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1 Proof of Maximum a Posteriori Genotypes by Searching the
Distribution C

Lemma 1 Given σ > 0, Pr(D|G) decreases monotonically with ‖D −G‖22.

Proof

log(Pr(D|G)) =
∑
i

log(Pr(Di|Gi))

= −
∑
i

(Di −Gi)2

2σ2
−
√

2πσ

= c(1)σ − c(2)σ
∑
i

(Di −Gi)2

= c(1)σ − c(2)σ ‖D −G‖22

where c
(1)
σ and c

(2)
σ depend only on σ and c

(2)
σ > 0.

Lemma 2 Given σ > 0 and D1 < D2, the genotype assigment G = g = (g1, g2, g3, g4, . . . , gn) where
g1 = µ1, g2 = µ0 s.t. µ1 > µ0 is less likely than genotype assignment G = g′ = (g′1, g

′
2, g3, g4, . . . , gn)

where g′1 = µ0, g
′
2 = µ1.

Proof

Pr(D|G) =
∏
i

Pr(Di|Gi)

= Pr(D1|G1) Pr(D2|G2)
∏
i:i>2

Pr(Di|Gi)

argmax
(G1,G2)∈{(g1,g2),(g′1,g′2)}

Pr(D1|G1) Pr(D2|G2)
∏
i:i>2

Pr(Di|Gi)

= argmax
(G1,G2)∈{(g1,g2),(g′1,g′2)}

Pr(D1|G1) Pr(D2|G2)

because
∏
i:i>2 Pr(Di|Gi) > 0.

By Lemma 1, Pr(D1|G1) Pr(D2|G2) decreases monotonically with ‖(D1, D2)− (G1, G2)‖22.
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‖
[
D1

D2

]
−
[
µ0

µ1

]
‖22 − ‖

[
D1

D2

]
−
[
µ1

µ0

]
‖22

= −2[D1, D2]

[
µ0

µ1

]
+ 2[D1, D2]

[
µ1

µ0

]
= 2[D1, D2]

([
µ1

µ0

]
−
[
µ0

µ1

])
= 2 (D1(µ1 − µ0)−D2(µ1 − µ0))

= 2(µ1 − µ0)(D1 −D2) < 0

Therefore, Pr(D1|G1 = µ1) Pr(D2|G2 = µ0) < Pr(D1|G1 = µ0) Pr(D2|G2 = µ1) and Pr(D|G = g) <
Pr(D|G = g′)

Lemma 3 Given the number of individuals with each genotype Cj = |{i : gi = µj}|, the search space
of consistent genotype configurations is {g : C} = {g ∈ {µ′0, µ′1, . . . µ′k′}n : C} where {µ′0, µ′1, . . . µ′k′} =
{µj : j ∈ { 1, . . . k}, Cj > 0}.

Proof
Cj = 0↔ ∀igi 6= µj

Therefore, {g : C} = {µj : j ∈ { 1, . . . k}, Cj > 0 : C}n.

Lemma 4 Given ploidy P = p, σ > 0, data and labels ordered so that D1 < D2 < . . . < Dn and
µ′0 < µ′1 < . . . < µ′k′ , and genotype counts C (where µ′i and C are defined in Lemma 3), then in the most
likely genotype configuration g∗ = (g∗1 , g

∗
2 , . . . g

∗
n) = argmaxg Pr(D|G = g), g∗1 = µ′0

Proof By Lemma 3,
argmax

g∈{µ0,µ0,...µP }n:C
Pr(D|G = g)

= argmax
g∈{µ′0,µ′1,...µ′k′}

n:C

Pr(D|G = g)

∀g : g1 = µ′j 6= µ′0, there must be some i′ > 1 for which gi′ = µ′0 (because C0 > 0 and the µj
are unique for a given ploidy). Given that the Di are sorted in ascending order, then Di′ > D1 and
µ′0 < µ′j . By Lemma 2, choosing g′ such that g′1 = µ0 and g′i′ = µ′j does not change the genotype
counts, but increases the probability. Therefore, any configuration with g1 6= µ′0 is suboptimal. Hence by
contradiction, in any optimal configuration g∗, g∗1 = µ′0.

Theorem 5 Given ploidy P = p, σ > 0, data and labels ordered so that D1 < D2 < . . . < Dn and
µ′0 < µ′1 < . . . < µ′k′ , and genotype counts C (where µ′i and C are defined in Lemma 3), then the unique
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most likely genotype configuration is given by

g∗1 = µ′0

g∗2 = µ′0
...

g∗C0
= µ′0

g∗C0+1 = µ′1
...

g∗C0+C1
= µ′1

g∗C0+C1+1 = µ′3
...

gC0+C1+C2
= µ′3
...

g∗C0+C1+C2+...+Ck′−1+1 = µ′k′−1

...

g∗C0+C1+C2+...+Ck′
= µ′k′

Proof By Lemma 4 if g∗ = argmaxg:C Pr(D|G = g), then g∗1 = µ′0. Then g∗ = (g∗1 , g
(2)∗) and g∗ =

argmaxg:C,g∗1=µ′0 Pr(D|G = g) = argmaxg(2):C(2) Pr(D|G = g(2)) where C(2) = (C0 − 1, C1, . . . Ck′).
Inductively, this creates a series of maximization problem of the same form. For maximization problem

i in this series, the smallest remaining µ′j for which C
(i)
j > 0 is assigned to g∗i . For this reason, µ′0 is

assigned to g∗1 , . . . g
∗
C0

because they correspond to the smallest D1, . . . D
∗
C0

. After g∗1 , . . . g
∗
C0

are assigned,

then the new smallest value of µ′j s.t. C
(C0)
j > 0 will be µ′1; therefore, µ′1 will be assigned to the next C1

genotypes g∗C0+1, . . . gC0+C1 , µ′3 will be assigned to the next C2 genotypes, g∗C0+C1+1, . . . gC0+C1+C2 , etc.
until all genotypes have been filled.

Corollary 6 Given a distribution prefix Cpref = (C0, C1, . . . Cj) with total sum npref , for all suffixes
Csuf , the optimal genotype configuration must include the optimal genotype configuration must include the
genotype assignments resulting from the subproblem on Cpref , gpref , npref where gpref = (g1, g2, . . . gnpref )

are in sorted order. Call this prefix configuration gpref
Cpref

.

Proof For any distribution configuration C = (Cpref , Csuf ), Theorem 5 defines the optimal genotype
configuration by sorting the unassigned individuals after the smallest C0, C1, . . . are assigned. Any geno-
type configuration that violates this ordering for a smaller problem will necessarily violate for any suffix
Csuf ; therefore, in the optimal configuration, the order must be applied in Cpref to achieve optimality.

Theorem 7 Let the prior on G be uniform (not all configurations will be weighted equally because
configurations yielding a more probable distribution C will be weighted more). Given ploidy P = p,
sigma > 0, and the theoretical distribution T , the genotype configuration that maximizes the posterior
is given by g∗ = {g∗C : ∀C Pr(D|G = g∗C) Pr(C|T ) = f∗}, where f∗ denotes the maximum value of
Pr(D|G = g) Pr(C|T ) and g∗C is defined by Theorem 5 for the given genotype counts C.

Proof Denote the genotype counts for a given configuration as c(g). Let f(g, c(g)) = Pr(D|G =
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g) Pr(C = c(g)|T ).

f∗ = max
g

f(g, c(g))

= max
g,c′:c′=c(g)

f(g, c′)

= max
c′:∃g,c′=c(g)

max
g:c′=c(g)

f(g, c′)

= max
c′

max
g:c′=c(g)

f(g, c′)

because every considered genotype count is attainable from some genotype configuration.
Theorem 5 states that for a given c′, g∗c′ attains the unique maximum maxg:c′=c(g) Pr(D|G = g). For

any fixed c′, Pr(C = c′|T ) is a postive constant, and so g∗c′ also maximizes f(g, c′).
Therefore,

f∗ = max
c′

max
g:c′=c(g)

f(g, c′) = max
c′

f(g∗c′ , c
′)

If f(g, c(g)) = f∗, then g must attain the maximum for that c(g), maxg:c′=c(g) f(g, c′). Because maxg:c′=c(g) f(g, c′)
has a unique optimum g∗c′ for any c′, then any optimal g∗ must be in the set {g∗c′ : ∀c′} and must attain
the maximum f∗.

By Theorem 7, the optimal genotype configuration can be found by searching all C and choosing
the g∗C that maximizes Pr(D|G = g∗C). Given that genotype configurations have uniform prior (before
being weighted by the distribution C = c(g) that each produces), then the configuration that maximizes
Pr(D|G = g) will maximize Pr(G = g|D).

2 Branch and Bound

Lemma 8 The multinomial probability(
n

C0

)(
n− C0

C1

)(
n− C0

C1

)
· · ·
(
n− C0 − C1 − · · · − Ck−1

Ck

)
pC0
1 pC1

2 · · · p
Ck
k

is bounded above by(
n

C0

)(
n− C0

C1

)(
n− C0

C1

)
· · ·
(
n− C0 − C1 − · · · − Ci−1

Ci

)
×

pC0
1 pC1

2 · · · p
Ci
i (1− p1 − p2 − · · · − pi)n−C0−C1−...−Ci

for any i < k.

Proof
(
n
n′

)
pn
′
(1− p)n−n

′
≤ 1 because it defines a single term in the binomial expansion series (p+ 1− p)n

and each term in the series is nonnegative. The value(
n

C0

)(
n− C0

C1

)
pC0
1 pC1

2 (1− p2)
n−C0−C1 ≤

(
n

C0

)
pC0
1 (1− p1)

n−C0

because a positive constant
(
n
C0

)
pC0
1 can be divided out. By induction, extending the series from i to i+1

must decrease it; therefore, since k > i, the series value must be smaller than the series value for i.
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Theorem 9 Given Tθ = (p0, p1, . . . pP ) and Cpref = (C0, C1, . . . Cj) with C0 + C1 + . . . + Cj = npref ,
the joint probability of the best genotype configuration compatible with that distribution is bounded by:

argmax
g

max
Csuf

Pr(D,G = g, (Cpref , Csuf ) = c(g)) ≤

n!

C0!C1! . . . Cj !

∏
j′≤j

pj′
Cj

 (1− p0 − p1 − . . .− pj)n−n
pref

×

Pr(Dpref |Gpref = gpref
Cpref

)
∏

i>npref

max
gi:gi∈{µj+1,µj+2,...µk′}

Pr(Di|Gsufi = gi)

Proof Corollary 6 states that the optimal genotype configuration given Cpref is gpref
Cpref

. Lemma 8 proves

the multinomial bound n!
C0!C1!...Cj !

(1− p0 − p1 − . . .− pj)n−n
pref

≥ Pr((Cpref , Csuf )|Tθ). Lastly, the

greatest suffix likelihood given Cpref is the maximum likelihood over all suffixes that can result in Cpref .
Since C = (Cpref , Csuf ) = c(gpref ) + c(gsuf ) and Cpref = c(gpref ), then c(gsuf )j′ = 0 ∀j′ ≤ j; therefore,
gsuf cannot contain any genotypes from µ0, µ1, . . . µk′ , and so the maximum likelihood is the maximum
likelihood over the remaining genotypes.

3 Approximate Posterior Computation

Theorem 10 Given approximate posteriors defined as follows:

Pr(G = g∗θ |D) =
Pr(D,G = g∗θ |θ) Pr(θ)∑
θ′ Pr(D,G = g∗θ′ |θ′) Pr(θ′)

and the following criteria for bounding:

maxg Pr(D,G = g, Cpref |θ) < δ Pr(D,G = g′|θ′)

Then denote B as the set of θ for which all configurations are eventually bound (and thus do not
contribute to the posterior approximation):

B = {θ : Pr(D,G = g∗C∗θ , C
∗
θ , θ) < δ Pr(D,G = g′, θ′)}

then the maximum absolute posterior error is < δ(|{∀θ}| − 1).

Proof Denote sθ = Pr(D,G = g∗θ |θ) Pr(θ) then the posterior for θ can be defined as sθ∑
θ′′ sθ′′

. Denote

the denominator in this computation d and the denominator in the approximated computation d(H) =
d−

∑
θ′∈H sθ′ .

Because θ′, by definition, cannot be in B:

d

d(B)
<

d(B) + sθ′δ|B|
d(B)

= 1 +
sθ′δ|B|
d(B)

< 1 +
sθ′δ|B|
sθ′

= 1 + δ|B|
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εθ = |sθ
d
− sθ
d(B)
|

∀θεθ < |1− d

d(B)
|

because ∀θ sθ
d ≥ 0.

Since d
d(B) > 1,

|1− d

d(B)
| =

d

d(B)
− 1

< 1 + δ|B| − 1

= δ|B|
≤ δ(|{∀θ}| − 1)

Because B cannot, by definition, include θ∗.

4 MAP Validity with Replicate Data

Lemma 11 Given r replicate data points for each individual, the genotype distribution C, and σ, the
MAP configuration found by using the mean value of these data points for each individual results in the
true MAP configuration.

Proof Denote the replicate data for individual 1 as D(1) = (D
(1)
1 , D

(1)
2 , . . . D

(1)
r ). The log likelihood of

the genotype configuration g is:

f(σ) +
∑
i

r∑
k

‖D(i)
k − gi‖22
σ2

= f(σ) +
1

σ2

∑
i

[
r∑
k

D(i)k
2

]
+ rg2i − 2

r∑
k

D
(i)
k gi

Because
∑r
kD

(i)
k

2
is a constant that does not depend on θ or g, any g that maximizes the above equation

will maximize the following:

1

σ2

∑
i

rg2i − 2

r∑
k

D
(i)
k gi =

1

σ2

∑
i

g2i − 2gi mean(D(i))

The equation to maximize without replicate data is:

r

σ2

∑
i

D2
i + g2i − 2giDi

For fixed r both functions are different by a constant and thus by using the means of the replicate
data, the optimal genotype configuration for C can be reached using Theorem 5.
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