Supporting Information (SI-1) for

Contribution of Phosphates and Adenine to the Potency of Adenophostins at the IP₃ Receptor: Synthesis of all Possible Bisphosphates of Adenophostin A

Kana M. Sureshan, Andrew M. Riley, Mark P. Thomas, Stephen C. Tovey, Colin W. Taylor, Barry V. L. Potter*

INDEX

r		
1	Synthesis and characterization of 10	S2
2	Synthesis and characterization of 11	S2
3	Synthesis and characterization of 12	S3
4	Synthesis and characterization of 15	S4
5	¹³ C NMR data of 17	S5
6	Synthesis of 24	S6
7	Synthesis of 25	S6
8	Synthesis of 26	S6
9	¹³ C NMR data of 27	S7
10	¹³ C NMR data of 28	S7
11	¹³ C NMR data of 19	S7
12	¹³ C NMR data of 20	S7
13	¹³ C NMR data of 21	S8
14	¹³ C NMR data of 4	S8
15	¹³ C NMR data of 29	S8
16	¹³ C NMR data of 30	S9
17	¹³ C NMR data of 5	S9
18	¹³ C NMR data of 34	S9
19	¹³ C NMR data of 6	S10
20	¹³ C NMR data of 38	S10
21	¹³ C NMR data of 39	S10
22	¹³ C NMR data of 7	S10
23	¹³ C NMR data of 2	S11
24	Docking studies	S12-S19
25	References	S19

(2'R,3'R)-Ethyl-4,6-di-O-benzyl-2,3-di-O-(2', 3'-dimethoxy butane-2',3'-diyl)-1-thio-β-**D-glucopyranoside (10)**. To a solution of 2,3-BDA derivative 9 (5g, 14.77 mmol) in DMF (50 mL) was added NaH (2g, 60% in oil, 50 mmol) at 0°C and the mixture was stirred for 10 min. BnBr (6 mL, 50 mmol) was then added dropwise at 0 °C, stirring continued at 0 °C for 30 min and then the temperature was raised to rt and stirring was continued for another 2h, when TLC showed the presence of no more starting material. The DMF was evaporated off and the residue was taken up in ethyl acetate. The usual aqueous work up was followed by column chromatography with 10% ethyl acetate-hexane to yield dibenzyl ether 10 as a white crystalline solid (7.66 g, 100%). M.p- 101 °C; [α]_D -110.9 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): 1.31 (t, 3H, 7.40 Hz, -S-CH₂-CH₃), 1.34 (s, 3H, C-CH₃), 1.37 (s, 3H, C-CH₃), 2.68-2.82 (m, 2H, S-CH₂), 3.30 (s, 3H, O-CH₃), 3.32 (s, 3H, O-CH₃), 3.51 (ddd, 1H, 9.57 Hz, 4.78 Hz, 1.30 Hz, H-5), 3.61 (t, 1H, 9.57 Hz, H-2), 3.68 (t, 1H, 9.57 Hz, H-4), 3.69 (dd, 1H, 10.87 Hz, 4.78 Hz, H-6_A), 3.75 (dd, 1H, 10.87 Hz, 1.30 Hz, H-6_B), 3.92 (t, 1H, 9.57 Hz, H-3), 4.56 (AB q, 2H, 27.83 Hz, 12.17 Hz, PhCH₂), 4.57 (d, 1H, 9.57 Hz, H-1), 4.74 (AB q, 2H, 146.95 Hz, 10.89 Hz, PhCH₂), 7.20-7.40 (m, 10 H, 2xPh). ¹³C NMR (100 MHz, CDCl₃): 14.94 (S-CH₂-CH₃), 17.50 (C-CH₃ BDA), 17.66 (C-CH₃ BDA), 24.43 (S-CH₂-Me), 47.74 (O-CH₃), 47.96 (O-CH₃), 68.89 (C-2), 69.00 (C-6), 73.18 (PhCH₂), 74.65 (C-4), 74.83 (PhCH₂), 75.32 (C-3), 79.23 (C-5), 82.45 (C-1), 99.31 (CMe₂), 99.81 (CMe₂), 127.36, 127.50, 127.58, 127.86, 128.14, 128.18 (aromatic carbons), 138.11 (2 x ipso carbons). Elemental analysis calcd for C₂₈H₃₈O₇S C, 64.84; H, 7.38 Found C, 64.8; H, 7.38. m/z (ES+) = 541.2 [(M+Na)⁺, 100%]; HRMS: Mass calcd for $C_{28}H_{42}O_7NS$ [M+NH4]⁺, 536.2676; Found, 536.2680.

Ethyl-4,6-di-*O*-benzyl-1-thio- β -D-glucopyranoside (11). A solution of dibenzyl ether 10 (5.5 g, 10.6 mmol) in 80% AcOH (50 mL) was refluxed for 1h. After 1 h, the solvent and

butanedione were evaporated off. The residue was chromatographed with 40% ethyl acetate– hexane to give pure diol **11** as a colorless solid (4.28 g, 99%). M.p. 67 °C; $[\alpha]_D$ -14.8 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): 1.32 (t, 3H, 7.37 Hz, -S-CH₂-CH₃), 2.66-2.86 (m, 3H, S-CH₂ & OH), 2.86-3.14 (br, 1H, -OH), 3.40 (ddd, 1H, 9.69 Hz, 8.85 Hz, 2.11 Hz, H-2), 3.48 (ddd, 1H, 9.69 Hz, 4.21 Hz, 1.69 Hz, H-5), 3.54 (dd, 1H, 9.69 Hz, 8.85 Hz, 2.11 Hz, H-2), 3.48 (ddd, 1H, 9.69 Hz, 4.21 Hz, 1.69 Hz, H-5), 3.54 (dd, 1H, 9.69 Hz, 8.85 Hz, H-4), 3.68 (dt, 1H, 8.85 Hz, 2.11 Hz, H-3), 3.69-3.73 (m, 1H, H-6_A), 3.77 (dd, 1H, 10.95 Hz, 1.69 Hz, H-6_B), 4.31 (d, 1H, 9.69 Hz, H-1), 4.59 (AB q, 2H, 29.91 Hz, 12.22 Hz, PhCH₂), 4.71 (AB q, 2H, 80.68 Hz, 11.17 Hz, PhCH₂), 7.22-7.38 (m, 10 H, 2x*Ph*). ¹³C NMR (100 MHz, CDCl₃): 15.34 (S-CH₂-CH₃), 24.39 (S-CH₂-Me), 68.94 (C-6), 72.62 (C-2), 73.38 (PhCH₂), 74.64 (PhCH₂), 77.18 (C-4), 78.20 (C-3), 79.01 (C-5), 85.64 (C-1), 127.59, 127.76, 127.84, 127.97, 128.30, 128.44 (aromatic carbons), 138.01, 138.09 (ipso carbons). Elemental analysis calcd for C₂₂H₂₈O₅S C, 65.32; H, 6.98 Found C, 65.25; H, 7.06. m/z (ES+) = 427.1 [(M+Na)⁺, 100%]; HRMS: Mass calcd for C₂₂H₃₂O₅NS [M+NH4]⁺, 422.1996; Found, 422.1999.

Ethyl-2,4,6-tri-*O***-benzyl-1-thio***-β***-D-glucopyranoside (12). Method 1**: A suspension of diol **11** (225 mg, 0.556 mmol), Bu₂SnO (177 mg, 0.71 mmol), TBAB (210 mg, 0.65 mmol) and BnBr (110 μ L, 0.92 mmol) in acetonitrile (20 mL) was refluxed in a RB flask attached with soxhlet thimble containing 3 Å molecular sieves for 24 h. Triethylamine (2 mL) was then added and the mixture refluxed for a further 1h, cooled to rt and ether (10 mL) and satd. NaHCO₃ solution (10 mL) were then added. After filtration through a small pad of celite, the concentrated filtrate was worked up in ethyl acetate. The crude mixture was then chromatographed with 25% ethyl acetate –hexane to afford tribenzyl ether **12** (74 mg, 27%), tribenzyl ether **13** (63 mg, 23%) and the diol **11** (81 mg, 36%).

Method 2: To a solution of diol **11** (135 mg, 0.33 mmol) in DMF (3 mL) was added NaH (27 mg, 60% in oil, 0.67 mmol) and the mixture was stirred for 10 min at rt. BnBr (40 μ L, 0.33 mmol) was then added and stirring continued for 2h at rt. The usual work-up was

followed by chromatography providing **12** (30 mg, 18%), **13** (26 mg, 16%), tetrabenzyl ether **14** (62.5 mg, 32%) and the diol **11** (32 mg, 24%).

Method 3: To a solution of diol **11** (100 mg, 0.25 mmol) in DCM (4 mL) was added Bu_4NHSO_4 (85 mg, 0.25 mmol), 5% aq NaOH (4 mL) and BnBr (35µL, 0.29 mmol) and the mixture was then stirred at 55 °C overnight. After work up in ethyl acetate, chromatography gave **12** (90 mg, 74%), **13** (10 mg, 8.2%) and **14** (14 mg, 10%).

For scale-up **method 3** was adopted using diol **11** (3.47 g, 8.58mmol), DCM (135 mL), Bu₄NHSO₄ (3g, 8.84 mmol), 5% NaOH (135 mL) and BnBr (1.03 mL, 8.58 mmol) to yield **12** (2.83g, 67%), **13** (280 mg, 6.6%), **14** (150 mg, 3%) and **11** (347 mg, 10%).

Data for **12**: $[\alpha]_D$ +4.3 (c 1.4, CHCl₃);¹H NMR (400 MHz, CDCl₃): 1.33 (t, 3H, 7.59 Hz, CH₃), 2.48 (d, 1H, 2.23 Hz, OH), 2.70-2.84 (m, 2H, S-CH₂), 3.30 (dd, 1H, 9.82 Hz, 8.92 Hz, H-2), 3.44 (ddd, 1H, 9.82 Hz, 4.91 Hz, 1.79 Hz, H-5), 3.51 (dd, 1H, 9.82 Hz, 8.92 Hz, H-4), 3.68 (dd, 1H, 10.71 Hz, 4.91 Hz, H-6_A), 3.73 (dt, 1H, 8.92 Hz, 2.2 Hz, H-3), 3.76 (dd, 1H, 10.71 Hz, 1.79 Hz, H-6_B), 4.44 (d, 1H, 9.82 Hz, H-1), 4.58 (AB q, 2H, 26.77 Hz, 12.05 Hz, PhC*H*₂), 4.69 (AB q, 2H, 87.01 Hz, 11.16 Hz, PhC*H*₂), 4.82 (AB q, 2H, 117.36 Hz, 10.71 Hz, PhC*H*₂), 7.22-7.42 (m, 15 H, 3x*Ph*). ¹³C NMR (100 MHz, CDCl₃): 15.06 (CH₃), 25.00 (S-CH₂-Me), 69.03 (C-6), 73.33 (PhCH₂), 74.54 (PhCH₂), 75.06 (PhCH₂), 77.42 (C-4), 78.46 (C-3), 78.68 (C-5), 81.31 (C-2), 84.57 (C-1), 127.54, 127.70, 127.75, 127.91, 127.99, 128.23, 128.36, 128.39, 128.52 (aromatic carbons), 137.94, 138.06, 138.14 (ipso carbons). Elemental analysis calcd for C₂₉H₃₄O₅S C, 70.42; H, 6.93 Found C, 70.12; H, 6.96. m/z (ES+) = 517.2 [(M+Na)⁺, 100%]; HRMS: Mass calcd for C₂₉H₃₈O₅NS [M+NH4]⁺, 512.2465; Found, 512.2470.

Ethyl-3-O-acetyl-2,4,6-tri-O-benzyl-1-thio- β -D-glucopyranoside (15). To a solution of tribenzyl ether 12 (2 g, 4.04 mmol) in pyridine (10 mL) was added Ac₂O (3 mL, 31.7 mmol) at rt and the mixture was stirred overnight. Pyridine was evaporated off and the residue was

worked up in ethyl acetate and chromatographed with 10% ethyl acetate-hexane to afford the known¹ acetate 15 (2.052 g, 95%) as white crystalline solid. Although 15 is known, full characterization data have never been reported. Also, notably, our $[\alpha]_D$ value is different and of opposite sign to the reported value. Thus, full characterization data are provided. M.p. 85 °C; [α]_D-2.7 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): 1.34 (t, 3H, 7.37 Hz, CH₃), 1.85 (s, 3H, COCH₃), 2.71-2.86 (m, 2H, S-CH₂), 3.42 (dd, 1H, 9.69 Hz, 9.27 Hz, H-2), 3.52 (ddd, 1H, 9.69 Hz, 3.79 Hz, 2.11 Hz, H-5), 3.67 (t, 1H, 9.69 Hz, H-4), 3.72 (dd, 1H, 10.95 Hz, 3.79 Hz, H-6_A), 3.76 (dd, 1H, 10.95 Hz, 2.11 Hz, H-6_B), 4.52 (d, 1H, 9.69 Hz, H-1), 4.53 (s, 2H, PhCH₂), 4.60 (AB g, 2H, 36.23 Hz, 12.22 Hz, PhCH₂), 4.72 (AB g, 2H, 123.01 Hz, 11.38 Hz, PhCH₂), 5.28 (t, 1H, 9.27 Hz, H-3), 7.16-7.40 (m, 15 H, 3xPh). ¹³C NMR (100 MHz, CDCl₃): 15.02 (CH₃), 20.87 (COCH₃), 25.14 (S-CH₂-Me), 68.54 (C-6), 73.35 (PhCH₂), 74.23 (PhCH₂), 74.68 (PhCH₂), 75.94 (C-4), 77.00 (C-3), 78.69 (C-5), 79.46 (C-2), 84.94 (C-1), 127.57, 127.68, 127.71, 127.73, 127.82, 128.01, 128.26, 128.27, 128.30 (aromatic carbons), 137.63, 137.66, 137.90 (ipso carbons), 169.85 (O-CO-CH₃). Elemental analysis calcd for $C_{31}H_{36}O_6S C$, 69.38; H, 6.76 Found C, 69.6; H, 6.83. m/z (ES+) = 559.4 [(M+Na)⁺, 100%]; HRMS: Mass calcd for $C_{31}H_{40}O_6NS [M+NH_4]^+$, 554.2571; Found, 554.2575.

3'-O-acetyl-5,2',4',6'-tetra-O-benzyl-3-*O***-**(*α***-D-glucopyranosyl)-1,2-***O***-isopropylidene** *α***-D-ribofuranoside (17).** ¹³C NMR (100 MHz, CDCl₃): 21.02 (COCH₃), 26.61 (*C*H₃, isopropylidene), 26.69 (*C*H₃, isopropylidene), 67.65 (C-6'), 67.71 (C-5), 70.14 (C-4' or C-5'), 70.90 (PhCH₂), 72.38 (C-3), 73.36 (C-3'), 73.47 (PhCH₂), 73.52 (PhCH₂), 74.31 (PhCH₂), 75.74 (C-5' or C-4'), 76.12 (C-2'), 76.18 (C-2), 77.55 (C-4), 94.21 (C-1'), 104.29 (C-1), 112.91 (*C*Me₂), 127.49, 127.53, 127.56, 127.61, 127.72, 127.76, 127.81, 127.87, 127.91, 128.05, 128.15, 128.23, 128.26, 128.32, 128.36 (aromatic carbons), 137.56, 137.85, 137.95, 138.00 (ipso carbons), 169.85 (OCOCH₃). **Ethyl 2,3-di-***O***-benzyl-4,6-***O***-benzylidene-1-thio**-*β***-D-glucopyranoside (24).** Tetraacetate **22** (8.625g, 22 mmol) was stirred with NaOMe (35 mg, 0.65 mmol) in methanol (50 mL) for 30 min at rt. When TLC showed complete disappearance of starting material (DCM: acetone, 10:1 v/v), a few granules of Dowex-H⁺ were added and the mixture was stirred for 5 min and then filtered. The filtrate was evaporated and co-evaporated several times with toluene and dried under vacuum. The residue was then dissolved in DMF (80 mL) and the solution heated with benzaldehyde dimethyl acetal (3.75 mL, 25 mmol) in the presence of camphorsulfonic acid (0.79 g, 3.4 mmol) at 50 °C for 2h. When the reaction was complete (TLC), Et₃N (5 mL) was added and the solution evaporated partially to remove the methanol and excess Et₃N. To the remaining DMF solution was added NaH (3.6 g, 60% in oil, 90 mmol) and then BnBr (10.6 mL, 88.3 mmol) and the mixture stirred at rt overnight. DMF was evaporated off under vacuo, work-up was in ethyl acetate and the crude product was chromatographed with 10% ethyl acetate-hexane to afford the known¹ dibenzyl ether **24** (9.312g, 86%).

Ethyl 2,3,6-tri-*O*-benzyl-1-thio- β -D-glucopyranoside (25). To a solution of 24 (3.5 g, 7.1 mmol) and triethylsilane (5.7 mL, 35.7 mmol) in DCM was added TFA (2.737 mL, 36.85 mmol) dropwise at 0 °C over 10 min. Gradually, the temperature was raised to 20 °C over 2h. When the reaction was complete (TLC), the reaction mixture was diluted with ethyl acetate and the solution was washed with satd NaHCO₃ solution. The organic layer was dried (MgSO₄) and evaporated. The residue was chromatographed with 20% ethyl acetate–hexane to give the known² tribenzyl ether 25 (3.128g, 89%).

Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl- β -thio-glucopyranoside (26). To a solution of tribenzyl ether 25 (1.35 g, 2.73 mmol) in pyridine (9 mL) was added Ac₂O (3 mL, 31.7 mmol) dropwise at room temperature. The reaction mixture was stirred at rt overnight and worked up in ethyl acetate as usual and the residue thus obtained was chromatographed to obtain the known acetate 26² (1.362 g, 93%).

3-O-(4'-O-acetyl-2',3',6'-tri-O-benzyl-a-D-glucopyranosyl)-5-O-benzyl-1,2-O-

isopropylidene-*α***-D-ribofuranoside (27).** ¹³C NMR (100 MHz, CDCl₃): 20.81 (COCH₃), 26.57 (*C*H₃, isopropylidene), 26.72 (*C*H₃, isopropylidene), 67.88 (C-5), 68.11 (C-6'), 68.96 (C-5'), 69.90 (C-4'), 72.11 (PhCH₂), 72.66 (C-3), 73.42 (PhCH₂), 73.52 (PhCH₂), 75.12 (PhCH₂), 76.15 (C-2), 77.47 (C-4), 78.94 (C-2'), 79.03 (C-3'), 94.34 (C-1'), 104.18 (C-1), 112.93 (*C*Me₂), 127.46, 127.55, 127.59, 127.77, 127.83, 127.99, 128.23, 128.27, 128.42 (aromatic carbons), 137.61, 137.90, 137.95, 138.65 (ipso carbons), 169.50 (OCOCH₃).

3-*O*-(**4'**-*O*-acetyl-2',**3'**,**6'**-tri-*O*-benzyl-α-D-glucopyranosyl)-5-*O*-benzyl-1,**2**-di-*O*-acetyl*α/β*-D-ribofuranoside (**28**). ¹³C NMR (100 MHz, CDCl₃): 20.44 (COCH₃), 20.72 (COCH₃), 20.88 (COCH₃), 68.52 (C-6'), 69.38 (C-5'), 69.58 (C-5), 70.32 (C-4'), 73.11 (PhCH₂), 73.32 (C-2), 73.43 (PhCH₂), 73.46 (PhCH₂), 73.70 (C-3), 75.11 (PhCH₂), 78.87 (C-3'), 78.94 (C-2'), 81.45 (C-4), 96.68 (C-1'), 98.37 (C-1), 127.21, 127.46, 127.50, 127.56, 127.59, 127.72, 127.80, 128.18, 128.22, 128.28 (aromatic carbons), 137.61, 137.83, 138.01, 138.37 (ipso carbons), 169.28 (OCOCH₃), 169.49 (OCOCH₃), 169.88 (OCOCH₃).

2',3"-di-*O*-acetyl-5',2",4",6"-tetra-*O*-benzyl-6-chloro-3'-*O*-(*α*-D-glucopyranosyl)-9-β-D-ribo-furanosylpurine (19). ¹³C NMR (100 MHz, CDCl₃): 20.31 (COCH₃), 21.02 (COCH₃), 67.81 (C-6"), 68.64 (C-5'), 70.88 (C-5"), 72.88 (PhCH₂), 73.15 (C-3"), 73.52 (PhCH₂), 73.59 (PhCH₂), 74.12 (C-2'), 74.53 (PhCH₂), 75.06 (C-3'), 75.85 (C-4"), 77.11 (C-2"), 82.60 (C-4'), 86.88 (C-1'), 97.55 (C-1"), 127.63, 127.68, 127.79, 127.81, 127.88, 128.04, 128.35, 128.37, 128.57 (aromatic carbons), 131.98 (C-5), 136.95, 137.40, 137.59, 137.68 (ipso carbons), 143.74 (C-8), 151.00 (C-6 or C-4), 151.23 (C-4 or C-6), 152.06 (C-2), 169.90 (O-*C*OCH₃), 170.12 (O-COCH₃).

6-amino-5',2",4",6"-tetra-O-benzyl-3'-O-(α-D-glucopyranosyl)-9-β-D-

ribofuranosylpurine (20). ¹³C NMR (100 MHz, CDCl₃): 68.19 (C-6"), 69.59 (C-5'), 71.04 (C-5"), 73.22 (C-3"), 73.38 (PhCH₂), 73.47 (PhCH₂), 74.27 (PhCH₂), 74.87 (PhCH₂), 75.07

(C-2'), 77.44 (C-4"), 78.48 (C-3'), 78.88 (C-2"), 82.28 (C-4'), 88.29 (C-1'), 98.80 (C-1"), 119.41 (C-5), 127.62, 127.66, 127.70, 127.75, 127.81, 127.88, 128.24, 128.28, 128.30, 128.42, 128.52, 128.53 (aromatic carbons), 136.79, 137.30, 137.60, 138.08 (ipso carbons), 138.72 (C-8), 149.60 (C-4), 153.08 (C-2), 155.52 (C-6).

6-amino-5',2",4",6"-tetra-*O*-benzyl-2',3"-bis-*O*-(dibenzyloxyphosphoryl)-3'-*O*-(α-D-glucopyran-osyl)-9-β-D-ribofuranosylpurine (21). ¹³C NMR (100 MHz, CDCl₃): 67.93 (C-6"), 68.97 (C-5'), 69.03, 69.10, 69.15, 69.53, 69.59, 69.76, 69.81(*C*H₂Ph, ³¹P coupled), 70.63 (C-5"), 71. 46 (*C*H₂Ph), 72.69 (d, 4.6 Hz, C-3', ³¹P coupled), 73.46 (*C*H₂Ph), 73.49 (*C*H₂Ph), 74.36 (*C*H₂Ph), 76.43 (d, 3.07 Hz, C-4", ³¹P coupled), 76.87 (d, 5.37 Hz, C-2', ³¹P coupled), 77.02 (C-2", ³¹P coupled), 79.82 (d, 6.90 Hz, C-3", ³¹P coupled), 82.01 (C-4'), 85.93 (d, 4.60 Hz, C-1', ³¹P coupled), 95.46 (C-1"), 119.82 (C-5), 127.49, 127.57, 127.62, 127.72, 127.73, 127.78, 127.84, 127.91, 128.01, 128.07, 128.14, 128.20, 128.25, 128.32, 128.36, 128.39, 128.41, 128.44, 128.46, 128.50 (aromatic carbons), 134.94, 135.01, 135.09, 135.94, 136.01, 136.08, 136.15 (ipso carbons of P-O-CH₂-Ph, ³¹P coupled), 137.34, 137.55, 137.60, 137.81 (ipso carbons of C-O-CH₂-Ph), 139.47 (C-8), 149.88 (C-4), 152.86 (C-2), 155.30 (C-6).

3'-O-(*α*-**D**-glucopyranosyl)-adenosine-2',3"-bisphosphate (4). ¹³C NMR (100 MHz, D₂O): 60.30 (C-6"), 61.00 (C-5'), 68.79 (C-4", ³¹P coupled), 70.40 (C-5"), 70.43 (C-2", ³¹P coupled), 73.58 (d, 3.83 Hz, C-3', ³¹P coupled), 75.64 (d, 4.6 Hz, C-2', ³¹P coupled), 78.61 (d, 6.13 Hz, C-3", ³¹P coupled), 84.44 (C-4'), 87.20 (d, 4.6 Hz, C-1', ³¹P coupled), 98.12 (C-1"), 118.96 (C-5), 143.35 (C-8), 144. 39 (C-2), 148.25 (C-4), 149.91 (C-6).

2',4"-di-*O*-acetyl-5',2",3",6"-tetra-*O*-benzyl-6-chloro-3'-*O*-(*α*-D-glucopyranosyl)-9-β-D-ribofuranosylpurine (**29**). ¹³C NMR (100 MHz, CDCl₃): 20.27 (COCH₃), 20.78 (COCH₃), 68.98 (C-6"), 69.4 (C-5'), 69.82 (C-5"), 70.41 (C-4"), 73.34 (PhCH₂), 73.55 (PhCH₂), 73.68 (PhCH₂), 75.27 (PhCH₂), 75.51 (C-2'), 77.48 (C-3'), 78.78 (C-3"), 79.07 (C-2"), 83.70 (C-4'), 85.99 (C-1'), 98.73 (C-1"), 127.64, 127.65, 127.72, 127.78, 127.83, 127.90, 127.97, 128.14, 128.27, 128.36, 128.39, 128.64 (aromatic carbons), 131.83 (C-5), 136.86, 137.50, 137.68, 138.29 (ipso carbons), 143.59 (C-8), 151.13 (C-6), 151.68 (C-4), 152.09 (C-2), 169.68 (O-COCH₃), 169.95 (O-COCH₃).

6-amino-5',2",3",6"-tetra-O-benzyl-3'-O-(α-D-glucopyranosyl)-9-β-D-

ribofuranosylpurine (**30**). ¹³C NMR (100 MHz, CDCl₃): 69.14 (C-6"), 69.60 (C-5'), 70.18 (C-4"), 71.59 (C-5"), 73.49 (PhCH₂), 73.51 (PhCH₂), 73.97 (PhCH₂), 74.54 (C-2'), 75.54 (PhCH₂), 78.46 (C-3'), 78.74 (C-2"), 81.66 (C-3"), 82.41 (C-4'), 88.63 (C-1'), 99.10 (C-1"), 119.54 (C-5), 127.56, 127.63, 127.85, 127.88, 128.18, 128.27, 128.32, 128.45, 128.49, 128.53 (aromatic carbons), 137.01, 137.34, 137.72, 138.30 (ipso carbons), 138.94 (C-8), 149.74 (C-4), 152.86 (C-2), 155.36 (C-6).

3'-O-(α-D-glucopyranosyl)-adenosine-2', 4"-bisphosphate (5). ¹³C NMR (100 MHz, D₂O): 60.05 (C-6"), 60.82 (C-5'), 70.94 (C-2"), 71.21 (d, 5.37 Hz, C-5", ³¹P coupled), 71.53 (d, 1.53 Hz, C-3", ³¹P coupled), 73.73 (d, 3.83 Hz, C-3'), 74.35 (d, 6.13 Hz, C-4", ³¹P coupled), 75.86 (d, 4.60 Hz, C-2', ³¹P coupled), 84.28 (C-4'), 87.07 (d, 4.60 Hz, C-1', ³¹P coupled), 98.05 (C-1"), 118.82 (C-5), 143.20 (C-8), 144.37 (C-2), 148.11 (C-4), 149.77 (C-6).

6-amino-5',2",6"-tri-O-benzyl-3",4"-bis-O-(dibenzyloxyphosphoryl)-3'-O-(α-D-

glucopyranosyl)-9-β-D-ribofuranosylpurine (34). ¹³C NMR (100 MHz, CDCl₃): 68.04 (C-6"), 69.42, 69.47, 69.52, 69.55, 69.84, 69.90 (multiple peaks, *C*H₂Ph, ³¹P coupled & C-5'), 70.33 (d, ³¹P coupled, C-5"), 73.23 (*C*H₂Ph), 73.48 (*C*H₂Ph), 73.97 (t, ³¹P coupled, C-4"), 74.08 (*C*H₂Ph), 74.31 (C-2'), 77.12 (C-2", ³¹P coupled), 78.04 (C-3", ³¹P coupled), 78.77 (C-3' or C-4'), 82.09 (C-4' or C-3'), 88.69 (C-1'), 98.28 (C-1"), 119.78 (C-5), 127.56, 127.62, 127.65, 127.85, 127.88, 127.93, 128.05, 128.23, 128.27, 128.32, 128.37, 128.42, 128.49, 128.55, 128.58 (aromatic carbons), 135.51, 135.58, 135.70, 135.77, 135.80, 135.87, 135.90, 135.98 (ipso carbons of P-O-CH₂-Ph, ³¹P coupled), 136.76, 137.37, 137.83 (ipso carbons of C-O-CH₂-Ph), 139.13 (C-8), 149.72 (C-4), 152.89 (C-2), 155.33 (C-6).

3'-O-(α-D-glucopyranosyl)-adenosine-3", **4"-bisphosphate (6)**. ¹³C NMR (100 MHz, D₂O): 60.08 (C-6"), 60.79 (C-5'), 70.48 (C-2", ³¹P coupled), 71.60 (d, 3.83 Hz, C-5", ³¹P coupled), 72.83 (C-4", ³¹P coupled), 73.48 (C-2'), 76.37 (C-3'), 77.71 (C-3", ³¹P coupled), 83.95 (C-4'), 88.23 (C-1'), 99.02 (C-1"), 118.91 (C-5), 142.81 (C-8), 144.43 (C-2), 148.16 (C-4), 149.91 (C-6).

Allyl 2,6-di-*O*-benzyl-3,4-bis-*O*-(dibenzyloxyphosphoryl)- α -D-glucopyranoside (38). ¹³C NMR (100 MHz, CDCl₃): 68.25 (C-6), 68.60 (OCH₂CH=CH₂), 69.16 (³¹P-coupled, CH₂Ph), 69.30 (C-5), 69.38, 69.43 and 69.74 (³¹P-coupled, CH₂Ph), 73.11 and 73.23 (CH₂Ph), 74.69 (³¹P-coupled, C-4), 78.04 (C-2), 78.62 (³¹P-coupled, C-3), 95.43 (C-1), 118.00 (OCH₂CH=CH₂), 127.43, 127.61, 127.76, 127.85, 127.89, 128.01, 128.02, 128.08, 128.22, 128.26, 128.31, 128.33, 128.36, 128.39 and 128.46 (Ph CH), 133.50 (OCH₂CH=CH₂), 135.80, 135.97, 136.28 and 136.29 (*ipso* carbons of P-O-CH₂-Ph, ³¹P coupled), 138.02 and 138.19 (*ipso* carbons of C-O-CH₂-Ph).

2,6-Di-*O*-benzyl-3,4-bis-*O*-(dibenzyloxyphosphoryl)-D-glucopyranose (39). ¹³C NMR (100 MHz, CDCl₃): 68.25 (C-6 in α -anomer), 68.81 (C-6 in β -anomer), 69.16 (³¹P-coupled, C-5 in α -anomer), 69.17–69.83 (³¹P-coupled, CH₂Ph), 72.98 and 73.23 (OCH₂Ph in α -anomer), 73.34 (OCH₂Ph in β -anomer), 73.58 (³¹P-coupled, C-5 in β -anomer), 73.70 (OCH₂Ph in β -anomer), 74.49 (C-4 in α -anomer), 74.71 (C-4 in β -anomer), 78.05 (C-2 in α -anomer), 78.32 (C-3 in α -anomer), 80.53 (C-3 in β -anomer), 80.62 (C-2 in β -anomer), 90.53 (C-1 in α -anomer), 97.25 (C-1 in β -anomer), 135.72–136.20 (*ipso* carbons of POCH₂Ph, ³¹P coupled), 137.53, 137.91, 138.05 and 138.29 (*ipso* carbons of OCH₂Ph).

D-Glucopyranose 3,4-bisphosphate (7). ¹³C NMR (100 MHz, D₂O, Na⁺salt, Chelex-100-treated, approx. 1:3 mixture of α - and β -anomers): 60.62 (C-6 in α -anomer), 60.70 (C-6 in β -

anomer), 71.21 and 71.27 (³¹P-coupled, C-4 in α - and β -anomers), 71.89 (C-5 in α -anomer), 72.81 (C-2 in α -anomer), 75.37 (C-2 or C-5 in β -anomer), 75.42 (³¹P-coupled, C-3 in α -anomer), 76.15 (C-2 or C-5 in β -anomer), 78.11 (³¹P-coupled, C-3 in β -anomer), 91.89 (C-1 in α -anomer), 96.24 (C-1 in β -anomer).

D-myo-inositol 4,5-bisphosphate (2). ¹³C NMR (100 MHz, Na⁺ salt, Chelex-100-treated): 71.28 (C-1), 71.74 (C-2), 72.14 (broad, ³¹P-coupled, C-3), 72.97 (broad, ³¹P-coupled, C-6), 74.85 (³¹P-coupled, C-4,), 76.96 (³¹P-coupled C-5).

Figure S1. Overlays of IP_3 (buff carbons), adenophostin (green carbons), compound **40** (cyan carbons), compound **5** (purple carbons), and compound **6** (yellow carbons). A. IP_3 and Adenophostin. B. IP_3 and **40**. C. IP_3 and **5**. D. IP_3 and **6**. E. Adenophostin and **40**. F. Adenophostin and **5**. G. Adenophostin and **6**.

Figure S2a. IP₃. Hydrogen bonds between the ligand and the protein are shown as dashed lines. Purple dashed lines indicate hydrogen bonds involving a water molecule. The six water molecules are numbered X1- X6.

Figure S2b. Ligand Interaction Diagram and key for IP_3 and IP_3R , based on a minimised 1N4K crystal structure.

Figure S3a. Adenophostin A. Hydrogen bonds between the ligand and the protein are shown as dashed lines. Purple dashed lines indicate hydrogen bonds involving a water molecule. The five water molecules are numbered X1- X5.

Figure S3b. Ligand Interaction Diagram for a denophostin and $IP_3R.$ Based on a minimised structure of a denophostin docked into IP_3R

Asp 566

Figure S4a. Compound **5**. Hydrogen bonds between the ligand and the protein are shown as dashed lines. Purple dashed lines indicate hydrogen bonds involving a water molecule. The five water molecules are numbered X1- X5

Figure S4b. Ligand Interaction Diagram for compound **5** and IP_3R . Based on a minimised structure of compound **5** docked into IP_3R .

Figure S5a. Compound **6.** Hydrogen bonds between the ligand and the protein are shown as dashed lines. Purple dashed lines indicate hydrogen bonds involving a water molecule. The five water molecules are numbered X1- X5.

Figure S5b. Ligand Interaction Diagram for compound 6 and IP_3R . Based on a minimised structure of compound 6 docked into IP_3R .

Figure S6a. Compound **40**. Hydrogen bonds between the ligand and the protein are shown as dashed lines. Purple dashed lines indicate hydrogen bonds involving a water molecule. The five water molecules are numbered X1- X5.

Figure S6b. Ligand Interaction Diagram for compound **40** and IP₃R. Based on a minimised structure of compound **40** docked into IP₃R.

REFERENCES

- Gridley, J. J.; Hacking, A. J.; Osborn, H. M. I.; Spackman, D. G. Regioselective Lipase Catalyzed Acylation of 4,6-O-Benzylidene-α- and β-D-Pyranoside Derivatives Displaying a Range of Anomeric Substituents. *Tetrahedron* 1998, *54*, 14925-14946.
- (2) van Steijn, A. M. P.; Kamerling, J. P.; Vliegenthart, J. F. G. Synthesis of Trisaccharide Methyl Glycosides Related to Fragments of the Capsular Polysaccharides of *Streptococcus pneumoniae* type 18C. *Carbohydr. Res.* **1992**, *225*, 229-245.