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1 Subtype Classification Model (SCM)

This section recapitulates the design and fitting of the Subtype Classification Model (SCM) as
described in details in Supplementary information of (I, 3 1I]).

In order to identify the molecular subtypes of breast cancer tumors, we performed a clustering
in a two-dimensional space. The dimensions were defined by the ESR1 and ERBB2 module scores
(I, 11)). To facilitate comparison between datasets, we applied a robust linear scaling to each
of these scores such that quantiles 2.5% and 97.5% were set to -1 and +1 respectively. This
procedure was particularly efficient in datasets where skewed population of patients (such as those
with different proportions of ER-/+ or HER2-/+ tumors) since only a few extreme cases (5%)
are needed to perform the robust scaling, while not relying on outliers.

We used a simple clustering model that is a mixture of Gaussians with equal variance and shape
(2, [7)). Since |Kapp et al.| showed that only three main breast cancer molecular subtypes (basal-
like, HER2-enriched and luminal) can be identified in multiple datasets (5]), we fitted a mixture of
three Gaussians to identify the ER-/HER2- (alias basal-like), HER2+ (alias HER2-enriched), and
ER+/HER2- (alias luminal) subtypes. Moreover, since we showed that the discrimination between
luminal A and B can be performed using proliferation-related genes (/6]), we used a proliferation
module scores (referred herein by AURKA) to identify the low and high proliferative ER+/HER2-
tumors. However, we and others reported that such a proliferation signal is a continuum and do
not exhibit natural cutoffs representing different proliferative stages (4} 5, 8, [10)); therefore we
assumed that, in a representative population of breast cancer patients, half of the ER+/HER2-
tumors are lowly proliferative (alias luminal A) and the other half are highly proliferative (alias
luminal B).

Note that an implementation of our method for breast cancer molecular subtype identification
is available from the R package geneflﬂ (see functions subtype.cluster,
subtype.cluster.predict and objects scmodl, scmod2, and scmgene).

This subtype classification model (SCM), once fitted on the training set, returns a set of
probabilities for a patient to belong to each molecular subtype.

SCMOD2

The first SCM, referred to as SCMOD2, has been published by Wirapati et al|where ER, HER2
signaling pathways and proliferation were quantified by averaging expressions of genes included in
the modules ESR1, ERBB2 and AURKA respectively (LIJ).

As can be seen in the figure below, the mixture of three Gaussians fitted on the training set
(EXPO, see Table 1) enables the identification of the three main molecular subtypes: ER-/HER2-
(alias basal-like), HER2+ (alias HER2-enriched), and ER+/HER2- (alias luminal).

"http://www.bioconductor.org/packages/release/bioc/html/genefu. html


http://www.bioconductor.org/packages/release/bioc/html/genefu.html

Mixture of Gaussians
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The following table gives the parameters of the clustering model (mixture of three Gaussians
with equal shape and variance) as fitted on the training set (EXPO, see Table 1).

i ER-/HER2-

HER2+ ER+/HER2-

ESR1 -0.64 -0.07 0.46

ERBB2 -0.69 0.80 -0.52

Yx I

ESR1 0.09 0.09 0.09

ERBB2 0.06 0.06 0.06
r 0.34 0.10 0.56

Finally, we estimated a cutoff value for the AURKA module in order to discriminate between
low and high proliferative tumors. This cutoff was defined as the median and is equal to -0.27.

SCMOD1

Another version of the SCM, referred to as SCMOD1, has been published by Desmedst et al.|where
ER, HER2 signaling pathways and proliferation were quantified by averaging expressions of genes
included in the modules ESR1, ERBB2 and AURKA respectively ().

As can be seen in the figure below, the mixture of three Gaussians fitted on the training set
(EXPO, see Table 1) enables the identification of the three main molecular subtypes: ER-/HER2-
(alias basal-like), HER2+ (alias HER2-enriched), and ER+/HER2- (alias luminal).
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The following table gives the parameters of the mixture of three Gaussians with equal shape
and variance, as fitted on the training set (EXPO, see Table 1).

i ER-/HER2-

HER2+ ER+/HER2-

ESR1 -0.68 0.02 0.47

ERBB2 -0.73 0.70 -0.32

Y x1

ESR1 0.10 0.10 0.10

ERBB2 0.07 0.07 0.07
T 0.27 0.14 0.59

Finally, we estimated a cutoff value for the AURKA module in order to discriminate between
low and high proliferative tumors. This cutoff was defined as the median and is equal to -0.30.

SCMGENE

In the present work we developed a three-gene version of the SCM, referred to as SCMGENE,
where ER, HER2 signaling pathways and proliferation were quantified by expression of single genes
that are ESR1, ERBB2 and AURKA respectively (1)).

As can be seen in the figure below, the mixture of three Gaussians fitted on the training set
(EXPO, see Table 1) enables the identification of the three main molecular subtypes: ER-/HER2-
(alias basal-like), HER2+ (alias HER2-enriched), and ER+/HER2- (alias luminal).
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The following table gives the parameters of the mixture of three Gaussians with equal shape
and variance, as fitted on the training set (EXPO, see Table 1).

i ER-/HER2- HER2+4+ ER+/HER2-

ESR1 -0.67 -0.26 0.65

ERBB2 -0.58 0.84 -0.34

Y x1

ESR1 0.10 0.10 0.10

ERBB2 0.08 0.08 0.08
T 0.27 0.12 0.61

Finally, we estimated a cutoff value for the AURKA module in order to discriminate between
low and high proliferative tumors. This cutoff was defined as the median and is equal to -0.37.



2 R code for SCMGENE

In this section we describe in details how to fit SCMGENE using the EXPO dataset (see Table 1)
by following two approaches: (i) a few R code lines relying on functions implemented in the
genefu R/Biocinductor packageE]; (ii) a standalone code fitting the mixture of three Gaussians
using ESR1, ERBB2 and AURKA gene expressions.

R code using genefu

Start an R session and download/install genefu version 1.3.4 available from the companion website
of the publication]
Load the genefu library

> library(genefu)

Load the R workspace containing the dataset EXPO as provided in the companion website of
the publication. R objects data, annot and demo contain the normalized gene expression values,
probe annotations and patients’ clinical information respectively.

> load("data/EXP0O.RData")

Extract the probesets for ESR1, ERBB2 and AURKA genes used in SCMOD1 () and put
them in a list called modgene.

> modgene <- lapply(scmodi$mod, function(x) { return(x[1l, , drop=FALSE]) })
> print (modgene)

Construct the scmgene.expo object, which the SCMGENE model used in the present work, by
using the function subtype.cluster. The files scmgene fit EXPO.pdf and scmgene model EXPO.csv
are created in the current directory, they describe the fit of the mixture of the three Gaussians in
terms of classification and parameters, respectively.

> pdf ("scmgene_fit_EXPO.pdf", width=7, height=7)

> tt <- subtype.cluster(module.ESR1=modgene$ESR1, module.ERBB2=modgene$ERBB2,
module.AURKA=modgene$AURKA, data=data, annot=annot, do.mapping=FALSE, do.scale=TRUE,
rescale.q=0.05, plot=TRUE, filen=sprintf ("scmgene_model_EXP0"))

> dev.off ()

> scmgene.expo <- tt$model

The following function enables classification of the breast tumors into subtypes (function
subtype.cluster.predict) using SCMGENE in an affymetrix HG-U133A or HG-U133PLUS2 mi-
croarray dataset (for example VDX, see Table 1). Note that, since SCMGENE has been trained
on EXPO (Affymetrix HG-U133PLUS2), mapping is unnecessary (do.mapping=FALSE). A file
scmgene_classif VDX.pdf is created and illustrates the classification of the VDX dataset into
the four molecular subtypes: ER-/HER2-,

HER2+, ER+/HER2- High Proliferation, and ER+/HER2- Low Proliferation which correspond
to basal-like, HER2-enriched, luminal B and luminal A in the present work.

http://www.bioconductor.org/packages/devel/bioc/html/genefu.html
*http://compbio.dfci.harvard.edu/pubs/sbtpaper/


http://www.bioconductor.org/packages/devel/bioc/html/genefu.html
http://compbio.dfci.harvard.edu/pubs/sbtpaper/

> load(sprintf ("data/VDX.RData"))

> pdf ("scmgene_classif _VDX.pdf", width=7, height=7)

> sc.vdx <- subtype.cluster.predict(sbt.model=scmgene.expo, data=data, annot=annot,
do .mapping=FALSE, plot=TRUE, verbose=TRUE)

> dev.off()

The subtyping for each tumor can be accessed through sc.vdx$subtype2.
> print(table(sc.vdx$subtype2))

Since the function subtype.cluster.predict enables automatic mapping (do.mapping=TRUE),
we can easily classify tumors into subtypes from a dataset using a non-Affymetrix microarray
platform (for example NKI, see Table 1).

> load(sprintf("data/NKI.RData"))

> pdf ("scmgene_classif NKI.pdf", width=7, height=7)

> sc.nki <- subtype.cluster.predict(sbt.model=scmgene.expo, data=data, annot=annot,
do.mapping=TRUE, plot=TRUE, verbose=TRUE)

> dev.off()

Similarly the subtyping for each tumor can be accessed through sc.nki$subtype2.

> print(table(sc.nki$subtype2))

Subtyping of a single sample If the microarray platform and the single chip normalization
procedure are standardized throughout an entire study (for example all tumor samples are profiled
using Affymetrix HG-U133A and normalized with MAS5 or fRMA), then one could easily classify
a single sample into its most likely subtype. Actually we just have to fit the model without scaling
the gene expression data (do.scale=FALSE in function subtype.cluster).

Here is an example with the EXPQO dataset where all samples have been profiled on Affymetrix
HG-U133PLUS2 and normalized with fRMA: the first 352 samples are used for training SCMGENE
(data.training) and the last sample is the single sample to classify (single.test.sample).

library(genefu)

load("data/EXPO.RData")

modgene <- lapply(scmodi$mod, function(x) { return(x[1l, , drop=FALSE]) })

data.training <- datal[l:(nrow(data)-1), , drop=FALSE]

single.test.sample <- datal[nrow(data), , drop=FALSE]

scmgene.unscaled.expo <- subtype.cluster (module.ESRl1=modgene$ESR1, module.ERBB2=modgene$
module.AURKA=modgene$AURKA, data=data.training, annot=annot, do.mapping=FALSE, do.scale=FA
> > sc <- subtype.cluster.predict(sbt.model=scmgene.unscaled.expo, data=single.test.sample
do .mapping=FALSE, plot=TRUE, verbose=TRUE)

V V. V V Vv V

The predicted subtype for the single tumor sample can be accessed through sc$subtype2.

> print(sc$subtype2)



Standalone R code

In this section we describe how to fit the mixture of three Gaussians used in SCMGENE and
how to compute the maximum posterior probabilities. The code and its documentation are also
available the the package genefu, function subtype.cluster.

Load the EXPO dataset.

> load("data/EXPO.RData")

Extract the probesets for ESR1, ERBB2 and AURKA genes used in SCMOD1 (1) and put
them in a list called modgene.

> modgene <- lapply(scmodi$mod, function(x) { return(x[1, , drop=FALSE]) })
> print(modgene)

Extract the gene expression values for ESR1, ERBB2 and AURKA and rescale them. Note
that rescale is unnecessary if you apply SCMGENE on datasets using the same microarray platform
and normalization method (which is not the case in the present work).

> ge.expo <- lapply(modgene, function(x, y) {

xx <- y[ ,x[ ,1,drop=TRUE]]

qq <- quantile(xx, probs=c(0.025, 0.975))
return((((xx - qql1]) / (qql2] - qql[1])) - 0.5) * 2)
},y=data)

Let's now fit the mixture of three Gaussians using ESR1 and ERBB2 expressions (R package
mclust available from CRA.The object mg3 contains all the parameters of the mixture of three
Gaussians.

> library(mclust)
> mg3 <- Mclust(data=cbind ("ESR1"=ge.expo$ESR1, "ERBB2"=ge.expo$ERBB2) , modelNames="EEI", C

The classification and corresponding posterior probabilities are stored in the mg3 object. Note
that in this case classes 1, 2 and 3 represent the HER2+, ER-/HER2-, and ER+/HER2- respec-
tively.

> print(table(mg3$classification))
> print (mg3$z)

We can discriminate between luminal B and luminal A tumors by using AURKA gene ex-
pressions. Objects subtype? and subtype.proba2 contain the subtyping and the corresponding
posterior probabilities.

> nn <- c("ER-/HER2-", "HER2+", "ER+/HER2- High Prolif", "ER+/HER2- Low Prolif")
> aurka.cutoff <- median(ge.expo$AURKA[!is.na(mg3$classification) &
mg3$classification == 3], na.rm=TRUE)

> subtype2 <- mg3$classification

> subtype2['is.na(mg3$classification) & mg3$classification == 3 &

*http://cran.r-project.org/


http://cran.r-project.org/

ge.expo$AURKA < aurka.cutoff] <- 4

> subtype2 <- nn[c(2, 1, 3, 4)] [subtype2]

> tt <- mg3$z[ ,3]

> tt2 <- rep(NA, length(ge.expo$AURKA))

> names (tt2) <- names(ge.expo$AURKA)

> iix <- ge.expo$AURKA < aurka.cutoff

> tt2[iix] <- (ge.expo$AURKA[iix] - min(ge.expo$AURKA[iix], na.rm=TRUE)) /
((max(ge.expo$AURKA[iix], na.rm=TRUE) - min(ge.expo$AURKA[iix], na.rm=TRUE)) * 2)

> tt2[!iix] <- 0.5 + (ge.expo$AURKA[!iix] - min(ge.expo$AURKA[!iix], na.rm=TRUE)) /
((max(ge.expo$AURKA[!iix], na.rm=TRUE) - min(ge.expo$AURKA[!iix], na.rm=TRUE)) * 2)
> tt <- cbind(tt * tt2, tt * (1 - tt2))

> subtype.proba2 <- cbind(mg3$z[ ,c(2, 1)], tt)

> colnames (subtype.proba2) <- nn

Using this mixture of Gaussians we can easily classify tumors present in the VDX dataset.

> load("data/VDX.RData")

> ge.vdx <- lapply(modgene, function(x, y) {

xx <- y[ ,x[ ,1,drop=TRUE]]

qq <- quantile(xx, probs=c(0.025, 0.975))

return((((xx - qql1]) / (gq[2] - qql[1])) - 0.5) * 2)

},y=data)

> mgt <- estep(modelName="EEI", data=cbind("ESR1"=ge.vdx$ESR1,"ERBB2"=ge.vdx$ERBB2), paran
> subtype2 <- map(mgt$z)

> subtype2[!is.na(map(mgt$z)) & map(mgt$z) == 3 &

ge.vdx$AURKA < aurka.cutoff] <- 4

subtype2 <- nn[c(2, 1, 3, 4)] [subtype2]

tt <- mgt$z[ ,3]

tt2 <- rep(NA, length(ge.vdx$AURKA))

names (tt2) <- names(ge.vdx$AURKA)

iix <- ge.vdx$AURKA < aurka.cutoff

> tt2[iix] <- (ge.vdx$AURKA[iix] - min(ge.vdx$AURKA[iix], na.rm=TRUE)) /
((max(ge.vdx$AURKA[iix], na.rm=TRUE) - min(ge.vdx$AURKA[iix], na.rm=TRUE)) * 2)

> tt2[!iix] <- 0.5 + (ge.vdx$AURKA['iix] - min(ge.vdx$AURKA[!iix], na.rm=TRUE)) /
((max(ge.vdx$AURKA[!iix], na.rm=TRUE) - min(ge.vdx$AURKA[!iix], na.rm=TRUE)) * 2)
> tt <- cbind(tt * tt2, tt * (1 - tt2))

> subtype.proba2 <- cbind(mgt$z[ ,c(2, 1)], tt)

> colnames (subtype.proba2) <- nn

\

vV V V V

If one wants to classify tumors in a dataset generated with a different microarray platform, we
suggest to use the function geneid.map in the genefu package.

10



3 Prediction strength

lllustration of the idea behind the prediction strength of a clustering/classification model C' with
one training set and one test set.

Step 1: Fit classification models Step 2: Prediction strength
3
Training Test Test
set set set
X Y y
published
gene signatures } Cx Cy
A Y
Clustering
algorithm ¢ c Cx(Y) Cy(Y)
parameters predicted "true"
labels labels

Classification Py
model Cx Gy L’ = ‘J

To compute the prediction strength statistic, one dataset was considered as training set and
the remaining ones were considered as test sets. First the original gene lists (the intrinsic gene
lists for SSPs and the gene modules for SCMs, see Figure 1c,d in the main manuscript) and
algorithms were applied both on the training and test sets in order to tune the parameter that
are the centroids for SSPs and the Gaussians for SCMs (see Figure 1a,b in the main manuscript);
the resulting classifications were referred to as true labels. Note that for SSPs, the subtypes were
identified as the main clusters which contain at least 5 clusters. Second, the classification model
fitted on the training set was applied to all the test sets (predicted labels) and compared to the
classification (true labels) obtained on the first step. The prediction strength was then used to
quantify the similarity between both classifications in each dataset separately. Values range from 0
(low similarity) to 1 (high similarity), a prediction strength > 0.8 being representative of a robust
classification model (9).

Formally the prediction strength is defined as

, 1
ps = min ———
1<j<u ng; (ng; — 1)

> DICx(Y)w

1#41 €k;

where
e k € K is a cluster of objects
e kj's with 1 < j < u, are the clusters defined by the clustering Cy (Y)

e ny; is the number of objects in cluster k;

11



e D is the co-membership matrix such that

1ifi, €k
0 otherwise

DICx( ) = {

The prediction strength can also be defined at the cluster and individual levels.
For cluster j;

1
e = nka(nkj —-1) i;é;kj DIl
For individual 1, .

i€ AR (i)

where Ay (i) are the objects indices i’ € Y such that i # i AD[Cy(Y)],;, = 1 and # A(3) is the
number of indicies in Ay(7).

12
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