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eAppendix A. Simulation study parameters 

Parameter	type	 Notation Values	or	distributions	 Definition	

Design	

i {1…20} Indicator for each of 20 monitoring periods 
Ni 500*i Number of exposed patients in each period, i 

M0 
{3, 5, 10, 15, 20, 25, 30, 40, 50, 
75, 100, 150, 300, 500, 1000} 

Expected total number of events among the 
unexposed across the i=20 periods 

 {1.00, 1.25, 1.50, 2.00} Pre-defined signaling threshold 

Known/assumed	
R0 ~log-normal(ln[x], 0.5) Risk among the unexposed in each period 

ln(RRtrue) 
~skew-normal(location=-0.5, 

scale=1, shape=5) 
True underlying log risk ratio 

Derived	
x M0/105000§ Expected event risk among the unexposed 

R1 R0*RRtrue Risk among the exposed in each period 
RRtrue exp(RRtrue) True underlying risk ratio 

Stochastic	
bi ~B(Ni, R0) Number of unexposed events in each period 
ai ~B(Ni, R1) Number of exposed events in each period  

§105,000	is	the	sum	of	Ni	over	i=20	(i.e.	105,000	=	500	+	1,000	+	…	+	10,000) 
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eAppendix B. Flow chart of simulation study data generating process 
 

 
 
 
*Distributions shown for R0 and R1 are empirical distributions based on scenarios for which the expected total event 
count among the unexposed equaled 3 (i.e. x = 3/105,000, where 105,000 is the total number of patients [N] across 
the 20 monitoring periods).  We repeated this process 10,000 times for each of 60 combinations of 15 expected 
event counts in the unexposed and four alerting thresholds.
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eAppendix C. Description of general classes of alerting algorithms. 
 
Type I error-based approaches are generally used in retrospective pharmacoepidemiologic 
investigations that do not involve sequential testing.  We implemented algorithms with a wide 
range of α values based on p-values from Fisher’s exact test.  We also applied group sequential 
monitoring methods that use cumulative non-linear α-spending functions, also with a wide range 
of α values, including the Pocock-like boundary and the O’Brien-Fleming-like boundary, as 
described by Proschan et al.1  Such “stopping rules” are common for statistical monitoring of 
clinical trials and are intended to maintain a cumulative α-level while allowing for a pre-defined 
number of sequential tests of the data.  This is achieved by partitioning the cumulative α-level 
over the monitoring periods according to some function.  The Pocock-like boundary uses a 
convex function, which spends more α in the early periods, and the O’Brien-Fleming-like 
boundary uses a concave function, which saves α-spending for the later periods. 
 
Sequential probability ratio tests, which were originally developed for monitoring the quality of 
manufactured goods, are now routinely used to monitor vaccine safety2 and have recently been 
applied in the context of drug safety monitoring.3  These procedures take the form of a running 
likelihood ratio that generates alerts when the ratio exceeds a pre-determined critical value.  We 
implemented the maximum sequential probability ratio test as derived by Kulldorff et al. and 
used their published critical values.4 
 
Statistical process control is another approach that was developed for quality control monitoring5 

and that has recently been applied in the healthcare setting.6  Statistical process control methods 
compare observed variation in sampled units with expected variation from an underlying process 
to determine whether the process is out of control.  We modified several statistical process 
control rules in a novel application to medical product safety monitoring.  Finally, we modified 
measures of disproportionality, which have been used for drug safety monitoring based on 
spontaneous adverse event reports,7 for application to sequential monitoring.  Disproportionality 
approaches to analyzing spontaneous adverse event data typically rely on an estimated relative 
measure of association above some threshold combined with a lower confidence bound about 
that measure that surpasses a different threshold.  We focused on the former of the two 
components and modified the approach by requiring consecutive estimates above a threshold to 
accommodate the sequential nature of prospective monitoring.   
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eAppendix D. Description of event-based performance metric used to compare alerting 
algorithms in simulation study 
 
Event-based performance (EBP) is a weighted average of event-based sensitivity and event-
based specificity (Gagne JJ, Gagne JJ, Walker AM, Glynn RJ, Rassen JA, Schneeweiss S. An 
event-based metric for comparing the performance of methods for medical product safety 
monitoring. [In revision]). 
 
To calculate EBP across the 10,000 iterations in each of the 60 scenarios, we used the following 
expression: 
 

EBP 

a j  w j

j1

k



a j  c j

j1

k




d j  (1 w j )
j1

k



d j  b j

j1

k


 

 
where j is an individual scenario (i.e. iteration), k = 10,000, aj is the number of exposed events 
that occurred in scenario j after alerting given that scenario j was one in which a safety issue of 
interest existed (i.e. RRtrue ≥ θ), bj is the number of exposed events that occurred in scenario j 
after alerting given that scenario j was one in which no true safety issue existed (i.e. RRtrue < θ), 
cj is the number of exposed events that occurred in scenario j prior to or in the absence of alerting 
given that scenario j was one in which a safety issue of interest existed, dj is the number of 
exposed events that occurred in scenario j prior to or in the absence of alerting given that 
scenario j was one in which no true safety issue existed, and wj is a user-defined weight 
reflecting the tradeoffs in costs between false positive and false negative alerting.  The table 
below depicts the relations among aj, bj, cj, and dj. 
 

Table. Cross-classification of exposed events according to true 
safety status and alerting status of a particular method 

 True medical product safety issue status  
 + -  

Alerting 
status 

+ aj 
 

bj 
 

 

- cj 
 

dj 
 

 

 
 
Use of EPB requires stakeholders to pre-specify their preference (w), or range of preferences, for 
sensitivity versus specificity in a given scenario.  The choice of weight is analogous to the α:β 
trade-off in a typical epidemiologic study, in which investigators often constrain Type I error 
(e.g. α = 0.05) and aim for sufficient power to limit Type II error (e.g. β = 0.20).  In such a 
situation, investigators imply that Type I error (i.e. 1-specificity or likelihood of false positivity) 
is more important than Type II error (i.e. 1-sensitivity or likelihood of false negativity).  
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However, the relative consequences of false positives versus false negatives vary among scenario 
and depend on many factors including, the severity of the monitoring outcomes, the availability 
of treatment alternatives, and the relative benefit of the monitoring product.  Specifying 
sensitivity versus specificity preference a prior prompts stakeholders to consider the trade-offs 
among these factors.  Ideally, w would be determined by formal decision analysis. 
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eAppendix E. Data sources for and methods applied to monitoring of cerivastatin-induced 
rhabdomyolysis in two electronic healthcare databases 
  
Data sources 
We used data from New Jersey Medicare Parts A and B linked to the Pharmacy Assistance for 
the Aged and Disabled (PAAD) program and Pennsylvania Medicare data linked to the 
Pharmaceutical Assistance Contract for the Elderly (PACE) program.  Both PACE and PAAD 
provide medications at minimal expense to elderly individuals with low income but who do not 
meet the Medicaid annual income threshold.  The Medicare data include information on hospital 
and outpatient services and diagnoses.  We reproduced monitoring from cerivastatin’s marketing 
approval in June 1997 through its withdrawn from the US market in August 2001.   
 
Monitoring framework 
We mimicked prospective monitoring by dividing both databases into sequential data sets 
defined by claims occurring in each calendar quarter, beginning in 1998, when prescription 
dispensings for cerivastatin began appearing in the databases.  We queried each sequential data 
set to identify new users of cerivastatin and atorvastatin, an active comparator with a low risk of 
rhabdomyolysis.1  We defined new users as those initiating cerivastatin or atorvastatin with no 
use of any statin in the preceding 180 days.  Because few cerivastatin prescriptions occurred in 
the first quarter of 1998, we combined data from quarters one and two to create the first 
monitoring period.   
 
We matched cerivastatin and atorvastatin initiators on propensity for receiving cerivastatin.  We 
constructed separate propensity score (PS) models in each sequential data set (i.e. we fit a 
separate PS model in each period within each database).  In addition to age and sex, we included 
the following potential risk factors for statin-induced rhabdomyolysis as pre-defined covariates 
in the PS models: diagnosis of diabetes mellitus, liver disease, renal disease, hypothyroidism, 
and use of drugs that either cause or interact with statins to cause rhabdomyolysis.2  We further 
enriched the PS models with empirically identified variables using the high-dimensional PS 
(hdPS) algorithm,3 using the option that considers only covariate-exposure associations and 
prevalence of covariates.4  In each model, we considered up to 100 baseline covariates from each 
of three domains – procedure codes, diagnosis codes, and drugs used.  We matched new users of 
the cerivastatin to new users of atorvastatin within each period and database and then pooled the 
matched pairs within each period across the two databases.  This approach is compatible with the 
privacy-maintaining PS-pooling approach described by Rassen et al.5,6 
 
Patients contributed person-time until they experienced rhabdomyolysis, discontinued their index 
treatment (as defined by a gap in treatment of greater than 14 days), switched to a different 
statin, died, disenrolled, or at the end of the third quarter of 2001 when cerivastatin was 
withdrawn.  We defined rhabdomyolysis using the algorithm for claims data validated by 
Andrade et al, which had a positive predictive value of 74% in a network of managed care 
organization databases.7 
 
We analyzed data from each sequential dataset in turn as if they became available prospectively 
(eFigure).  The first sequential dataset contained follow-up information through the end of June 
1998 (i.e. the end of period 1) for those who initiated cerivastatin or atorvastatin in the first six 
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months of 1998 (i.e. the time covering period 1).  The second dataset included follow-up 
information for patients who initiated cerivastatin or atorvastatin in the third quarter of 1998 plus 
continued follow-up information for those patients who initiated during the first period and 
whose follow-up continued into the second data set.  We queried each dataset and extracted the 
number of matched cerivastatin and atorvastatin initiators, the eligible follow-up time, and the 
number of observed outcomes among matched patients.  These data served as inputs into the 
alerting algorithms selected from the simulation study.   
 
To select algorithms for application to this example, we restricted the simulation results to the 
10,000 scenarios with an expected event frequency of 3 in the unexposed for the entire 
monitoring timeframe and a threshold of θ =1.0.  We chose 3 events based on the observed 
number of matched patients in the first monitoring period (n=147), an expected event frequency 
of about 1 event per 20,000 statin-treated patients,27 and by assuming that the number of matched 
patients would increase throughout the monitoring timeframe.  We used θ = 1.0 because we were 
interested in detecting any elevation in risk.  We selected the three algorithms with the highest 
EBP at three different weights (i.e. w = 0.05, w = 0.10, and w = 0.15) reflecting very high, high, 
and moderately high preferences for specificity over sensitivity. 
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eFigure 1. Illustration of prospective monitoring with data updating at fixed calendar intervals 
and follow-up that may span multiple updating periods 

 
Dotted lines represent the baseline covariate assessment period for hypothetical patients exposed 
to cerivastatin (black) and those exposed to atorvastatin (gray).  Circles indicate the index drug 
initiation date and solid lines represent follow-up time.  Diamonds represent events and 
arrowheads indicate that patients’ follow-up would continue into period four data. 
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eFigure 2. Relative performance of alerting algorithms across different values of the alerting 
threshold (i.e. 1, 1.25, 1.5, 2). 
	

	
Black cells represent relative performance in the top tertile, gray in the middle tertile, and white 
in the bottom tertile, using an event-based evaluation metric.  Within each group (i.e. each box), 
algorithm sensitivity increases moving down the box (e.g. p increases, α increases, etc).  The 
value of the alerting threshold increases from left to right and the preference weight (w) is held 
constant at w = 0.10 across all cells. 
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eFigure 3. Overall sensitivity of each algorithm across all 600,000 scenarios. 
	

	
	


