SUPPLEMENTAL DATA

Supplemental Fig. S1. HSQC spectra obtained after redissolving A β fibrils in perdeuterated dimethylsulfoxide containing 0.01% deuterated trifluoroacetic acid. *A*. HSQC spectrum of ¹⁵N-labeled monomeric A β_{40} obtained from resolubilized fully protonated amyloid fibrils. The cross-peaks of residues 11/23 and 13/27 overlap in the A β_{40} spectrum. *B*. HSQC spectrum of ¹⁵N-labeled monomeric A β_{42} obtained from fully protonated fibrils. For A β_{42} , there are (partial) overlaps in the cross-peaks of residues 11/23, 12/18, 13/27, 19/40 and 32/41. The sequence-specific assignment of the peptide backbone amides is indicated next to each cross-peak. The presence of the unlabeled A β alloform in the mixtures does not influence the spectra as expected for monomeric peptides, since the cross-peaks of labeled peptides in the 1:9 and 3:7 ratios display identical chemical shifts. For the HDX interpretation, the intensities of the peaks are determined by the height of the spectral signals.

<u>Supplemental Fig. S2.</u> Atomic resolution HDX using NMR reveals that small differences at atomic level may be present between fibrillar A β ratios. The protection factor of each residue is derived from comparing the corresponding peak intensities observed under fully protonated conditions to the signal intensities after exchange with D₂O. The results are shown as bar plots. In these plots no data is available for residues 11, 12, 13, 18, 19, 23, 27, 32, 40 and 41 for A β_{42} , and 11, 13, 23 and 27 for A β_{40} due to (partial) overlapping peaks (and therefore ambiguous N-H cross-peak assignments). A) signals for the ¹⁵N-labeled A β_{40} alloform in the ratios; B) signals for the ¹⁵N-labeled A β_{42} alloform.

<u>Supplementary Table 1.</u> A β oligomer population patterns as derived from mass spectrometry analysis. Three different incubation times were analyzed for each ratio and the detected molecular assemblies (kDa) are reported in the tables.

# Αβ	Pure Aβ ₄₀			Ratio 1:9			Ratio 3:7			Pure Aβ ₄₂		
	1h	3h	6h	1h	3h	6h	1h	3h	6h	1h	3h	6h
1	4.36	4.32	4.35	4.43	4.44	4.46	4.46	4.47	4.46	4.45	4.45	4.46
2	8.73	8.75	8.72	8.90	8.94	8.91	8.96	8.92	8.95	8.94	8.92	8.98
3	13.07	13.06	13.08	13.28	13.53	13.57	13.57	13.58	13.56	13.37	13.39	13.55
4	17.42	17.43	17.41	17.72	18.08	18.10	18.10	18.09	18.08	17.79	17.77	17.70
5	21.83	21.83	21.84		22.68	22.67	22.67	22.67	22.67	22.24	22.22	22.26
6	26.28	26.29	26.29		27.13	27.12	27.12	27.12	27.13	26.69	26.67	26.65
7	30.57	30.56	30.58		31.58			31.17	31.17	31.21	31.22	31.20
8	34.91	34.91	34.92		36.02			35.57	35.57	35.99	35.98	35.95
9	39.29	39.30	39.30					40.02	40.05	40.45	40.49	40.45
10	43.69	43.68	43.70					44.49		44.92	44.89	44.88
11	47.91	47.92	47.92					48.99		49.36	49.31	49.29
12	52.23	52.24	52.24					53.61		53.73	53.76	
13	56.64	56.57	56.66					58.13		58.20	58.18	
14		60.91	61.01					62.72			62.63	
15		65.25	65.30					66.70			65.32	
16		69.65	69.61									
17		73.92	73.98									
18			78.33									
19			82.67									
20			87.03									
21			91.39									
22			95.77									
23			99.97									
24			104.32									
25			108.67									
Higher M	ass Range	e										
2	0	156	186			172		156			156	187
			348			355		315			253	
			714			515		471				
			852					626				