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ABSTRACT
This article describes the latest version of an RNA
folding algorithm that predicts both optimal and
suboptimal solutions based on free energy
minimization. A number of RNA's with known
structures deduced from comparative sequence
analysis are folded to test program performance. The
group of solutions obtained for each molecule is
analysed to determine how many of the known helixes
occur in the optimal solution and in the best suboptimal
solution. In most cases, a structure about 80% correct
is found with a free energy within 2% of the predicted
lowest free energy structure.

INTRODUCTION
The number of known RNA sequences is rapidly increasing.
Insight into function, however, depends on methods for decoding
the information in the sequences. One piece of information is
the three dimensional structure of the RNA. In principle, it is
possible to predict structure from sequence (1). In practice,
it is not only difficult to predict structure (2), but also to determine
it experimentally (3,4). Thus only the three dimensional structures
of tRNAs are known in detail (5-7).
A first step in modelling the structure of an RNA is

determination of the secondary structure, since this provides many
constraints. Unfortunately, a huge number of secondary structures
are possible for any given sequence. For example, when A, C,
G, and U occur randomly with equal probability, the number
of valid secondary structures is greater than 1.8N, where N is
the number of nucleotides (8). Thus a sequence of400 nucleotides
has about 10102 possible foldings. To make the connection
between structure and function, it is necessary to determine the
one or few foldings that actually exist. One method that can be
used to restrict the number of secondary structures considered
is free energy minimization (1,2,9). In principle, this method
can predict the equilibrium secondary structure. In practice, only
limited experimental data are available for parameterization
(2,10), and small changes in energy parameters often result in
large changes in predicted foldings. Thus the problem is 'ill-

conditioned' in a mathematical sense (11). Moreover, a cell is
not at equilibrium, so there is no fundamental reason why the
lowest free energy and biologically important structures have to
be the same. To cope with these ambiguities, Williams and
Tinoco (12) and Zuker (9) developed algorithms to generate a
range of suboptimal foldings close to the minimum free energy.
Both algorithms use dynamic programming methods (13,14). The
Williams and Tinoco approach is based on making alternative
choices during the traceback algorithm (15). The Zuker
algorithm, MFOLD, relies on predicting all base pairs that are
possible in all foldings close to the minimum free energy (9).
The programs also use different criteria to exclude similar
foldings from the ensemble generated.

This article explores the current effectiveness of free energy
minimization as implemented by the algorithm of Zuker (9) with
the energy parameters of Freier et al. (10) and the loop model
of Jaeger et al. (16). Sequences with secondary structures known
from phylogenetic comparisons are folded. Comparisons are
made between the phylogenetic structure and both the predicted
lowest free energy ('optimal') structure and the suboptimal
structure of the computer selected ensemble that is closest to the
phylogenetic structure ('single best structure'). A revised criterion
is used to limit the number of suboptimal foldings considered.
The results suggest that for a sequence with about 400 nucleotides,
a structure about 80% correct can be found within an ensemble
of about 20 structures that have free energies within 5% of the
lowest free energy structure. Most of the time, the single best
structure is found within 2% of the free energy of the optimal
structure. Thus free energy minimization can provide a reasonable
number of rough working models that can be refined with
additional experimental data, such as chemical and enzyme
modification results (4,17), site directed mutagenesis (18,19),
and phylogenetic comparisons (20,2 1).

MATERIALS AND METHODS
Version 2 ofMFOLD was used in this work. It corrects a number
of small bugs in the original VAX/VMS version, and has two
new features. First, a new program, newtemp, has been added
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to compute energy files for folding at arbitrary temperatures.
An energy computation program, efn, was added to compute the
energy of a given folding. It can be used to compute the energy

of a phylogenetically determined structure, to reevaluate the
stability of a folding at different temperatures or, if modified,
with different energy rules. The second feature is a change in
the distance criterion used to generate foldings that are not too
close to one another. Version 2 runs in VAX/VMS and UNIX
environments. It has been ported to the Silicon Graphics personal
IRIS model 25S workstation under IRIX 3.2 as well as to Digital
Equipment Corporation's DEC 3100 workstation. The UNIX port
to the IRIS uses the Silicon Graphics graphics library for the
interactive energy dot plot and P-Num plots, while the
DECstation version creates these plots with X-window software.
Newtemp (22) creates free energy, AG', files between 0 and

100°C, from published thermodynamic values (2,10,23-25).
Unmeasured terminal mismatch enthalpies, AH0, are

approximated by making the corresponding 3' dangling end AG'
more stable by 0.3 kcal/mol at 0°C, and assuming the AG0 at
37°C as given by Turner, et al. (2). Unmeasured AH0's for two
5' dangling end sequences were approximated as the average of
the measured AH0 's for other 5' dangling ends. The stabilizing
AG's for base pairs, dangling ends, and terminal mismatches
are extrapolated to t°C with:

AGO = AH°-(AH0-AG7)(t+273.15)/(37+273.15) (1)

Free energies for bulge, hairpin, internal, and multibranch loops,
and asymmetry penalties for internal loops are considered purely
entropic, and extrapolated by:

AGto = AGO (t+273.15)/(37+273.15) (2)

The tetraloop (26,27) AH0 was approximated from hydrogen
bond measurements of Turner et al. (24), extrapolated to the zero

stacking limit. The AGO for the extra stability of the tetraloops
was calculated with eq 1. Free energies of loops of more than
30 nucleotides were calculated with the temperature dependent
equation of Jacobson and Stockmayer (28). These approximations
give a reasonable prediction of the melting of the self splicing
Group I large subunit intron of Tetrahymena thernophila (22).
MFOLD uses a distance measure between foldings to ensure

that no two foldings are 'too close' to one another. The distance
is set by the user. Choosing a small distance might result in the
prediction of hundreds or even thousands of suboptimal foldings,
many of them similar to one another. A large distance will result
in fewer predicted foldings, with the risk of missing some correct
folding motifs. The original version of MFOLD (9,29) used a

distance criterion defined by Zuker (30), and illustrated by Jaeger
et al. (29). In this criterion, the distance between two base pairs,
ij and i'.j' is defined as max tli-i'l,Ij-j'lI. Two foldings are said
to be within a distance d from one another if for every base pair
ij from one folding, there is a base pair i'.j' from the other within
a distance d of i.j. The distance between the two foldings is the
smallest d that satisfies this condition. With this distance measure,
two foldings can be a large distance apart while differing by only
one or two base pairs. To avoid this, the criterion has been
modified to demand that the above condition hold for all but d
of the base pairs from each folding. Thus, if two foldings are

more than a distance d apart, then one of the foldings must contain
at least d+ 1 base pairs that are not within a distance of d of any
base pair in the other folding. The distance criterion, called the
'window' parameter in MFOLD, ensures that the automatic

close to one another as the minimum distance is increased. The
new criterion was inspired by the Prokhorov metric (31) from
probability theory.
A scoring program was used to determine the number of helixes

and the number of base pairs in the predicted foldings that are
in the phylogenetic model. A helix is defined as a double stranded
region of at least 3 base pairs interrupted by bulge or interior
loops containing at most two unpaired bases each (16). A
phylogenetically determined helix is said to be in a computed
folding if the computed folding contains all the base pairs of the
given helix with the exception of at most two base pairs.
Pseudoknots (32) were not included because they cannot be
predicted by the algorithm. Computed foldings are ranked first
by the number of correct helixes they contain. Different foldings
containing the same number of helixes are then ranked by the
number of correct base pairs. The scoring program ranked all
the suboptimal foldings and automatically determined 'single best'
foldings for each sequence.
The entire 1542 nucleotides of E. coli 16S rRNA were folded

with the constraint that all the phylogenetic base pairs must occur
in the optimal structure. The program uses bonus energies to force
constrained base pairs. The default value of the bonus energy
is -50.0 kcal/mole of forced base pair. The forcing of several
hundred base pairs with such a large bonus energy causes integer
overflow because folding energies are stored as two byte integers
to save space. The minimum energy of any structure, including
all the bonus energies, is therefore bounded below by -3276.7
kcal/mole. Thus, for practical reasons, the bonus energy was set
at -2.0 kcal/mole of forced base pair. This was altered to -3.0
kcal/mole when -2.0 proved insufficient to force base pairs
G725-C732, C726-G73 1, and the stem loop structures between
nucleotides 289-311 and 316-337.

RESULTS AND DISCUSSION

Table I lists results from folding a representative set of sequences.
The percentage of helixes correct for optimal folding of most
of the sequences has been discussed previously (16). The
exceptions are unmodified yeast phenylalanine tRNA, the entire
yeast Bl intron, and the entire E. coli 16S rRNA. These are
discussed below.

Previous foldings of tRNAs with MFOLD have made use of
the information that some modified nucleotides cannot base pair
(16). This is often a severe constraint. Recently Sampson and
Uhlenbeck (33) showed that unmodified yeast phenylalanine
tRNA also folds into the cloverleaf structure. As shown in Table
I, the cloverleaf is also the optimal structure predicted by
MFOLD. Thus the algorithm performs well on this tRNA
sequence without constraints.
The 2 domains of the yeast BI intron (34) and the 4 domains

of E. coli 16S rRNA (4) have previously been folded separately
with MFOLD giving 68 and 63%, respectively, of the
phylogenetic helixes in the optimal structures (16). The results
in Table I show that only 45 and 58%, respectively, ofthe known
helixes are predicted correctly when the entire 768 and 1542
nucleotides of B1 and 16S are folded. The best suboptimal
structure for B1, however, contains 65% of the known helixes
and is only 0.6% away in free energy. The results suggest prior
knowledge of domain structure can be a useful constraint for
folding algorithms.

Figures 1-3 show comparisons of the predicted optimal and
best suboptimal structures with the phylogenetically deducedgeneration of suboptimal foldings will not yield structures too
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structures for domain 1 of E. coli 16S rRNA, domain 2 of C.
reinhardii chloroplast 16S like rRNA (35), and the yeast BI intron
(34). Predicted helixes present in the phylogenetic structure are
boxed. No single best suboptimal structure is drawn for domain
2 of chloroplast 16S because it is essentially identical to the
phylogenetic structure. The differences observed between the
predicted and known structures are typical for cases where the
optimal structure is not particularly good. Similar comparisons
for domain 2 of E. coli 16S rRNA and the self splicing Group
I large subunit intron from T. thermophila have been presented
previously (16,22,29).
One common difference between predicted and phylogenetic

structures is the presence of one or two helixes with the base
pairing region slipped or shorter than the phylogenetic helix (see
Table I). In some cases, the phylogenetic structure may reflect
a required intermediate in a dynamic process, rather than the
equilibrium structure, or depend on interactions with proteins.
Based on chemical modification data, the latter has been suggested
for the region between nucleotides 289-311 in E. coli 16S rRNA
(4). In most cases, however, the thermodynamic parameters for
loops probably need small adjustment.
Examples suggesting modifications of loop parameters include

helixes with hairpin loops of 4 nucleotides at positions 81 in
E. coli 16S rRNA, and 110 and 182 in yeast BI (see Figures

1 and 3). These helixes end in CUUG or GUAA 'tetraloops.'
Some tetraloop sequences are known to have unusual stability
(26; Haney & Uhlenbeck, unpublished data) and structure
(36,37). Eight of these sequences are given an additional 2
kcal/mol of stability in the folding algorithm. CUUG and GUAA
are relatively rare, however, and are not currently included in
the set with extra stability. Phylogenetic comparisons suggest
CUUG, GUAA and several other loop sequences may also be
unusually stable (27,38). Thus it may be necessary to expand
the list of hairpin sequences given extra stability in the folding
algorithm. Additionally, studies on oligonucleotides indicate the
approximations for the sequence dependence of internal loop
stability are oversimplified (39,40). In particular, internal loops
terminated with GA mismatches are unusually stable due to
hydrogen bonding. Several such loops are missed in the predicted
structures. The results suggest prediction of structure will improve
as we learn more about the sequence dependence of stabililty for
single stranded regions.
Another common difference between predicted and

phylogenetic structures is the number, size, and location of
multibranch loops. For example, the predicted optimal structure
for domain 1 of E. coli 16S rRNA misses the multibranch loops
containing nucleotides 50, 110, and 180; in domain 2 of C.
reinhardii, the loop containing nucleotide 525 is missed; in yeast

Figure 1. Phylogenetic (A), predicted optimal (B), and best predicted suboptimal (C) structures for domain 1 of E. coli 16S rRNA (4). Phylogenetic helixes in
predicted structures are boxed.
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Bi, the loops containing nucleotides 30, 215, 510, and 630 are
missed. This is not surprising because there is no experimental
data for sequence and length effects on the stabilities of
multibranch loops. Moreover, the algorithm uses an unrealistic
linear approximation for the length dependence in order to ensure
true energy minimization (9). Melting studies of a circular RNA
also have indicated the linear approximation is unrealistic for large
loops (22). The results suggest studies of factors affecting the
stabilities of multibranch loops should help improve predictions
of structure.
The results in Figures 1-3 suggest that even when the

predicted optimal structure is not particularly good, a reasonable
structure can be found that is only modestly higher in free energy.
This is generalized and quantified in Table I. Optimal and
suboptimal structures within a 10% window of free energy were
generated for 13 sequences. The distance parameter, d, was
chosen to reasonably limit the number of structures generated.
For the sequences with less than 800 nucleotides, on average the
'single best' structure generated has 80% of the phylogenetically
known helixes. The 'single best' structure is always within 5%
of the free energy of the optimal structure and always within the
first 25 structures generated. Interestingly, domain 3 of E. coli

A 'A

a

¢..- aC

Figure 2. Phylogenetic (Top) and predicted optimal (Bottom) structures for domain
2 of C. reinhardii chloroplast 16S like rRNA (35). The best predicted suboptimal
structure is essentially identical to the phylogenetic structure. Phylogenetic helixes
in predicted structure are boxed.

16S rRNA has the largest difference in free energy between
optimal and 'single best' structures, 4.4%. There is evidence that
the phylogenetic structure of this domain may not be appropriate
for the RNA in the absence of ribosomal proteins. In particular,
G951 is strongly modified by kethoxal although it occurs in the
middle of a 10 base pair helix (4). Thus it may not be appropriate
to compare the predicted structures for this domain with the
phylogenetic structure. Eliminating this sequence, the 'single best'
folding for sequences less than 800 nucleotides has a free energy
on average only 1% higher than the optimal folding.
At first, it is surprising that such a small free energy window

is required to find the single best structure. The energy parameters
in the folding model are known to 10% accuracy at best, since
little is known about the sequence dependence of stabililty for
single stranded regions (2,10,16,41). The nearest neighbor
approximation for base pair stability is only accurate to about
5% (10,42). It must be remembered, however, that the free
energy parameters are additive in the nearest neighbor model,
whereas their random errors propagate as the square root of the
sum of the squared errors, i.e. AG' = AG' + AG2Q + .*. +
AGO, whereas aT = (or2 + (722 + *0O + oN2)1/2. Here oi is
the error in AG;'. For example, if N = 100 and AGO = AGO
= *A = AG~100 = AG0, UI = U2 = 000 = orl = 0.1AG',
then AGT. = 100 AG' 4 AGO. Thus for this case, the error
in each AG' is 10%, but because the errors are random, the
error in AGO is 1%. The empirical results in Table I are thus
consistent with the errors being largely random. This implies that
for large sequences such as those shown in Table I, it should
be sufficient to search suboptimal structures within a few percent
of the free energy of the optimal structure.
The results shown in Table I seem less favorable than those

presented previously (16), where a free energy window of 10%
was sufficient to include a structure more than 90% homologous
with the phylogenetic structures. This is because in the previous
work, correct helixes were gathered from a group of suboptimal
foldings. In this work, only single computer selected structures
have been used in the comparisons with phylogenetically
determined ones. This is perhaps more realistic in terms of how
this program is likely to be used. A molecular biologist examining
a single RNA without the benefit of a known structure or closely
related RNAs will most likely choose a single structure from a
list of computed ones based on closest agreement with chemical
modification, enzyme cleavage, or other experimental data. The
process of selecting compatible helixes from several suboptimal
structures can then be used for refinement as more data becomes
available.

Additional data should also restrict the number of structures
that need to be considered. Table I lists in parentheses results
for chloroplast 5S and E. coli 16S rRNA when chemical
modification data are used as a constraint. For the chloroplast
5S RNA, 10 structures were generated in the absence of
constraints within a free energy window of 10% using a distance
of 2. The optimal and 'single best' structures had 4 of 5 known
helixes. When the chemical modification data of Romby et al.
(43) were added as constraints, only 1 structure was generated
with the same parameters. This structure agreed with the
phylogenetic structure except for the absence of base pairs
G70-U109 and A30-U56, the latter because A30 is constrained
to be single stranded from the modification data.
For 16S rRNA, each domain was folded with the constraint

that nucleotides strongly modified in protein free 16S rRNA (4)
were forced to be single stranded. Substantially fewer structures
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Figure 3. Phylogenetic (A), predicted optimal (B), and best predicted suboptimal (C) structures for yeast B I intron (34). Phylogenetic helixes in predicted structures
are boxed. The phylogenetic structure should contain additional pairing between nucleotides 733 -736: 762-765.

(13 vs. 37) were generated only for domain 2. Domains 1 and
2 gave improved foldings, but domain 3 gave a substantially
worse optimal folding (see Table I). This is partly due to the
strong reactivity observed at nucleotide 951 which occurs in the
middle of a 10 base pair helix in the phylogenetic structure (4).
Nevertheless, a structure much like the phylogenetic structure
and consistent with the chemical modification data is found with
a free energy 3.6% less favorable than the lowest free energy
structure. The 6 helixes missing in this structure are replaced
by relataively similar helixes. In particular, the helix between
nucleotides 923-933: 1384-1393 is replaced by 926-933:
1384-1391; nucleotides 946-955 pair with 978-980+ 1222-
1224 instead of 1225-1235; 1058-1067 pair with 1187-1199
instead of 1189-1199; 1113-1116 pair with 1179-1182 instead

of 1184-1187; 1128-1132 pair with 1139-1143 forming a
hairpin loop of 6 instead of 1128-1135: 1139-1144 forming
a hairpin of 3; the helix 1046- 1057: 1203-1211 is shortened
to 1046-1053: 1205-1211 followed by an internal loop of 3.
To gain further insight into the suitability of the nearest

neighbor model and the energy parameters used in the folding
algorithm, the free energies of the phylogenetic and optimal
structures for the entire 16S rRNA were computed. The values
are -343.8 and -432.6 kcal/mol, respectively. This 20%
difference could reflect tertiary or protein interactions that force
the RNA to fold into a suboptimal secondary structure. Another
possibility, however, is that the single stranded regions of the
phylogenetic structure may form additional base pairs that are
not conserved. To determine the possible magnitude of this effect,

a

uU A
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the phylogenetic structure was energy minimized as described
in Materials and Methods. Forty-seven additional base pairs
formed, and are listed in Table II. Only 5 of the 94 nucleotides
involved are strongly hit by chemical modification reagents (4),
suggesting many of these base pairs may occur. The free energy
of the phylogenetic structure with these additional base pairs is
-384.4 kcal/mol, only 11% higher than for the predicted optimal
structure. Thus, there is no indication that tertiary or protein
interactions are strong enough to grossly alter the folding
determined by secondary structural interactions.

Consideration of the free energy window required to find at
least one structure for each of the phylogenetically determined
base pairs in 16S rRNA provides an indication that energy
minimization can also eliminate unreasonable base pairs while
retaining feasible base pairs. In particular, the worst base pair,
U1056-A1204, is first found in a structure that is 2.7% higher
in free energy than the optimal structure. This compares with
an 8.6% window required to find each of the 444,768 possible
base pairs that the sequence could form. While the 2.7% energy
window contains structures with 92,217 different base pairs, it
nevertheless excludes 79% of the possible base pairs.
The fact that all base pairs in the phylogenetic model can be

found in at least one structure within 2.7% of the lowest free
energy structure should not be confused with the fact that the
energy of the extended phylogenetic structure is 11 % from
optimal. If multiple structures were automatically generated at
the 2.7% level with a window value of 0, the results might contain
thousands of structures. Altogether, these structures would
contain all the phylogenetically proven base pairs, but they would
be scattered among many different structures. Combining all the
correct base pairs into a single structure forces the energy to rise.
This is why energy minimization is more successful at limiting
the number of structures that need be considered rather than the
number of base pairs. The results indicate that for large sequences
at least, inspection of individual base pairs as in energy dot plots
(9) should be confined to just a few percent from optimal.
The large number of RNA sequences being determined leads

to a demand for rapid methods to determine RNA structure. The
results in this paper show that while a vast number of structures
are possible, energy minimization can filter out most of them
and provide a reasonable set of working models. Selection among
these models can then be made with phylogenetic comparisons,
chemical modification data, site directed mutagenesis, and other
methods.
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