A,B
and C) of CMPXY4. Exon sizes, where known, are marked and the genomic organisation is consistent with PCR data.



Primers were present at 0.5 uM each and Taq polymerase
(Cambio) at 0.02 units/ul. To identify differentially
polyadenylated transcripts bacteriophage DNA was prepared from
a testis cDNA library high titre stock and a sample of this
preparation equivalent to 5 X 10° bacteriophage used as template.
Genomic DNA or cosmid DNA to be used as PCR template was
prepared as described previously (8). Amplification was
performed with a Perkin Elmer Cetus DNA Thermal Cycler,
programmed to use the fastest available transitions between each
temperature. Cycle conditions used were 94°C, 60 seconds;
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55°C, 60 seconds; 72°C, 180 seconds; 35 cycles. Amplification
products were analysed by electrophoresis on a 1% agarose gel
and detected by staining with ethidium bromide. Primer sequences
and conditions of amplification are listed below.

RNaseA protection experiments

Antisense run-off transcripts were prepared using a RNA
transcription kit (Stratagene), alpha 32P rUTP (Amersham) and
a linearised cDNA subclone in pBS. The labelled riboprobe was
precipitated, gel purified and 500,000 cpm resuspended in 20
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Figure 2. Section A: The coding sequence of CMPXY4 is indicated by a heavy line. The 5’ BamHI/EcoRI subfragment containing X-specific and autosomally-
derived sequences was subcloned into pBS for the preparation of riboprobes. Section B: The orientation of the insert relative to the flanking T3 and T7 RNA polymerase
promoters was determined by asymmetric restriction digestion and radiolabelled riboprobe synthesised complementary to the coding strand in CMPXY4 using T3
RNA polymerase. Samples of total RNA were incubated overnight with labelled riboprobe and subsequently treated with RNaseA and RNaseT1. Aliquots were
then fractionated on 4% polyacrylamide gels with molecular weight markers prepared by digesting pBR322 with Mspl and ‘end-labelling’ using alpha-32P-dCTP.
The RNA samples used and the conditions of nuclease digestion are listed below. In all cases, lanes containing molecular weight markers are labelled M and lanes
containing undigested probe are labelled P. Section C: Samples of total RNA from a 48,XXXX lymphoblastoid cell line hybridised with the labelled riboprobe and
treated with RNase for 90 minutes at 37°C. The autoradiogram is shown after exposure to the gel for 24 hours. Lane 1: 100 ug of 4 X total RNA; lane 2: 10 pg
tRNA (negative control); lane 3: 10 ug of 4 X total RNA; lane 4: 30 ug of 4 X total RNA. A slight abnormality in migration of the protected fragment is observed
in lane 1 but was not reproduced in subsequent experiments (see section D). Section D: Samples of total RNA from the 47, XYY lymphoblastoid cell line and
the adult testis hybridised with riboprobe and treated with RNase for 20 minutes at 37°C. The autoradiogram is shown after exposure to the gel for 48 hours. Lane
1: 10 ug tRNA (negative control); lane 2: 150 ug of XYY total RNA; lane 3: 50 ug of XYY total RNA; lane 4: 10 ug of XYY total RNA; lane 5: 10 pg tRNA
(negative control); lane 6: 150 pg testis total RNA; lane 7: 50 ug testis total RNA; lane 8: 10 ug testis total RNA.
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ul of 50% (v/v) deionised formamide, 500 mM NaCl, 1 mM
EDTA, 40 mM Pipes pH 6.4. 10—150 pug of RNA was
resuspended in this buffer and heated to 85°C for 5 minutes
followed by overnight incubation at 45°C. After annealing , 300
ul of 10 mM Tris.HCI pH7.5, 5 mM EDTA, 300 mM NaCl
containing 40 pg/ml RNaseA and 1 pg/ml RNaseT1 was added
to the sample and the solution incubated at 37°C for up to 90
minutes. Samples were subsequently precipitated and fractionated
on a polyacrylamide gel with end-labelled, MspI-digested pBR322
used as molecular weight marker. RNA used in the protection
assay was derived from the following sources: testis, 46,XXXX,
lymphoblastoid cell line and 46,XYY lymphoblastoid cell line.
Details of digestion conditions are listed in the legend to figure 2.

RESULTS
Cloned sequences defining the ZFY and ZFX genes

Figure 1 summarises the genomic and cDNA clones (some of
which have been described previously (10)) analysed to determine
the sequence presented below. The genomic clone CMPXY1
contains the zinc-finger domain of ZFY and was used to isolate
(from an adult testis cDNA library) the cDNA clones L24A,
CMPXY3 and CMPXY4. Affara et al. (10) have shown that
CMPXY3 and L24A are ZFY transcripts whereas CMPXY4 is
transcribed from the X. Clone c600 was isolated from a flow-
sorted X-specific library with the cDNA probe CMPXY4. The
40Kb cosmid L37 was isolated by screening a library (prepared
from DNA of the the Y-only somatic cell hybrid 3E7) with the
L24A probe. Restriction and sequence analysis of these clones
permits the alignment shown and, from comparison of genomic
and cDNA sequences, the position of several splice junctions have
been ascertained and are indicated in figure 1. Additionally, the
clone L24A is a partially spliced transcript containing a consensus
acceptor junction at the 5’ end of its long open reading frame.
Sequencing revealed that L24A fails to extend to include the first
630 bp of the ZFY coding sequence and CMPXY4 does not
extend to include the first 180 bp of ZFX coding sequence.
Sequences 5’ to the long open reading frames present in these
cDNAs are shown to be artefact by experiments described in
following sections and are not included in figure 1.
Restriction digestion mapping of the cosmid L37 followed by
Southern blotting and probing with CMPXY4 subfragments A,B
and C (described previously and indicated in figure 1) has defined
restriction fragments of sizes consistent with genomic Southern
data (10). Probe A, the zinc-finger domain, and probe B, the
more 3’ portion of the acidic domain, map within adjacent HindIII
and EcoRI fragments spanning a total of SKb (shown on figure
1), suggesting close clustering of exons covering these segments
of the coding region. Probe C, the 5’ end of the CMPXY4 acidic
domain hybridised to HindIII and EcoRI fragments about 11.5
Kb away from probe B, indicating the presence of a large intron
of this size. Double digest results show that probe C hybridises
to what may be a single exon within a 600 bp region defined
by the indicated EcoRI site and a EcoRV site (not shown).
As shown in figure 1, PCR primers were designed to flank
prospective introns and successful amplifications have allowed
precise sizing of some in ZFX and ZFY. These are detailed in
the legend to figure 1. Primers designed to amplify across the
large 11.5 Kb intron present in L37 failed (not surprisingly) to
give a PCR product. It is interesting to note that a large intron
about 25 Kb in length is present in an analogous position in the
ZFX gene (13). From figure 1, it can be seen that over the region

examined, the points of interruption of the coding sequence of
ZFY and ZFX are the same, but the size of some introns is
different.

As reported previously, the cDNA clone CMPXY4 contains
a 5’ end that detects fragments of autosomal origin (chromosome
9)(10). The possibility that this represents transplicing is excluded
by the experiment in figure 2 where an RNase protection assay
using an antisense riboprobe of 1Kb covering 320bp of
the X specific sequence and all of the autosomal region of
CMPXY4 fails to form a double-stranded RNA hybrid 5’ to the
X-specific domain. Hence only a 320 bp fragment (the length
of the X-specific region of the riboprobe) is protected against
RNase digestion when the probe is hybridized in solution to
different total RNAs including testicular tissue (see figure 2).
Thus the 5’ autosomal sequences present in CMPXY4 and
probably L24A are likely to be artefacts caused by co-cloning
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Figure 3. Section A: The postulated secondary structure motifs and functional
domains present within the consensus C,H, zinc finger, following Berg (16).
Domains expected to be involved in sequence-specific interactions and in non-
specific electrostatic interactions are boxed. Section B: The zinc-finger domain
of ZFX is listed with fingers numbered 1 to 13 from N-terminus to C-terminus.
Positions of amino acid differences between ZFX and ZFY are highlighted in
bold and with a dot. Over the amino acid domain postulated to be involved in
sequence-specific interaction only two amino acid differences are identified and
both are substantially conservative substitutions (lysine to arginine and serine to
asparagine). Section C: A table of amino acid differences between ZFY and ZFX
over the zinc-finger domain, proceding from N-terminus to C-terminus.
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events which have been reported by other workers during  with the findings of other groups (11,12,13) and will not be

isolation of ZFY and ZFX cDNAs (12). presented in detail. The schematic in figure 1 indicates the location
. of the different domains of these genes in relation to the clones
Sequence analysis of ZFY and ZFX forming the basis of our sequence analysis. Briefly these are:

The coding regions of ZFY and ZFX defined by sequence 1) An acidic domain with a net negative charge and a propensity
analysis of the clones described above are in close agreement for alpha helical formation, shown to be capable of transcriptional
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Figure 4. An optimal global alignment between the 1434 bp 3’ untranslated region of ZFY and the 3 Kb 3’ untranslated region of ZFX. Over the region of alignment,
the two sequences are about 64% identical. Apart from this homology and a homology to the Zfx 3’ untranslated region, no further significant matches have been
identified in database searches with the ZFY 3’ untranslated region. The domain is rich in A and T residues (71%) and A/T-rich clusters conforming closely to
the consensus TTATTTAT (postulated by Kruys et al. to be involved in reduction of message stability and possibly efficiency of translation (19)) are starred. The
AATATAAA sequences we implicate in directing polyadenylation are high-lighted by horizontal bars as is the AATAAA motif described by Lau et al. (12).
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activation (14). 2) A cluster of positively charged amino acid
residues immediately N-terminal to the zinc finger domain which
may act as a nuclear localisation signal for these proteins. 3) The
zinc finger DNA binding domain. Unlike the findings of others,
however, we report that some ZFY transcript contain a 1.4Kb
3’ untranslated region (3'UTR) possessing sequences which may
have a function in post-transcriptional control (described below).

Overall there is 95% homology between the coding regions
of ZFY and ZFX. In the zinc-finger domain we find 60 positions
of non-identity with no insertions, deletions or rearrangments.
Further, of these 60 changes 50 do not alter the amino acid residue
present. Of the remaining 10 amino acid substitutions (listed in
figure 3C) 8 are very likely to be conservative. Figure 3B shows
the 13 zinc fingers found in ZFX with the amino acid residues
differing from ZFY high-lighted in bold and marked above with
a dot.

Modelling studies, substantially confirmed by NMR
experiments (15), with the consensus C,H, zinc finger indicate
that different regions of the motif can fold into distinct secondary
structures and these are delineated in figure 3A. According to
a model proposed by Berg, sequence-specific interactions with
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Figure 5. Section A shows a ‘zoo-blot’ prepared from Taqgl-digested male and
female primate DNA, hybridised for 48 hours at 37°C with the 3’ untranslated
region of ZFY and subsequently washed in 1 xXSSC; 0.1% (w/v) SDS at 40°C
and exposed for 18 hours. Male lanes display a hybridising fragment (only very
faintly visible in the marmoset after such a short exposure, hence the position
of the band is arrowed). The primates are listed from left to right in expected
order of evolutionary distance from the human (as can be seen from the ‘family
tree’ displayed in section B and taken from Koop et al., 1986 (25)). Patient MB
is male.

DNA only involve the amino acid residues at the tip of the loop
and the start of the alpha helix and is consistent with recent studies
in which sequence-specific interactions were altered by site-
directed mutagenesis of residues in this domain (16,17). Only
two of the amino acid differences between ZFX and ZFY (both
conservative changes) occur in the region likely to be involved
in sequence-specific interactions and may not differentiate
significantly the nucleic acid binding specificities of the ZFX and
ZFY proteins.

The 3’ untranslated region of ZFY

The two ZFY transcripts (L24 and CMPXY3) show an extensive
3'UTR which harbours a number of interesting features. Figure
4 shows the alignment of the ZFY 1.4 Kb 3'UTR against that
of ZFX published by Schneider-Gadicke et al.(13), which
contains an Alu sequence and is approximately 1.6 Kb greater
in length . Despite being non-coding, these sequences share 64 %
homology (insufficient to permit cross-hybridisation) over the first
1.4 Kb, which may reflect an important functional role for
segments of this region of the mRNA molecule. Figure 5 indicates
that the ZFY 3’ UTR is conserved in primates since it identifies
a homologous sequence (under low stringency hybridisation and
wash conditions) only in males. No hybridisation has been
observed in non primate species such as mouse (not shown).
Amongst the primates, the degree of hybridisation decreases as
the evolutionary distance from human increases, so that in male
marmoset only a faint band can be detected. This contrasts
markedly with ZFX, where under more stringent conditions the
3’ UTR cross hybridises strongly with primate and mouse DNA
(where it shares 83% homology with the 3’ UTR of Zfx) (14),
indicating that it is conserved to a greater degree.

ZFY contains two potential non-consensus (AATATAAA) and
several canonical (AATAAA) polyadenylation signals. Lau et al.

3' UNTRANSLATED REGION OF ZFY
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Figure 6. The Genetics Computer Group (GCG) ‘stemloop’ program calculates
the most stable stem-loops present in a given sequence by scoring matches over
a defined scanning window with G-T, A-T and G-C base pairing worth 1,2 and
3 respectively. Mismatches are scored as zero. A cluster of relatively stable stem-
loops is located in the 3’ most 229 bp of the ZFY 3’ UTR and these structures
are shown schematically above.



(12) indicate that the canonical AATAAA site (high-lighted with
a horizontal bar in figure 4) is used to direct polyadenylation of
ZFY transcripts found in adult testis. We show below that the
other two non-consensus sites (also high-lighted with a horizontal
bar in figure 4) are also used to terminate ZFY transcripts
expressed in adult testis.

Two further features of the ZFY 3'UTR are of interest. First,
the region is rich in A and T residues (37% T, 34% A, 14%
C and 15% G) which often occur as clusters. Such structures
(including T-rich stretches and sequences with close consensus
to the octanucleotide TTATTTAT—starred in figure 4) have been
implicated in reduction of stability and possibly inhibition of
translation of a variety of transcripts such as c-fos, c-myc,
lymphokine mRNAs and c-abl in post-meiotic germ cells
(18,19,20,21,22). Second, sequence near the 3’ end of the ZFY
3'UTR (see schematic in figure 6) is potentially capable of
forming a series of stem-loop structures, of which the most
energetically stable are shown. The 3’ UTR of ZFX can form
similar structures but these do not occur at a homologous position
and share no homology with those formed in ZFY. The function
of these motifs is not known.

A

PCR PRODUCT (420 BP)

MN2
—>
ZFY

t t AAAAAA
HindIII HindIII -
oDT

AATATAAA

1200

Figure 7. Section A is a schematic illustration of the use of primers MN2 (5’
AACAGTGTGTCTACAAGCTT 3') and ODT (5" AATGAGCTC(T);5 3') to
amplify a novel ZFY transcript with polyadenylation directed by the non-consensus
motif AATATAAA some 400 bp 3’ to the end of the long open reading frame.
Cycling conditions were 94°C, 60 seconds; 55°C, 60 seconds; 72°C, 180 seconds
(see methods). Section B (lane a) shows the result of 35 cycles of PCR amplification
with primers MN2 and ODT and 5 ul of library template (equivalent to
approximately 5x 10° bacteriophage). The 420 bp PCR product produced could
be digested with HindIII to give fragments of approximate size 270 bp and 150
bp and sequencing the larger HindIII fragment confirmed that the PCR product
had been amplified from the ZFY 3’ UTR. Section C (lane a) is a positive control
and shows the result of 25 cycles of PCR amplification with AMDI1 (5’ GAGC-
TCGCAATAATTATTGGCCCTGAT 3’) and AMD2 (5' GAGC-
TCCATTATGTGCTGGTTCTTTT 3') from 5 pul of the same library template.
These primers allow amplification of the ZFY and ZFX zinc-finger domains (at
1.2 Kb). Section C (lane b) is a negative control in which the library template
was substituted for DNA prepared from a high titre stock of bacteriophage lambda
strain NM 1149 and the PCR reaction with AMD1 and AMD2 repeated. Cycling
conditions for AMD1/AMD?2 was the same as listed for MN2/ODT.
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Differential polyadenylation of ZFY transcripts

We have not found a poly(A) tract associated with the 3’end of
the ZFY transcripts and thus, in theory, it is possible that a large
amount of 3'UTR remains to be determined. This is unlikely in
that (a) two independent clones (L24A and CMPXY3) end at
the same point 3’ to the octanucleotidle AATATAAA, and that
(b) in mouse Zfy-1 and Zfy-2 transcripts, the poly(A) tract has
been found 13 bp downstream from an identical non-consensus
AATATAAA motif, thus indicating that it can function to direct
polyadenylation (14)

We examined whether the second (more 5') AATATAAA
sequence, or further non-consensus motifs, directed
polyadenylation in adult testis by PCR amplification from a testis
cDNA library preparation with the oligonucleotides MN2
(corresponding to ZFY sequence at the 5’ end of the 3' UTR)
and ODT (complementary to poly(A) tracts). Following
amplification under the conditions described in figure 7, a 420
bp fragment was synthesised, allowing a poly(A) tract to be
mapped approximately 20 bp 3’ to the AATATAAA shown in
figure 8 (and high-lighted in figure 4). The sequence of the PCR
product (not shown) corresponded to that of the ZFY 3'UTR
and it is therefore likely that both AATATAAA non-consensus
motifs described above direct ZFY polyadenylation in adult testis.

DISCUSSION

In this paper, we have been able to demonstrate that (a) despite
the high degree of conservation between ZFX and ZFY coding
regions, the size of their respective introns has altered but the
points of interruption are conserved implying strongly that they
have arisen from a common ancestral gene; (b) that there is
differential polyadenylation of ZFY transcripts directed by non-
consensus poly A addition sites; (c) that it is probable that the
resulting differing 3' UTR regions confer differential stability
since sequences similar to those found in the 3' UTR of large
ZFY transcripts are associated with increased turnover in other
mRNAs; (d) that the 3’ UTR of ZFY is less conserved than that
of ZFX and appears to be conserved only amongst the primates.
In view of the observation that no long 3’ UTRs have been
identified in any of the reported mouse Zfy-1 and Zfy-2 cDNA
clones, this latter point may indicate that the ZFY 3’ UTR arose
by duplication and transposition of the ZFX 3’ UTR after
divergence of mouse and primate lineages.

The long 3'UTR of ZFY contains sequences which have been
implicated not only as playing a role in increased mRNA
turnover, but also possibly in inhibition of translation
(18,19,21,22). The small 3Kb ZFY transcript found specifically
in testis has been correlated with germ cell numbers (12),
implying that its expression is limited to this lineage. Thus
removal in germ cells of a substantial portion of ZFY 3’ UTR
sequences from the 5.7 Kb transcript which, like Zfx in the mouse
and ZFX in humans is found expressed in many cell types, may
be an important post-transcriptional control in the expression of
the ZFY protein product. Consequently, ZFY may have a
function specifically in germ cells, a possibility which is further
underscored by the post-meiotic expression of Zfy during mouse
spermatogenesis (7). Clearly, it will be important to examine the
fate of ZFY 3'UTR sequences during spermatogenesis in order
to determine at what stages of germ cell differentiation the
different polyadenylation signals are utilized.

It is also possible that the 5’ UTR contributes also to
translational control since both the human ZFX gene and the
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mouse Zfy-1 gene have several AUG codons upstream of the
start of the long open reading frame (13,3). It has been shown
that such upstream initiation codons can result in translational
repression (23,24). Thus both the 3’ and 5’ untranslated regions
may influence mRNA activity.

In spite of their highly conserved putative DNA-binding
domains, it is still unclear whether ZFY and ZFX are functionally
equivalent both because of the potentially complex post-
transcriptional controls which may be present and because of the
observation that Zfx and Zfy-2 stimulate transcription to quite
different extents in spite of having broadly similiar acidic domains
(14). Thus, although expression of Zfy-1 and Zfy-2 and the
removal of most of the ZFY 3’ UTR appears to be substantially
restricted to maturing germ cells in the adult, it remains to be
determined what role these genes play in this cell type. Further,
it is not clear what function the expression of Zfy-1 and Zfy-2
serves in the developing mouse embryo.
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