
 

 APPENDIX A: Proof of the unbiasness of the 2

S
r  estimate for a two population structured 

sample when loci are unlinked.  

 

Let S  denote the random Bernoulli variable which equals 1 if the sampled individual comes 

from the first population and 0 otherwise. Let t  denote the probability of 1=S  then, 
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Let l
X  denote the dummy random variable equaling 1 when an individual carries the A allele at 

locus l  and 0 otherwise, then 
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Using equations (A1) and (A3), we get 
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Using equations (A2) and (A4) we obtain 
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On an other hand, theoretical developments of ),(
ml

XXCov  give 
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Thus, using equations (A5) and (A6) we obtain that  
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which equals 0 when the loci are unlinked. 

 



  

 

 APPENDIX B: Proof that the 2

S
r  measure is the proportional factor to apply to sample size in 

order to achieve the same power of structure corrected association test at a SNP locus in linkage 
disequilibrium with the causal locus, as at the causal locus itself.  

 

Let a trait, observed on a sample of size N , be explained by a causal locus l  in the following 
linear model  
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 where T

Ni
yyyY ),...,,...,(=

1
 is the vector of observed trait values,   is the residual vector that is 

assumed to have expectation 0 and variance 2
 , and ),,(

l
  are the parameters for the mean, the 

structure effect and the causal locus effect, respectively. 

The association t-test is equal to  
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where 2
̂  is the estimate of 2

  , S
~

 and l
X
~

 are the centered S  and l
X  matrices, respectively, and 

2,2
 

denotes the second diagonal block of the matrix. 

By definition of the sample variance-covariance matrix, we get 
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The inversion of the block matrix gives 
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So, asymptotically we get that l
t  is Gaussian with variance 1 and expectation equal to 
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The t-test at the SNP locus m  is 
)ˆ(V

ˆ
=

m

m

m

ar

t




 with 1

2,2

2
])X

~
,S

~
[]X

~
,S

~
([ˆ=)ˆ(V

mTmm
ar  . 

To find the expectation of m
t  under the causal model, which is the correct one for the 

expectation of the data Y , it is necessary to calculate the second block of 
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This second block is equal to 
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We find, asymptotically, 
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Thus, m
t  is asymptotically Gaussian with variance 1 and expectation equal to 
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finishes the first part of the proof showing that ),(ˆ
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 is the reducing power factor between the causal 

locus and a SNP locus in linkage disequilibrium. 

Now, let us suppose that we get a m
N  sample at the SNP locus and a l

N  sample at the causal 
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Then, we obtain that the sample size has to be increased by a factor equal to ),(1/
2

mlr
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 to achieve the 

same power at the SNP locus, compared to the power at the causal locus. 

 

 


