Supporting Information

Total Synthesis of *N*-Acetylglucosamine-1,6-anhydro-*N*acetylmuramylpentapeptide and Evaluation of Its Turnover by AmpD from *Escherichia coli*

Dusan Hesek, Mijoon Lee, Weilie Zhang, Bruce C. Noll and Shahriar Mobashery*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

Contents

General InformationS2
Experimental ProceduresS3
Table S1. Crystallographic details
Figures S1 – S6. ORTEP diagrams of compounds 4a, 5, 6, 8, 11, 30
Figures S1 – S6. ORTEP diagrams of compounds 4a , 5 , 6 , 8 , 11 , 30

Experimental Data for Compounds

General Procedures. All organic reagents were purchased from either Sigma-Aldrich Chemical Company or Acros Organics, unless otherwise stated. All reactions were performed under an atmosphere of nitrogen unless noted otherwise. Reactions were monitored by thin-layer chromatography (TLC) carried out on Whatman reagents 0.25 mm silica gel 60-F plates that were visualized using UV light and/or aqueous cerium sulfate staining, followed by heating. Flash chromatography was carried out with silica gel 60, 230-400 mesh (0.040-0.063 mm particle size) purchased from EM Science. NMR spectra, including ¹H, ¹³C, DEPT, H-H COSY, and H-C HETCOR experiments, were recorded on a Varian UnityPlus 300, or a Varian INOVA-500, or Varian DirectDrive 600 spectrometer. Proton and Carbon chemical shifts were referenced to residual solvent peaks. NMR signal assignments for synthesized compounds were performed on the basis of H-H COSY, H-C HETCOR, and DEPT experiments. High-resolution mass spectra were obtained at the Department of Chemistry and Biochemistry, University of Notre Dame via FAB ionization, using a JEOL AX505HA mass spectrometer.

Analytical high performance liquid chromatography (HPLC) was performed on Waters 2414 instrument with SunFire C18 reversed-phased column (Waters) or delta-pak C18 reversed-phased column (Waters) using a linear gradient of 2-15% acetonitrile in water supplemented with 0.1% TFA over 40 min at 1 mL/min. Detection of the samples was by UV at 205 nm. Preparative HPLC purifications were performed using delta-pak C18 reversed-phased column, 100 Å pore size, 19×300 mm.

Crystals were examined under Infineum V8512 oil and placed on a MiTeGen mount, then transferred to the 100 K N₂ stream (or 296 K) of either a Bruker SMART Apex CCD diffractometer or Bruker X8-Apex II CCD diffractometer. Unit cell parameters were determined from reflections with $I > 10\sigma(I)$ harvested from three orthogonal sets of 30 0.5° ω scans. Data collection strategy was calculated using COSMO, included in the Apex2 suite of programs¹ to maximize coverage of reciprocal space in a minimum amount of time. Average 4-fold redundancy of measurements was sought. Data were corrected for Lorentz and polarization effects, as well as for absorption. Structure solution and refinement utilized the programs of the SHELXTL software package.² Full details of the X-rav structure determinations are in the CIF files included as Supporting Information.

¹ Apex2. Bruker-AXS: Madison, WI, 2008; Vol. 58. ² Sheldrick, G. M., *Acta Crystallogr. A.* **2008**, *64*, 112-122.

Kinetic studies. The assays were carried out in 20 mM sodium phosphate buffer, pH 7.0, at 25 °C with substrate concentrations ranging from 50 μ M to 3.0 mM and 1.5 μ M of AmpD. The reaction mixtures were incubated at 25 °C for 30 min. The reactions were stopped by the addition of 2 volume of 0.075% TFA in water. Reaction products were separated and quantified on a C18 reversed-phase HPLC column (Symmetry Shield RP18, 5 μ m, 3.9 mm by 150 mm; Waters) on a PerkinElmer series 200 System. The column was equilibrated with 0.05% trifluoroacetic acid in water and eluted with a linear acetonitrile gradient from 0 to 15% over 40 min with a flow rate of 1 mL/min. The column effluent was monitored at 205 nm. The catalytic activity of the AmpD was quantified from the rate of substrate disappearance and of pentapeptide appearance.

4-O-Benzyl-3,6-di-O-tert-butyldimethylsilyl-D-(-)-glucal (4b). The procedure was adapted from that reported by Bartolozzi et al.³ A solution of **3** (37 g, 0.10 mol) in anhydrous DMF (400 mL), was treated with NaH (8.0 g, 0.20 mol, 60% in oil), in three portions under vigorous stirring. The resulting mixture was stirred at 35-40 °C for 30 min. followed by dropwise addition of a solution of benzyl bromide (17 mL, 0.14 mol) in DMF (10 mL), at the end of which the solution was stirred for 24 h. A total of 200 mL of hexanes were added and the biphasic mixture was vigorously stirred for 15 min and then the layers were allowed to separate. The upper layer was dried over MgSO₄, filtered, and concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexanes/Et₂O, 5:1), to afford the main fraction of **4b** (9.3 g) as a colorless oil in 20% yield. The lower phase was evaporated to dryness. The residue was carefully diluted with water, neutralized with AcOH (10%), and extracted with EtOAc (2×250 mL). The combined organic solution was washed with water, dried over MgSO₄, filtered, and was evaporated to dyness under reduced pressure. The residue was chromatographed on silica gel using a gradient elution of 20% - 95% Et₂O in hexanes to provide the main compound as 4a in 65% (23 g). When this reaction was performed in anhydrous THF instead of DMF, compound **4b** was obtained as the major product in 89%. **Compound 4b:** ¹H NMR (500 MHz, CDCl₃), δ 0.07, 0.09, 0.10 and 0.11 (4×s, 12H, SiCH₃), 0.91 and 0.93 (2×s, 18H, Si-C(CH₃)₃), 3.66 (dd, J = 8.1, 6.1 Hz, 1H, H-4), 3.85 (dd, J = 11.5, 2.3 Hz, 1H, H-6a), 3.90 (m, 1H, H-5), 3.97 (dd, J = 11.4, 4.6 Hz, 1H, H-6b), 4.35 (m, 1H, H-3), 4.65 (dd, *J* = 6.2, 2.6 Hz, 1H, H-2), 4.74 and 4.83 (AB, *J* = 11.2 Hz, 2H, OCH₂Ph), 6.32 (dd, J = 6.2, 1.2 Hz, 1H, H-1), 7.28 - 7.39 (m, 5H); ¹³C NMR (126 MHz, CDCl₃), δ-5.2 (q, SiCH₃), -5.0 (q, SiCH₃), -4.5 (q, SiCH₃), -4.3 (q, SiCH₃), 18.0 and 18.5 (2×s, Si-C(CH₃)₃), 25.9 and 26.1 (2×q, Si-C(CH₃)₃), 62.1 (t, C-6), 69.1 (d, C-3), 74.0 (t, OCH₂Ph), 76.6 (d, C-4), 78.2 (d, C-5), 103.3 (d, C-2), 127.8, 127.9, 128.5, 138.5, 143.6 (d, C-1); HRMS (FAB), calcd for

³ Bartolozzi, A.; Pacciani, S.; Benvenuti, C.; Cacciarini, M.; Liguori, F.; Menichetti, S.; Nativi, C. J. Org. Chem. **2003**, *68*, 8529-8533.

C₂₅H₄₃O₄Si₂ (M–H⁺), 463.2700, found 463.2702. **4-***O***-benzyl-6-***O***-tert-butyldimethylsilyl-D-(–)-glucal (4a): ¹H NMR (600 MHz, CDCl₃), δ 0.09 (s, 6H, SiCH₃), 0.91 (s, 9H, Si-C(CH₃)₃), 2.41 (d, J = 5.6 Hz, 1H, C₍₃₎-OH), 3.67 (dd, J = 8.3, 6.3 Hz, 1H, H-4), 3.85 (dt, J = 8.3, 2.6 Hz, 1H, H-5), 3.95 (br. s, 2H, H-6), 4.28 (br. s, 1H, H-3), 4.70 (dd, J = 6.1, 2.2 Hz, 1H, H-2), 4.78 and 4.80 (AB, J = 11.7 Hz, 2H, OCH₂Ph), 6.34 (d, J = 6.1 Hz, 1H, H-1), 7.26 - 7.42 (m, 5H). ¹³C NMR (151 MHz, CDCl₃), δ -5.5 (q, SiCH₃), -5.2 (q, SiCH₃), 25.8 (q, SiCH₃), 62.3 (t, C-6), 68.0 (d, C-3), 73.6 (t, OCH₂Ph), 77.0 (d, C-4), 77.5 (d, C-5), 102.2 (d, C-2), 127.8, 127.9, 128.5, 138.4, 144.4 (d, C-1); HRMS (FAB), calcd for C₁₉H₂₉O₄Si (M–H⁺), 349.1835, found 349.1847.**

4-O-Benzyl-D-(–)-glucal (5). A solution of compound **4b** (16 g, 34 mmol) in anhydrous THF (140 mL) was treated with dropwise addition of tetrabutylammonium fluoride (70 mL, 1.0 M in THF) in an ice-water bath. The stirring was continued at room temperature until the starting material was consumed (4 h). The mixture was cooled again in the ice-water bath and was treated with acetic acid (5 mL) and the solvent was removed in vacuo and the residue was taken up in CH₂Cl₂ (50 mL), washed with aq. NaHCO₃, and the organic layer was dried over MgSO₄, filtered, and concentrated. The crude product was crystallized from hexanes/EtOAc (5/1). The crude mother liquids from crystallization were further purified by column chromatography on silica gel using Et₂O to give the desired product (7.2 g, 90%, combined from recrystallization and column chromatography) as a white solid. ¹H NMR (500 MHz, CD₃CN) δ 3.68 (dd, *J* = 9.0, 6.4 Hz, 1H, H-4), 3.85-4.00 (m, 4H, H-5, H-6, OH), 4.36 (d, *J* = 6.6 Hz, 1H, H-3), 4.71 (dd, *J* = 6.2, 2.2 Hz, 1H, H-2), 4.80 and 4.95 (AB, *J* = 11.5 Hz, 2H, OCH₂Ph), 6.33 (d, *J* = 5.8 Hz, 1H, H-1), 7.32 (m, 5H); ¹³C NMR (126 MHz, acetone-*d*₆), δ 61.7 (t, C-6), 69.5 (d, C-3), 74.0 (t, OCH₂Ph), 77.7 (d, C-4), 78.9 (d, C-5), 104.9 (d, C-2), 128.0, 128.4, 128.9, 139.9, 144.1 (d, C-1).

1,6-Anhydro-4-*O***-benzyl-2-iodo-2-deoxy-\beta-D-glucopyranose** (6). We used a variation of the procedure of Tailler *et al*⁴ for the transformation of compound **5** to **6**. 4-Benzyl-D-glucal (**5**, 2.4 g, 10 mmol) in acetonitrile (30 mL) was mixed with 4 Å molecular sieves (1 g) and (Bu₃Sn)₂O (4.8 g, 8.0 mmol) and the resulting mixture was refluxed for 2 h. After cooling to room temperature, iodine (3.0 g, 12 mmol) was added in several portions, followed by the addition of propylene oxide (0.6 mL), and the mixture was stirred for 20 h at room temperature. Workup was carried out by filtration and evaporation of the volatile compounds *in vacuo*. The residue was then taken up into EtOAc and the organic phase was treated with aqueous sodium thiosulfate. The organic layer was separated, dried over MgSO₄, filtered, and the solvent was evaporated to dryness. The crude product was then purified by column chromatography on silica gel using hexanes/Et₂O, 3/1 to 1/1 to give compound **6** as a white solid (3.3 g,

⁴ Tailler, D.; Jacquinet, J. C.; Noirot, A. M.; Beau, J. M. J. Chem. Soc., Perkin Trans. 1 1992, 3163-3164.

91%). Crystals were grown from mixed solvents of hexanes and Et₂O and used for determination of Xray crystal structure. ¹H NMR (500 MHz, CDCl₃) δ 2.77 (d, *J* = 6.6 Hz, 1H, OH), 3.43 (t, 1H, H-4), 3.69 (dd, *J* = 7.5, 5.5 Hz, 1H, H-6), 3.93 (m, 1H, H-2), 4.07 (d, *J* = 7.4 Hz, 1H, H-6), 4.26 (m, 1H, H-3), 4.63 and 4.75 (AB, *J* = 12.0 Hz, 2H, OCH₂Ph), 4.63 (m, 1H, H-5), 5.75 (s, 1H, H-1), 7.40 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 26.4 (d, C-2), 66.3 (t, C-6), 71.5 (t, OCH₂Ph), 72.6 (d, C-3), 75.1 (d, C-5), 78.6 (d, C-4), 103.5 (d, C-1), 127.8, 127.9, 128.5, 137.4; HRMS (FAB), calcd for C₁₃H₁₆IO₄ (M+H⁺), 363.0093, found 363.0074.

4-O-Benzyl-1,6:2,3-dianhydro-β-D-mannopyranose (**7**). A mixture of compound **6**⁴ (3.6 g, 10 mmol) and K₂CO₃ (1.5 g, 11 mmol) in acetonitrile (150 mL) was stirred for 2 h at 60 °C. The mixture was filtered through a layer of Celite and the residue was washed with acetonitrile. The combined filtrates were evaporated to yield compound **7** (2.0 g, 85%), which was pure by NMR, thus used directly in the next step. Use of Ag₂CO₃ gave reaction outcome to produce compound **7** in 84%. ¹H NMR (500 MHz, CDCl₃) δ 3.19 (dt, J = 3.8, 0.8 Hz, 1H, H-3), 3.45 (t, J = 3.5 Hz, 1H, H-2), 3.65-3.72 (m, 3H, H-5, H-6), 4.51 (dd, J = 5.8, 0.8 Hz, 1H, H-4), 4.73 (s, 2H, OCH₂Ph), 5.71 (d, J = 3.2 Hz, 1H, H-1), 7.20-7.39 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 47.7 (d, C-3), 54.3 (d, C-2), 65.7 (t, C-6), 71.5 (d, C-4), 72.1 (t, OCH₂Ph), 73.6 (d, C-5), 97.5 (d, C-1), 127.8, 128.1, 128.6, 137.2; HRMS (FAB), calcd for C₁₃H₁₃O₄ (M⁺), 233.0814, found 233.0797.

1,6:2,3-Dianhydro-β-D-mannopyranose (**10**). A mixture of compound **9** (2.7 g, 10 mmol) and Ag₂CO₃ (2.4 g) in acetonitrile (150 mL) was stirred for 2 h at 60 °C. The mixture was filtered through a layer of Celite and the residue was washed with acetonitrile. The combined filtrates were concentrated and the residue was purified by column chromatography (hexanes/Et₂O, 1/5, to Et₂O) to yield compound **10** (1.3 g, 92%). ¹H NMR (500 MHz, CDCl₃) δ 2.84 (m, 1H, C₍₄₎-OH), 3.12 (m, 1H, H-3), 3.43 (t, J = 3.5 Hz, 1H, H-2), 3.73 (m, 2H, H-6), 3.90 (s, 1H, H-4), 4.41 (m, 1H, H-5), 5.68 (d, J = 3.0 Hz, 1H, H-1); ¹³C NMR (126 MHz, CDCl₃) δ 49.2 (d, C-3), 54.1 (d, C-2), 65.5 (t, C-6), 66.9 (d, C-4), 74.1 (d, C-5), 97.6 (d, C-1); HRMS (FAB), calcd for C₆H₉O₄ (M+H⁺), 145.0501, found 145.0481.

4-O-Benzyl-1,6:3,4-dianhydro-β-D-altropyranose (**11**). A solution of **10** (4.3 g, 30 mmol) in anhydrous THF (50 mL) was treated with NaH (1.2 g, 30 mmol, 60% in oil), which was added in two portions under vigorous stirring. The resulting mixture was stirred at room temperature for 30 min, followed by dropwise addition of benzyl bromide (3.6 mL, 30 mmol). After stirring at room temperature for 1 h, the volume of the reaction was reduced and a portion of hexanes was added to the solution. The layers were separated and the bottom layer was concentrated in vacuo to dryness. The residue was purified by column chromatography on silica gel (hexanes/Et₂O, 1/1 to Et₂O), to afford the desired

product as a colorless oil, which crystallized on standing (6.0 g, 85%). ¹H NMR (500 MHz, CDCl₃) δ 3.05 (dd, J = 4.0, 2.4 Hz, 1H, H-3), 3.10 (d, J = 4.0 Hz, 1H, H-4), 3.62 (d, J = 2.8 Hz, 1H, H-2), 3.85 (dd, J = 7.4, 4.4 Hz, 1H, H-6a), 4.10 (d, J = 7.6 Hz, 1H, H-6b), 4.65 and 4.73 (AB, d, J = 12.2 Hz, 2H, OCH₂Ph), 4.67 (m, 1H, H-5), 5.31 (t, J = 2.6 Hz, 1H, H-1), 7.29 - 7.38 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 49.5 (d, C-3), 50.0 (d, C-4), 67.2 (t, C-6), 69.8 (d, C-5), 71.9 (t, OCH₂Ph), 72.0 (d, C-2), 98.0 (d, C-1), 127.9, 128.0, 128.4, 137.0; HRMS (FAB), calcd for C₁₃H₁₃O₄ (M⁺), 233.0814, found 233.0818.

1,6-Anhydro-2-azido-4-*O***-benzyl-2-deoxy-β-D-glucopyranose (8).** TMSN₃ (4.0 mL, 33 mmol) and BF₃·Et₂O (5.7 mL, 45 mmol) were added to a stirred solution of epoxide **7** (2.3 g, 10 mmol) in anhydrous CH₂Cl₂ (80 mL). The resultant solution was stirred 20 h at room temperature, then was heated under reflux for 1.5 h. The mixture was poured into saturated K₂CO₃ in ice-water bath. Layers were separated and the aqueous phase was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated. Column chromatography on silica gel eluting with Et₂O afforded compound **8** (1.9 g, 70%) as a yellow oil, which solidified on standing. The product was recrystallized from Et₂O:hexanes. ¹H NMR (500 MHz, CDCl₃) δ 2.47 (br. s, 1H, C₍₃₎-OH), 3.24 (d, *J* = 3.2 Hz, 1H, H-2), 3.39 (m, 1H, H-4), 3.70 (dd, *J* = 7.1, 5.7 Hz, 1H, H-6a), 3.90 (t, *J* = 3.2 Hz, 1H, H-1), 7.30 - 7.41 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 62.6 (d, C-2), 66.2 (t, C-6), 70.3 (d, C-3), 71.8 (t, OCH₂Ph), 75.0 (d, C-5), 78.4 (d, C-4), 101.0 (d, C-1), 127.9, 128.1, 128.6, 137.3; HRMS (FAB), calcd for C₁₃H₁₄N₃O₄ (M–H⁺), 276.0984, found 276.1000.

2-Acetamido-1,6-anhydro-4-*O***-benzyl-2-deoxy-β-D-glucopyranose (12).** Compound **8** (1.0 g, 3.6 mmol) was dissolved in MeOH (10 mL) and 5% Pd/C (0.1 g) was added, and the reaction mixture was stirred vigorously under a hydrogen atmosphere at room temperature for 1 h. The reaction mixture was filtered through a layer of Celite and was washed with MeOH. The combined filtrate was evaporated to dryness and the residues was dissolved in CH₂Cl₂ (10 mL). Acetic anhydride (7 mL) and pyridine (5 mL) were added to the solution, which was allowed to stir for 20 h at room temperature. The solution was evaporated to dryness and the residue was dissolved in CH₂Cl₂ and was washed with water. The organic layer was dried over MgSO₄, filtered, concentrated to dryness and the crude product was subjected to column chromatography to afford the desired compound (1.0 g, 85% from compound **8**). ¹H NMR (600 MHz, CDCl₃) δ 1.90 (s, 3H), 2.06 (s, 3H), 3.30 (s, 1H, H-4), 3.73 (dd, *J* = 7.2, 6.1 Hz, 1H, H-6a), 3.96 (d, *J* = 7.7 Hz, 1H, H-6b), 4.10 (d, *J* = 9.7 Hz, 1H, H-2), 4.52 (d, *J* = 5.5 Hz, 1H, H-5), 4.68 and 4.75 (AB, *J* = 12.1 Hz, 2H, OCH₂Ph), 4.81 (s, 1H, H-3), 5.31 (s, 1H, H-1), 6.12 (d, *J* = 9.7 Hz, 1H, NH), 7.29-7.36 (m, 5H); ¹³C NMR (151 MHz, CDCl₃) δ 21.2 (q), 23.3 (q), 48.9 (d, C-2), 65.3 (t, C-6),

69.7 (d, C-3), 71.5 (t, OCH₂Ph), 74.1 (d, C-4), 74.4 (d, C-5), 100.4 (d, C-1), 128.1, 128.3, 128.7, 137.4, 169.3 (C=O), 169.9 (C=O); HRMS (FAB), calcd for C₁₇H₂₂NO₆ (M+H⁺), 336.1447, found 336.1453.

2-Acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose (13). Compound 12 (1.0 g, 3.0 mmol) in MeOH (10 mL) was stirred in the presence of 10% Pd/C (0.15 g) at 55 °C in an atmosphere of hydrogen for 4 h. The reaction mixture was filtered through a layer of Celite and the residue was washed with MeOH. Concentration of the combined filtrate provided the desired product (0.66 g, 90%). ¹H NMR (500 MHz, CDCl₃) δ 1.94 (s, 3H), 2.01 (s, 3H), 3.54 (d, J = 1.2 Hz, 1H, H-4), 3.70 (dd, J = 7.5, 5.9 Hz, 1H, H-6a), 3.92 (d, J = 8.6 Hz, 1H, H-2), 4.00 (d, J = 7.2 Hz, 1H, H-6b), 4.48 (d, J = 5.6 Hz, 1H, H-5), 4.57 (m, 1H, H-3), 5.25 (s, 1H, H-1), 6.87 (d, J = 9.6 Hz, 1H, NH); ¹³C NMR (126 MHz, CDCl₃) δ 21.1 (q), 22.9 (q), 49.1 (d, C-2), 65.1 (t, C-6), 68.3 (d, C-4), 72.3 (d, C-3), 75.8 (d, C-5), 100.4 (d, C-1), 170.0 (C=O), 170.5 (C=O); HRMS (FAB), calcd for C₁₀H₁₆NO₆ (M+H⁺), 246.0978, found 246.0974.

2-Acetamido-1,6-anhydro-2-deoxy-3-O-[(1R)-1-carboxyethyl]- β -D-glucopyranose (14). To a stirred solution of compound 8 (1.4 g, 5.0 mmol) in anhydrous dioxane (25 mL) was added NaH (1.3 g, 33 mmol, 60% in oil). The mixture was kept for 10 min at 45 °C, and then the temperature was decreased to room temperature. (S)-2-Chloropropionic acid (1.3 g, 12 mmol) was added and the stirring was continued for 2 h at 90 °C, at which point the organic solvent was evaporated to dryness. A 50 mL portion of water was carefully added to the residue to decompose the excess of sodium hydride. The solution was extracted once with hexanes/EtOAc (1:1) to remove the mineral oil and it was filtered over a layer of charcoal. The solution was acidified in ice-water temperature with 2.5 M hydrochloric acid until pH 3 was reached, and the resulting precipitate was immediately extracted with a few portions of CH₂Cl₂. The CH₂Cl₂ extracts were washed with water, rapidly dried over sodium sulfate, followed by evaporation to dryness. The residue was chromatographed on silica column, using CHCl₃/acetone (3/1) to provide 1,6-anhydro-2-azido-4-O-benzyl-2-deoxy-3-O-[(1R)-1-carboxyethyl]- β -D-glucopyranose. (1.2 g, 69%). ¹H NMR (500 MHz, CDCl₃) δ 1.39 (d, J = 6.8 Hz, 3H), 3.32 (s, 1H, H-4), 3.46 (s, 1H, H-4) 2), 3.59 (s, 1H, H-3), 3.72 (t, J = 6.5 Hz, 1H, H-6a), 3.85 - 4.02 (m, 2H, H-6b, Lac- α -H), 4.65 and 4.72 (AB, J = 12.0 Hz, 2H, OCH₂Ph), 4.65 (br. s., 1H, H-5), 5.49 (s, 1H, H-1), 7.26 - 7.41 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 18.4 (q), 60.3 (d, C-2), 65.3 (t, C-6), 71.6 (t, OCH₂Ph), 74.1 (d, C-5), 74.3 (d, Lac-α-C), 75.4 (d, C-4), 77.1 (d, C-3), 100.4 (d, C-1), 127.9, 128.2, 128.6, 137.0, 177.1 (C=O); HRMS (FAB), calcd for $C_{16}H_{20}N_3O_6$ (M+H⁺), 350.1352, found 350.1353.

The sample obtained above (1.2 g, 3.4 mmol) was dissolved in MeOH (20 mL) and 5% Pd/C (0.12 g) was added and the mixture was stirred vigorously under an atmosphere of hydrogen at room temperature for 1 h. The mixture was filtered through a layer of Celite and the residue was washed with

MeOH. The combined filtrate was concentrated to dryness and the residue was dissolved in CH_2Cl_2 (10) mL). The mixture was treated with acetic anhydride (10 mL) and was allowed to stir for 20 h at room temperature. Volatiles were removed in vacuo and the resultant crude compound was taken up into a mixture of CH₂Cl₂ and water. The solution was stirred for 1 h and layers were separated. The organic layer was dried over MgSO₄, filtered, and concentrated to dryness and the residue was subjected to afford 2-acetamido-1.6-anhydro-4-*O*-benzyl-2-deoxy-3-*O*-[(1*R*)-1column chromatography to carboxyethyl]-\beta-D-glucopyranose (1.1 g, 85%). 2-amido-1,6-anhydro-4-O-benzyl-2-deoxy-3-O-[(1R)-1carboxyethyl]- β -D-glucopyranose: ¹H NMR (500 MHz, CD₃OD) δ 1.34 (d, J = 7.0 Hz, 3H, Lac- β -CH₃). 3.16 (d, J = 6.8 Hz, 1H, H-2), 3.48 (t, J = 6.3 Hz, 1H, H-3), 3.55 (d, J = 5.6 Hz, 1H, H-4), 3.67 (dd, J = 5.6 Hz, 1H, H-4),7.4, 5.4 Hz, 1H, H-6a), 3.90 (d, J = 7.4 Hz, 1H, H-6b), 4.24 (q, J = 6.8 Hz, 1H, Lac- α -H), 4.62 and 4.74 $(2d, J = 11.8 \text{ Hz}, 2H, \text{ OC}H_2\text{Ph}), 4.69 (d, J = 5.2 \text{ Hz}, 1H, H-5), 5.17 (br. s, 2H, NH_2), 5.54 (s, 1H, H-1),$ 7.30 - 7.46 (m, 5H); ¹³C NMR (126 MHz, CD₃OD) & 20.2 (q), 56.9 (d, C-2), 68.4 (t, C-6), 72.8 (t, OCH₂Ph), 77.2 (2d, C-3 and C-5), 79.0 (d, Lac-α-C), 82.3 (d, C-4), 100.7 (d, C-1), 129.2, 129.5, 129.8, 139.0, 181.5 (C=O); HRMS (FAB), calcd for C₁₆H₂₂NO₆ (M+H⁺), 324.1447, found 324.1457. 2acetamido-1,6-anhydro-4-O-benzyl-2-deoxy-3-O-[(1R)-1-carboxyethyl]- β -D-glucopyranose: ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 1.41 \text{ (d, } J = 6.8 \text{ Hz}, 3\text{H}, \text{Lac-}\beta\text{-CH}_3), 1.96 \text{ (s, } 3\text{H}), 3.47 \text{ and } 3.56 \text{ (2s, } 2\text{H}, \text{H-}3 \text{ and } 3.56 \text{ (2s, } 2\text{H}, \text{H$ 7.6 Hz, 1H, H-6b), 4.25 (q, J = 6.9 Hz, 1H, Lac- α -H), 4.61 and 4.69 (AB, J = 11.8 Hz, 2H, OCH₂Ph), 4.65 (d, J = 5.4 Hz, 1H, H-5), 5.44 (s, 1H, H-1), 6.39 (d, J = 9.0 Hz, 1H, NH), 7.29 - 7.40 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 17.6 (q), 22.8 (q), 48.2 (d, C-2), 65.3 (t, C-6), 71.5 (t, OCH₂Ph), 74.1 (d, C-5), 74.2 (d, Lac-α-C), 75.7 and 75.9 (2d, C-3 and C-4), 100.6 (d, C-1), 127.7, 128.2, 128.6, 136.9, 170.3 (C=O), 173.7 (C=O); HRMS (FAB), calcd for $C_{18}H_{24}NO_7$ (M+H⁺), 360.1553, found 360.1555.

The above compound (1.0 g, 2.7 mmol) was dissolved in MeOH (10 mL) and the solution was stirred in the presence of 10% Pd/C (0.15 g) at 55 °C under an atmosphere of hydrogen for 4 h. The mixture was filtered through a layer of Celite and the residue was washed with MeOH. Concentration of the combined filtrate provided compound **14** (0.69 g, 92%). ¹H NMR (500 MHz, CD₃CN) δ 1.37 (d, *J* = 6.8 Hz, 3H, Lac- β -CH₃), 1.93 (s, 3H), 3.37 (s, 1H, H-3), 3.67 (m, 2H, H-4 and H-6a), 3.90 (d, *J* = 8.4 Hz, 1H, H-2), 4.11 (d, *J* = 7.4 Hz, 1H, H-6b), 4.24 (q, *J* = 6.8 Hz, 1H, Lac- α -H), 4.50 (d, *J* = 5.2 Hz, 1H, H-5), 5.31 (s, 1H, H-1), 6.79 (d, *J* = 8.6 Hz, 1H, NH); ¹³C NMR (126 MHz, CD₃CN) δ 18.8 (q), 23.1 (q), 50.6 (d, C-2), 66.2 (t, C-6), 69.8 (d, C-4), 74.9 (d, Lac- α -C), 77.2 (d, C-5), 79.9 (d, C-3), 101.6 (d, C-1), 171.4 (C=O), 175.1 (C=O); HRMS (FAB), calcd for C₁₈H₂₄NO₇ (M+H⁺), 366.1553, found 366.1547.

3,4,6-tri-O-Acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-1,6-anhydro-2-deoxy-3-O-[(1R)-1-carboxyethyl]-β-D-glucopyranose (20). Compounds 16^5 (1.5 g, 2.4 mmol) and 14 (0.55 g, 2.0 mmol) were dissolved in anhydrous CH₂Cl₂ (15 mL) and acetonitrile (5 mL), 4-Å activated molecular sieves (1 g) were added, and the suspension was stirred under argon for 2 h. The catalyst TfOH (0.3 mL) was added in two portions, and the solution was stirred at room temperature for 1 h. The reaction was quenched by the addition of triethylamine (0.3 mL) and it was filtered through a layer of Celite. The combined filtrate was concentrated to dryness and the residue was purified by flash chromatography (CH₃Cl/acetone/MeOH, 6:2:0.05) to give 20 (0.77 g) in 52% and **23** (0.38 g) in 26%. Compound 20: ¹H NMR (500 MHz, CD₃CN) δ 1.33 (d, J = 6.8 Hz, 3H), 1.91 (s. 3H), 1.94 (s, 3H), 1.98 (s, 3H), 2.01 (s, 3H), 3.08 - 3.18 (m, 2H), 3.23 (s, 1H), 3.55 (d, J = 5.0 Hz, 1H), 3.60 (d, J = 3.8 Hz, 1H), 3.63 (t, J = 6.5 Hz, 1H), 3.78 (dd, J = 19.3, 9.0 Hz, 1H), 3.90 (d, J = 9.8 Hz, 1H), 3.94 - 4.00 (m, 1H), 4.01 - 4.12 (m, 2H), 4.18 - 4.32 (m, 2H), 4.45 (d, J = 5.4 Hz, 1H), 4.59 (d, J = 5.4 12.2 Hz, 1H), 4.87 (d, J = 12.2 Hz, 1H), 5.05 (t, J = 9.8 Hz, 1H), 5.21 (s, 1H), 5.37 (t, J = 10.1 Hz, 1H), 5.92 (d, J = 8.8 Hz, 1H), 6.55 (d, J = 9.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 8.5, 18.2, 20.4, 20.5, 22.9, 46.7, 50.2, 54.8, 61.5, 68.1, 68.4, 71.8, 72.3, 74.1, 75.8, 78.5, 92.0, 95.4, 100.5, 154.3, 169.4, 170.2, 170.7, 171.3. Compound 23: ¹H NMR (500 MHz, CD₃OD) δ 1.37 (d, J = 7.0 Hz, 3H), 1.98 (s, 3H), 1.99 (s, 3H), 2.01 (s, 3H), 2.04 (s, 3H), 3.35 (s, 1H), 3.63 (s, 1H), 3.68 (m, J =12.6 Hz, 1H), 3.83 (dd, J = 10.5, 8.9 Hz, 1H), 3.92 - 4.00 (m, 2H), 4.08 - 4.15 (m, 2H), 4.28 - 4.33 (m, 2H), 4.28 (m, 1H), 4.36 (q, J = 6.9 Hz, 1H), 4.49 (d, J = 5.6 Hz, 1H), 4.64 and 4.88 (AB, J = 12.2 Hz, 2H), 5.05 (t, J = 9.7 Hz, 1H), 5.27 (s, 1H), 5.34 (m, J = 19.7 Hz, 1H), 5.85 (d, J = 8.8 Hz, 1H); ¹³C NMR (126 MHz, CD₃OD) & 18.8, 20.7, 20.8, 22.9, 26.4, 52.2, 56.3, 63.0, 66.5, 69.8, 70.4, 73.7, 74.0, 74.9, 75.6, 77.8, 80.3, 93.7, 102.2, 156.5, 171.4, 171.7, 172.4, 172.5, 172.7; HRMS (FAB), calcd for C₂₆H₃₆Cl₃N₂O₁₆ (M+H⁺), 737.1130, found 737.1118.

tert-Butyldimethylsilyl 3,4,6-tri-*O*-benzyl-2-dimethylmaleimido-2-deoxy-β-D-glycopyranoside (25). Two methods were used.

Method A. A solution of compound 24^6 (4.5 g, 10 mmol) in anhydrous CH₃CN (120 mL), was treated with NaH (1.6 g, 40 mmol, 60% in oil), in three portions under vigorous stirring in an ice-water bath. The resulting mixture was stirred at room temperature for 30 min, followed by dropwise addition of a solution of benzyl bromide (5.0 mL, 41 mmol) in CH₃CN (10 mL), and the resulted mixture was stirred for an additional 1 h at room temperature. After stirring at 35 °C for 24 h, the solution was cooled and

⁵ Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt, R. R., Carbohydr. Res. 1996, 296, 135-147.

⁶ Aly, M. R. E.; Castro-Palomino, J. C.; Ibrahim, E. S. I.; El-Ashry, E. S. H.; Schmidt, R. R., *Eur. J. Org. Chem.* **1998**, 2305-2316.

the reaction was quenched with Amberlite 120 (H⁺). After filtration, the solvent was removed under reduced pressure and the residue was carefully diluted with water, neutralized with AcOH (10%), and extracted with EtOAc. The combined organic solution was washed with water, dried over MgSO₄, filtered, and was evaporated to dryness under reduced pressure. The residue was chromatographed on silica gel using a gradient elution of 20% - 95% Et₂O in hexanes to provide the desired compound in 25% (1.6 g). ¹H NMR (600 MHz, CDCl₃) δ -0.04 and 0.07 (2×s, 6H, SiCH₃), 0.76 (s, 9H, Si-C(CH₃)₃), 1.34 (s, 6H), 3.60 (m, 1H), 3.73 (m, 3H), 3.91 (dd, *J* = 10.8, 8.2 Hz, 1H), 4.25 (dd, *J* = 10.8, 8.8 Hz, 1H), 4.46 (d, *J* = 12.3 Hz, 1H), 4.59 (m, 1H), 4.66 (m, 2H), 4.84 (t, *J* = 11.9 Hz, 2H), 5.18 (d, *J* = 8.2 Hz, 1H), 7.14-7.31 (m, Ar-H, 15H); ¹³C NMR (151 MHz, CDCl₃) δ -5.6, -4.1, 8.6, 22.7, 25.4, 57.8, 68.9, 73.4, 74.6, 74.9, 75.0, 79.6, 93.4, 127.3, 127.5, 127.6, 127.8, 127.9, 128.0, 128.2, 128.3, 128.4, 138.1, 138.6, 172.1.

Method B. This procedure was carried out under scrupulously dry condition. To a solution of **24** (4.5 g, 10 mmol) in anhydrous CH_2Cl_2 (120 mL) and anhydrous n-Hexane (120 mL) were added benzyl 2,2,2-trichloroacetimidate (11 mL, 60 mmol) and activated 4-Å molecular sieves (10 g), and the mixture was stirred at room temperature for 0.5 h. Then, the mixture was cooled in an ice-water bath, and a catalytic amount of trifluoromethanesulfonic acid was added dropwise (2 × 0.8 mL). The reaction was monitored by TLC. When the starting material was consumed completely (approximately 3 h), the reaction was quenched by addition of Et_3N (2 mL) and additional cyclohexane (20 mL) was added. After the mixture was stirred for 0.5 h at room temperature, 2,2,2-trichloroacetamide was filtered and washed with hexanes/EtOAc (4/1). The filtrate was concentrated to dryness, and the residue was chromatographed (hexane to hexanes/Et₂O, 8/1) to give **25** as a viscous colorless oil (3.7 g, 56%).

3,4,6-tri-O-Benzyl-2-dimethylmaleimido-2-deoxy-β-D-glycopyranosyl-(1→4)-1,6:2,3-dianhydroβ-D-mannopyranose (21). Compound **25** (3.4 g, 5.0 mmol) in dry THF (40 mL) was treated by the dropwise addition of tetrabutylammonium fluoride (6.3 mL, 1.0 M in THF) at room temperature. The mixture was stirred until starting material was consumed (4 h). Subsequently, acetic acid (0.4 mL) was added, and the solvent was removed in vacuo, the residue was taken up in CH₂Cl₂ (50 mL) and washed with satd NaHCO₃, and the organic layer was dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was chromatographed (hexane/Et₂O, 4/1) to give 3,4,6-tri-*O*-benzyl-2-dimethylmaleimido-2-deoxy-β-D-glycopyranose in 77% yield (2.1 g). ¹H NMR (500 MHz, CDCl₃) δ 1.79 (br. s., 6H), 3.70 (m, 3H), 3.90 (dd, *J* = 10.8, 8.6 Hz, 1H), 4.29 (dd, *J* = 10.8, 8.2 Hz, 1H), 4.40-4.60 (m, 6H), 4.83 (dd, *J* = 11.6, 8.6 Hz, 1H), 5.21 (d, *J* = 8.6 Hz, 1H), 7.12-7.27 (m, 15H). ¹³C NMR (126 MHz, CDCl₃) δ 15.2 , 57.3 , 65.2 , 65.8 , 68.5 , 73.4 , 74.7 , 74.8 , 76.7 , 79.3 , 92.9 , 127.3 , 127.7 , 127.8 , 127.9 , 128.2 , 128.4 , 128.9 , 137.7 , 137.8 , 173.2. Sample obtained above (1.1 g, 2.0 mmol) in anhydrous CH₂Cl₂ (20 mL) was treated with 2,2,2-trichloroacetonitrile (0.5 mL, 25 mmol) and a catalytic amount of DBU. When the starting material was consumed completely (2 h), the reaction mixture was filtered through a small layer of silica gel, which was washed with CH₂Cl₂. The filtrate was concentrated under scrupulously dry conditions, and the residue (compound **17**) was kept under high vacuum for 0.5 h over P₂O₅. Derivative **17** was introduced into the next reaction step without further purification. Glycosylation of compound **10** and **17** was carried out under the same condition for preparation of compound **20** to give compound **21** in 85%. ¹H NMR (500 MHz, CDCl₃) δ 1.79 (br. s., 6H), 3.27 (d, *J* = 3.1 Hz, 1H), 3.35 (m, 1H), 3.57 - 3.66 (m, 3H), 3.71 - 3.81 (m, 3H), 3.86 (s, 1H), 4.01 (dd, *J* = 10.7, 8.5 Hz, 1H), 4.11 - 4.19 (m, 2H), 4.44 (d, *J* = 12.1 Hz, 1H), 4.54 - 4.68 (m, 3H), 4.80 - 4.87 (m, 2H), 5.26 (d, *J* = 8.4 Hz, 1H), 5.59 (d, *J* = 2.9 Hz, 1H), 7.08 - 7.39 (m, 15H); ¹³C NMR (151 MHz, CDCl₃) δ 8.6 (q), 48.2 (d), 54.2 (d), 55.4 (d), 65.4 (t), 68.3 (t), 71.4 (d), 73.3 (d and t), 74.8 (t), 74.9 (t), 75.0 (d), 79.1 (d), 79.6 (d), 97.3 (d), 97.5 (d), 127.3, 127.6, 127.9, 128.0, 128.2, 128.3, 137.7, 138.1, 171.6; MS (FAB) [M–H⁺] 682.

Introduction of Azide. TMSN₃ (0.8 mL, 6.6 mmol) and BF₃·Et₂O (1.1 mL, 9.0 mmol) were added to a stirred solution of epoxide 21 (1.37 g, 2.0 mmol) in anhydrous CH₂Cl₂ (15 mL). The resultant solution was stirred 20 h at room temperature, then was heated under reflux for 1.5 h. The mixture was poured into saturated K_2CO_3 in ice-water bath. Layers were separated and the aqueous phase was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated. Column chromatography on silica gel afforded compound 27 (0.82 g, 70%) as a major product along with compounds **28a** and **28b** (positions of N₃ group in compounds **28a** and **28b** were not assigned). ¹H NMR (500 MHz, CDCl₃) δ 1.83 (br. s., 6H), 3.66 - 3.86 (m, 3H), 3.88 - 4.06 (m, 2H), 4.29 (dd, J = 10.5, 8.7 Hz, 1H), 4.41 - 4.92 (m, 6H), 5.26 (d, J = 9.4 Hz, 1H), 7.12 - 7.50 (m, 15H); ¹³C NMR (126 MHz, CDCl₃) 8 9.0 (g), 55.4 (d), 68.4 (t), 73.8 (t), 75.2 (t), 75.3 (t), 77.4 (d), 79.2 (d), 79.8 (d), 86.0 (d), 127.7, 128.0, 128.1, 128.2, 128.6, 128.7, 138.0, 138.1, 138.5, 171.5; HRMS (FAB), calcd for C₃₃H₃₃N₄O₆ (M–H⁺), 581.2400, found 581.2407. **Compound 28a:** ¹H NMR (300 MHz, CDCl₃) δ 1.74 (br. s., 6H), 3.17 (d. J = 6.6 Hz, 1H), 3.32 (d, J = 5.5 Hz, 1H), 3.37 - 3.75 (m, 6H), 3.93 (dd, J = 10.9, 8.1 Hz, 1H), 4.01 - 4.21 (m, 3H), 4.31 - 4.82 (m, 6H), 5.11 (d, J = 8.6 Hz, 1H), 5.18 (s, 1H), 6.96 - 7.37 (m, 15H);¹³C NMR (75 MHz, CDCl₃) δ 8.9, 55.7, 65.3, 67.3, 68.9, 72.7, 73.7, 74.8, 75.2, 76.3, 79.8, 80.1, 85.1, 98.6, 102.0, 127.7, 128.1, 128.3, 128.5, 128.7, 137.5, 137.6, 138.3 ; MS (FAB) [M-H⁺] 725. **Compound 28b:** ¹H NMR (500 MHz, CDCl₃) δ 1.80 (br. s., 6H), 3.23 (d, J = 6.6 Hz, 1H), 3.38 (d, J =5.4 Hz, 1H), 3.48 (dd, J = 10.1, 7.5 Hz, 1H), 3.53 (t, J = 9.4 Hz, 1H), 3.60 (dd, J = 7.6, 5.6 Hz, 1H), 3.64 - 3.78 (m, 4H), 3.99 (dd, J = 10.6, 8.6 Hz, 1H), 4.12 (dd, J = 10.7, 8.7 Hz, 1H), 4.16 - 4.26 (m, 1H), 4.38 - 4.59 (m, 4H), 4.82 (dd, J = 11.6, 6.2 Hz, 2H), 5.17 (d, J = 8.4 Hz, 1H), 5.24 (s, 1H), 7.05 - 7.41

(m, 15H); ¹³C NMR (126 MHz, CDCl₃) δ ¹³C NMR (126 MHz, CDCl₃) δ 8.9 (q), 55.7, 65.2 (d), 67.3 (t), 68.8 (t), 72.7 (d), 73.7 (t), 74.8 (d), 75.2 (t), 75.2 (d), 76.3 (d), 79.8 (d), 80.1 (d), 85.1 (d), 98.6 (d), 102.0, 127.7, 128.1, 128.3, 128.4, 128.6, 128.7, 137.5, 137.6, 138.3, 171.9; MS (FAB) [M–H⁺] 725.

Azido 3,4,6-tri-*O*-acetyl-2-dimethylmaleimido-2-deoxy-β-D-glycopyranoside (30). Compound 29 was subjected to the same condition described for compound 27 to give compound 30 in 80%. ¹H NMR (500 MHz, CDCl₃) δ 1.83 (s, 3H), 1.89 (s, 9H), 1.94 (s, 3H), 2.02 (s, 3H), 3.85 (ddd, J = 10.2, 4.6, 2.3 Hz, 1H, H-5), 3.91 (dd, J = 10.6, 9.6 Hz, 1H, H-2), 4.09 (dd, J = 12.4, 2.2 Hz, 1H, H-6), 4.24 (dd, J = 12.5, 4.7 Hz, 1H, H-6), 5.05 (t, J = 9.8 Hz, 1H, H-4), 5.41 (d, J = 9.4 Hz, 1H, H-1), 5.54 (dd, J = 10.6, 9.2 Hz, 1H, H-3); ¹³C NMR (126 MHz, CDCl₃) δ 8.8 (q), 20.4 (q), 20.6 (q), 20.7 (q), 53.8 (d, C-2), 61.7 (t, C-6), 68.4 (d, C-4), 70.5 (d, C-3), 73.9 (d, C-5), 85.6 (d, C-1), 169.4, 170.0, 170.6; HRMS (FAB), calcd for C₁₈H₂₂NO₉ (M–N₃⁺), 396.1295, found 396.1312.

3-O-Benzyl-4,6-O-benzylidene-2-deoxy-2-dimethylmaleimido-β-D-glucopyranosyl-(1→4)-2acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose (22). Compounds **13** (1.2 g, 5.0 mmol) and **18**⁷ (3.4 g, 5.5 mmol) were dissolved in anhydrous CH₂Cl₂ (50 mL), 4-Å molecular sieves (5 g) was added, and the suspension was stirred under argon for 2 h. The catalyst TfOH (0.5 mL) was added in two portions, and the solution was stirred at room temperature for 1 h. The reaction was quenched by adding triethylamine (0.1 mL) and it was filtered through a layer of Celite. The combined filtrate was concentrated to dryness and the residue was purified by flash chromatography (CH₂Cl₂/MeCN/MeOH, 10:3:0.5) to give **22** (2.6 g) in 75%. ¹H NMR (500 MHz, CDCl₃) δ 1.84 (br. s, 6H), 2.05 (s, 3H), 2.11 (s, 3H), 3.57 (td, *J* = 9.8, 5.0 Hz, 1H, H-5'), 3.63 (br. s, 1H, H-4), 3.65 (dd, *J* = 7.6, 5.8 Hz, 1H, H-6a), 3.78 (t, *J* = 9.2 Hz, 1H, H-4'), 3.83 (t, *J* = 10.4 Hz, 1H, H-6'a), 3.99 (d, *J* = 7.4 Hz, 1H, H-6b), 4.03 (d, *J* = 10.2 Hz, 1H, H-2), 4.07 (dd, *J* = 10.4, 9.0 Hz, 1H, H-3'), 4.52 and 4.85 (AB, *J* = 12.5 Hz, 2H, OCH₂Ph), 4.73 (s, 1H, H-3), 5.03 (d, *J* = 8.4 Hz, 1H, H-1'), 5.13 (s, 1H, H-1), 5.60 (s, 1H, CHPh), 5.99

⁷ Hesek, D.; Lee, M.; Morio, K.-I.; Mobashery, S. J. Org. Chem. 2004, 69, 2137–2146.

(d, J = 10.0 Hz, 1H, NH), 7.11 - 7.55 (m, 10H); ¹³C NMR (126 MHz, CDCl₃) δ 8.7, 21.0, 22.9 (3 × q), 48.4 (d, C-2), 55.8 (d, C-2'), 64.4 (t, C-6), 66.2 (d, C-5'), 68.5 (t, C-6'), 70.7 (d, C-3), 72.3 (d, C-5), 73.1 (d, C-4), 74.2 (t, OCH₂Ph), 74.4 (d, C-3'), 82.6 (d, C-4'), 96.8 (d, C-1'), 100.9 (d, C-1), 101.3 (d, CHPh), 126.1, 127.5, 128.2, 128.3, 129.1, 137.2, 138.3, 169.1, 169.8, 172.3; HRMS (FAB), calcd for C₃₆H₄₁N₂O₁₂ (M+H⁺), 693.2660, found 693.2658.

2-Acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-

1,6-anhydro-2-deoxy-β-D-glucopyranose (31). NaOH (3.0 g of solid pellets, 75 mmol) was added to a stirred solution of 22 (2.1 g, 3.0 mmol) in a mixture of 1,4-dioxane/water (4:1, 150 mL) at 10 °C under a nitrogen atmosphere. The mixture was sonicated for 15 min and then the mixture was allowed to warm to room temperature and was let stir for an additional 3 h. The pH was adjusted to 3 by the addition of 0.5 N HCl and the resulting reaction mixture was stirred for 10 h at room temperature. Evaporation of the mixture to dryness gave a yellow oily residue, which was treated with MeOH (100 mL). The precipitated inorganic material was filtered off and washed well with cold MeOH. The filtrate was evaporated to dryness. The residue was taken up into pyridine (15 mL) and the solution was treated with an excess of acetic anhydride (20 mL), followed by stirring at room temperature for 20 h. The solution was evaporated to dryness. The crude product was purified with column chromatography using EtOAc/MeCN (3/2) to give **31** (1.0 g, 55%) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ 1.94 (s, 3H), 2.01 (s, 3H), 2.03 (s, 3H), 2.09 (s, 3H), 3.41 (dt, J = 9.5, 4.7 Hz, 1H, H-5'), 3.64 - 3.83 (m, 5H, H-4, H-3', H-4', H-6a, H-6'a), 4.03 (d, J = 7.4 Hz, 1H, H-6b), 4.06 (d, J = 9.2 Hz, 1H, H-2), 4.09 (m, 1H, H-2'), 4.30 (dd, J = 10.5, 5.1 Hz, 1H, H-6'b), 4.55 (d, J = 5.4 Hz, 1H, H-5), 4.60 (d, J = 8.2 Hz, 1H, H-1'), 4.67 and 4.88 (AB, J = 12.1 Hz, 2H, OCH₂Ph), 4.73 (s, 1H, H-3), 5.24 (s, 1H, H-1), 5.53 (s, 1H, CHPh), 6.65 (d, J = 9.0 Hz, 1H, NH), 7.00 (d, J = 10.0 Hz, 1H, NH'), 7.18 - 7.53 (m, 14H), 8.57 (d, J = 4.0 Hz, 1H): ¹³C NMR (126 MHz, CDCl₃) δ 21.0, 22.8, 23.6 (3 × q), 48.5 (d, C-2), 54.9 (d, C-2'), 64.6 (t, C-6), 66.2 (d, C-5'), 68.6 (t, C-6'), 71.2 (d, C-3), 72.1 (d, C-5), 72.8 (d, C-4), 74.0 (t, OCH₂Ph), 77.26 and 81.9 (2d, C-3' and C-4'), 100.0 (d, C-1'), 100.8 (d, C-1), 101.2 (d, CHPh), 124.3, 126.0, 127.9, 128.2, 128.3, 128.4, 129.1, 137.2, 137.3, 148.5, 169.4, 171.1, 172.2; HRMS (FAB), calcd for C₃₂H₃₉N₂O₁₁ (M+H⁺), 627.2554, found 627.2572.

2-Acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-1,6-anhydro-2-deoxy-3-O-[(1R)-1-carboxyethyl]- β -D-glucopyranose (33). A solution of NaOMe (86 mg, 1.6 mmol) in 1 mL anhydrous MeOH was added dropwise to a suspension of 31 (1.0 g, 1.6 mmol) in anhydrous MeOH (20 mL). The mixture was stirred at room temperature for 1 h under an atmosphere of nitrogen and then after neutralization with acetic acid (0.5 mL), the solution was evaporated to dryness. The residue (compound 32) was dissolved in anhydrous 1,4-dioxane/DMF (1/1, 10 mL), 4-Å

molecular sieves (1 g) were added, and the suspension was stirred under nitrogen for 1 h. After addition of NaH (0.19 g, 4.8 mmol, 60% dispersion in oil), the mixture was kept for 30 min at 45 °C, and then the temperature was brought to room temperature. (S)-2-Chloropropionic acid (0.87 g, 8.0 mmol) was added and the stirring was continued for 2 h at 90 °C. The organic solvent was evaporated to dryness. A 50 mL portion of water was carefully added to the residue to decompose the excess of sodium hydride. The solution was extracted once with hexanes/EtOAc (1/1) to remove the mineral oil and the solution was filtered over a layer of charcoal. The solution was brought to pH 3.0 by the addition of 2.5 M hydrochloric acid at the ice-water temperature. The resulting precipitate was immediately extracted with CH₂Cl₂. The combined organic layer was washed with water, rapidly dried over Na₂SO₄, and concentrated to dryness. The residue was purified by column chromatography on silica column, using CHCl₃/acetone (3/1) to afford compound **33** (0.50 g, 48%). **32:** ¹H NMR (500 MHz, DMF-*d6*) δ 2.01 (s, 3H), 2.07 (s, 3H), 3.55 (td, J = 9.6, 5.0 Hz, 1H, H-5'), 3.62 (s, 1H, H-3), 3.67 (t, J = 6.4 Hz, 2H, H-6a), 3.79 (m, 1H, H-4), 3.84 (t, J = 9.3 Hz, 1H, H-4'), 3.91 (td, J = 9.9, 3.6 Hz, 2H, H-3' and, H-6'a), 3.98 (t, J = 9.3 Hz, 1H, H-4'), 3.91 (td, J = 9.9, 3.6 Hz, 2H, H-3' and, H-6'a), 3.98 (t, J = 9.3 Hz, 1H, H-4'), 3.91 (td, J = 9.9, 3.6 Hz, 2H, H-3' and, H-6'a), 3.98 (t, J = 9.9, 3.6 Hz, 10 Hz), 3.98 (t, J = 9.9, 3.6 Hz), 3.98 (t, J = 9.9, 3.(d, J = 9.8 Hz, 1H, H-2), 4.09 (q, J = 9.2 Hz, 1H, H-2'), 4.28 (d, J = 7.0 Hz, 1H, H-6b), 4.29 - 4.33 (dd, J = 7.0 Hz, 1H, 1H-6b), 4.29 - 4.33 (dd, J = 7.0 Hz, 1H, 1H-6b), 4.29 - 4.33 (dd, J = 7.0 Hz, 1H, 1H,J = 10.2, 4.9 Hz, 1H, H-6'b), 4.77 and 4.89 (AB, J = 11.7 Hz, 2H, OCH₂Ph), 4.79 (s, 1H, H-5), 4.86 (d, J = 8.4 Hz, 1H, H-1'), 5.20 (s, 1H, H-1), 5.79 (s, 1H, CHPh), 7.07 (d, J = 10.0 Hz, 1H, NH), 7.25 - 7.56 (m, 10H), 8.43 (d, J = 9.3 Hz, 1H, NH'); ¹³C NMR (126 MHz, DMF-*d6*) δ 22.2, 23.2 (2 × q), 51.3 (d, C-2), 55.1 (d, C-2'), 64.5 (t, C-6), 66.2 (d, C-5'), 68.4 (t, C-6'), 71.2 (d, C-3), 72.3 (d, C-5), 74.0 (t, OCH₂Ph), 75.3 (d, C-4), 78.9 (d, C-3'), 81.9 (d, C-4'), 99.9 (d, C-1'), 100.9 (d, CHPh), 101.4 (d, C-1), 126.3, 127.6, 127.7, 128.3, 129.0, 138.3, 139.4, 169.8, 172.0; HRMS (FAB), calcd for C₃₀H₃₇N₂O₁₂ $(M+H^{+})$, 585,2448, found 585,2444, **33**: ¹H NMR (500 MHz, CD₃CN) δ 1.34 (d, J = 6.8 Hz, 3H), 1.92 (s, 3H), 2.01 (s, 3H), 3.36 (m, 1H, H-3), 3.43 (td, J = 9.6, 5.1 Hz, 1H, H-5'), 3.64 - 3.84 (m, 5H, H-6a, H-3', H-4', H-4, H-6'a), 3.93 (dd, *J* = 10.0, 8.4 Hz, 1H, H-2'), 4.01 (s, 1H, H-2), 4.11 (q, *J* = 6.8 Hz, 1H, Lac- α -H), 4.12 (t, J = 6.9 Hz, 1H, H-6b), 4.27 (dd, J = 10.4, 5.0 Hz, 1H, H-6b), 4.56 (d, J = 5.6 Hz, 1H, H-5), 4.59 (d, J = 8.4 Hz, 1H, H-1'), 4.66 and 4.82 (AB, J = 11.7 Hz, 2H, OCH₂Ph), 5.22 (s, 1H, H-1), 5.63 (s, 1H, CHPh), 7.25 - 7.51 (m, 10H); 13 C NMR (126 MHz, CD₃CN) δ 18.9, 23.0, 23.7 (3 × q), 49.9 (d, C-2), 55.8 (d, C-2'), 65.7 (t, C-6), 67.1 (d, C-5'), 69.3 (t, C-6'), 73.8 (d, C-5), 74.3 (d, C-4), 75.0 (t, OCH₂Ph), 75.3 (d, Lac-α-C), 78.7 (d, C-3), 79.2 (d, C-3'), 82.8 (d, C-4'), 101.3 (d, C-1'), 101.9 (d, C-1), 102.0 (d, CHPh), 127.2, 128.7, 129.0, 129.3, 130.0, 138.9, 139.9, 171.5, 173.0, 175.4; HRMS (FAB), calcd for $C_{33}H_{41}N_2O_{12}$ (M+H⁺), 658.2660, found 658.2660.

Compound 36. EDCI (0.18 g, 0.94 mmol) was added to a mixture of *N*-hydroxysuccinimde (0.11 g, 0.96 mmol) and **33** (0.5 g, 0.76 mmol) in CH_2Cl_2 (5 mL) in an ice-water bath. The mixture was stirred at room temperature 20 h. Meanwhile, the Boc-protected pentapeptide (0.85 g, 0.91 mmol) in CH_2Cl_2 (5 mL) was treated with trifluoroacetic acid (2 mL) in an ice-water bath. Temperature was gradually

increased to room temperature over 1 h. The reaction mixture was evaporated to dryness under reduced pressure and the residue was dissolved in toluene. This was followed by evaporation to dryness. The residue (34) was dissolved in iPr₂NEt (0.4 mL, 2.3 mmol) and DMF (5 mL), and the solution was then added to the NHS-ester of the anhydrosugar, prepared above. The resulting mixture was stirred at room temperature 20 h. The mixture was diluted with CH₂Cl₂ and water was added. Layers were separated. The organic layer was dried over MgSO₄, filtered, concentrated and the sample was subjected to column chromatography on silica gel (CH₂Cl₂/MeCN/MeOH, 10:3:0.5) to give the title compound (0.84 g, 75%). ¹H NMR (500 MHz, CD₃CN) δ 1.32 (d, J = 7.2 Hz, 3H), 1.36 (2d, 6H), 1.40 (d, J = 7.4 Hz, 3H), 1.41 - 1.97 (m, 8H), 1.99 (s, 3H), 2.05 (s, 3H), 2.15 - 2.29 (m, 2H), 3.42 (s, 1H, H-3), 3.50 (td, J = 9.7, 5.0 Hz, 1H, H-5'), 3.71 - 3.91 (m, 5H, H-5, H-6a H-3', H-4', H-6'a), 3.96 - 4.04 (m, 2H, H-2, H-2'), 4.04 -4.14 (m, 3H), 4.24 (d, J = 7.6 Hz, 1H, H-6b), 4.28 - 4.45 (m, 6H), 4.31 (m, 1H, H-6b), 4.65 (d, J = 8.4)Hz, 1H, H-1'), 4.63 - 4.68 (m, 1H, H-4), 4.73 and 4.88 (2d, J = 11.8 Hz, 1H), 5.09 - 5.19 (m, 4H), 5.24(s, 2H), 5.34 (s, 1H, H-1), 5.69 (s, 1H, CHPh), 6.77 (d, J = 9.4 Hz, 1H), 6.92 (d, J = 10.0 Hz, 1H), 7.30 - 7.58 (m, 15H), 7.95 (d, J = 6.4 Hz, 1H); ¹³C NMR (126 MHz, CD₃CN) δ 17.6, 17.9, 18.0, 18.7, 22.9, 23.8, (6 × q), 22.9, 27.7, 31.7, 31.7, 32.0 (5 × t), 48.4 (d, C-2), 49.3, 49.9, 50.6, 52.1, 55.5 (5 × d), 55.8 (d, C-2'), 62.7 (d), 65.4 (t, C-6), 67.0 (d, C-5'), 67.3 (t), 67.6 (t), 68.2 (t), 69.2 (t, C-6'), 73.5 (d, C-5), 74.6 (d, C-4), 75.0 (t, OCH₂Ph), 76.9 (d, Lac-α-C), 79.2 (d, C-3'), 79.4 (d, C-3), 82.7 (d, C-4'), 100.8 (d, C-1'). 101.9 (d. C-1 and CHPh), 127.2, 128.6, 128.9, 129.1, 129.2, 129.3, 129.4, 129.5, 129.7, 130.0, 136.8, 137.1, 137.2, 138.9, 139.8, 171.1, 171.4, 172.3, 172.9, 173.2, 173.5, 173.9, 174.0, 174.3; FAB MS m/z 1441.96 [M+H]⁺.

N-Acetyl-β-D-glucosamine-(1→4)-1,6-anhydro-β-D-*N*-acetylmuramyl-L-Ala-γ-D-Glu-*meso*-DAP-D-Ala-D-Ala (1). Compound 36 (0.50 g, 0.34 mmol) in AcOH (5 mL) and stirred at 60 °C for 2 h. After removal of AcOH, the residue was dissolved in MeOH (5 mL) and stirred in the presence of 10% Pd/C (0.1 g) under an atmosphere of hydrogen at 50 °C for 3 h. The reaction mixture was filtered through a layer of Celite and the residue was washed with MeOH. The combined filtrate was concentrated to dryness under reduced pressure. The crude product was subjected to HPLC purification to afford compound 1 (0.22 g, 66%). Preparative HPLC purifications were performed on delta-pak C18 reversedphased column, 100 Å pore size, 19 × 300 mm using a linear gradient of 5-15% acetonitrile in water supplemented with 0.1% TFA over 0.5 h. ¹H NMR (600 MHz, D₂O) δ 1.32 - 1.46 (4d, 12H), 1.46 - 1.56 (m, 2H), 1.73 - 2.03 (m, 5H), 2.04, 2.06 (2s, 6H), 2.22 - 2.45 (m, 3H), 3.45 (m, 2H, H-5', H-4'), 3.53 -3.62 (m, 2H, H-3', H-3), 3.68 - 3.84 (m, 3H, H-6'a, H-2', H-6a), 3.90 (d, *J* = 12.0 Hz, 1H, H-6'b), 3.99 (d, *J* = 12.0 Hz, 2H, H-2, H-4), 4.06 (t, *J* = 6.2 Hz, 1H), 4.15 - 4.44 (m, 6H), 4.66 (d, *J* = 8.5 Hz, 1H, H-1'), 4.70 (d, *J* = 5.0 Hz, 1H, H-5), 5.44 (s, 1H, H-1); ¹³C NMR (151 MHz, D₂O) δ 15.9, 16.3 16.7, 17.9, 20.7, 22.2 (6 × q), 21.8, 26.4, 29.2, 30.1, 31.1 (5 × t), 48.8 (d, C-2), 48.5, 49.4, 51.7, 52.5, 53.8 (6 × d), 55.4 (d, C-2'), 60.5 (t, C-6'), 64.7 (t, C-6), 69.7 (t, C-4'), 73.2 (t, C-3'), 73.4 (C-5), 74.1 (C-4), 75.9 (d, C-5'), 76.0 (d, Lac-α-C), 77.2 (d, C-3), 99.8 (d, C-1), 100.4 (d, C-1'), 171.8, 173.5, 173.8, 174.4, 174.6, 175.0, 175.3, 175.4, 176.0 (10 × C=O); HRMS (FAB), calcd for $C_{40}H_{65}N_8O_{21}$ (M+H⁺), 993.4264, found 993.4230.

N-Acetyl-β-D-glucosamine-(1→4)-1,6-anhydro-β-D-*N*-acetylmuramyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala (2). This material was prepared in the same manner as described for 1, with the exception that pentapeptide **35**⁸ was used in place of **34**. ¹H NMR (500 MHz, CD₃OD) δ 1.34 - 1.48 (4d, 16H), 1.51 (br. s, 1H), 1.63 - 1.74 (m, 1H), 1.78 - 1.93 (m, 2H), 2.04 (s, 3H), 2.07 (s, 3H), 2.20 - 2.35 (m, 3H), 2.95 (m, 2H), 3.28 - 3.39 (m, 2H, H-5', H-4'), 3.49 (dd, *J* = 10.3, 8.3 Hz, 1H, H-3'), 3.55 (s, 1H, H-3), 3.71 (dd, *J* = 11.9, 5.3 Hz, 1H, H-6'a), 3.74 - 3.80 (m, 2H, H-2', H-6a), 3.84 - 3.94 (m, 2H, H-4, H-6'b), 3.99 (s, 1H, H-2), 4.14 (q, *J* = 6.8 Hz, 1H, Lac-α-H), 4.23 - 4.43 (m, 7H), 4.53 (d, *J* = 8.4 Hz, 1H, H-1'), 4.65 (d, *J* = 5.0 Hz, 1H, H-5), 5.33 (s, 1H, H-1); ¹³C NMR (126 MHz, CD₃OD) δ 18.1, 18.3, 18.7, 18.9, 21.2, 22.9, 23.7 (6 × q), 28.3, 29.6 32.4, 32.9, 40.6 (5 × t), 49.4 (d, C-2), 50.7 (d), 51.0 (d), 51.2 (d), 54.1 (d), 55.6 (d), 57.2 (d, C-2'), 62.7 (t, C-6), 66.1 (t, C-6'), 72.1 (d, C-4'), 74.8 (d, C-5), 75.4 (d, C-3'), 75.6 (d, C-4), 77.5 (d, Lac-α-C), 78.3 (d, C-5'), 79.8 (d, C-3), 101.9 (d, C-1'), 102.1 (d, C-1), 173.5, 174.4, 174.6, 175.1, 175.6, 175.7, 175.8, 176.6, 177.7; HRMS (FAB), calcd for C₃₉H₆₅N₈O₁₉ (M+H⁺), 949.4366, found 949.4387.

Table S1.	Crystal	lographi	c Details
	/~		

	4 a	5	6	8	11	30
chemical formula	$C_{19}H_{30}O_4Si$	C ₁₃ H ₁₆ O ₄ , 0.28(C ₇ H ₈)	C ₁₃ H ₁₅ IO ₄	$C_{13}H_{15}N_3O_4$	$C_{13}H_{14}O_4$	$C_{18}H_{22}N_4O_9$
formula weight	350.52	262.29	362.15	277.28	234.24	438.40
space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	<i>P</i> 1	$P2_{1}2_{1}2_{1}$	$P2_1$	$P2_{1}2_{1}2$
<i>a</i> (Å)	6.6344(2)	4.5700(1)	6.1718(4)	6.7203(3)	10.9272(12)	17.5877(2)
<i>b</i> (Å)	10.9383(2)	13.9439(3)	7.5275(5)	10.1187(4)	19.943(2)	21.7941(2)
<i>c</i> (Å)	27.1190(6)	21.6237(5)	13.9663(6)	18.5765(8)	11.0323(11)	5.7479(1)
α (°)	90.00	90.00	91.5770(10)	90.00	90.00	90.00
β (°)	90.00	90.00	92.433(5)	90.00	110.217(6)	90.00
γ (°)	90.00	90.00	91.599(5)	90.00	90.00	90.00
$V \text{\AA}^3$	1968.00(8)	1377.94(5)	647.74(7)	1263.22(9)	2256.1(4)	2203.22(5)
Ζ	4	4	2	4	8	4
<i>T</i> (°C)	296(2)	296(2)	100(2)	100(2)	100(2)	291(2)
λ (Å)	1.54178	1.54178	0.71073	1.54178	0.71073	1.54178
D_{obsd} (g cm ⁻³)	1.183	1.264	1.857	1.458	1.379	1.322
μ (cm ⁻¹)	1.202	0.748	2.476	0.923	0.102	0.919
$R1(F^2, I > 2\sigma(I))$	0.0265	0.0504	0.0160	0.0259	0.0820	0.0324
$wR2(F^2)$	0.0686	0.1500	0.0584	0.0660	0.2494	0.0899
S	1.055	0.935	1.303	1.106	1.098	1.045

$$wR2 = \sqrt{\frac{\sum[w(F_o^2 - F_c^2)^2]}{\sum[w(F_o^2)^2]}} ; R1 = \frac{\sum \left\|F_o\right| - \left|F_c\right|}{\sum \left|F_o\right|} ; GooF = S = \sqrt{\frac{\sum[w(F_o^2 - F_c^2)^2]}{(n-p)}}$$

n= number of reflections, *p*= number of parameters refined

Figure S1. The molecular structure of compound **4a**, showing the atom-numbering scheme. The ORTEP diagram is shown at 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radii.

Figure S2. The molecular structure of compound **5**, showing the atom-numbering scheme. The ORTEP diagram is shown at 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radii. Disorder is present in the position of O6. Two sites were modeled, with site occupancy for the first at 0.79(3). One hydrogen is shared between these atomic positions. The disordered, partially present molecule of toluene has been omitted.

Figure S3. The molecular structure of compound **6**, showing the atom-numbering scheme. The ORTEP diagram is shown at 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radii. Two independent molecules are present in the unit cell.

Figure S4. The molecular structure of compound **8**, showing the atom-numbering scheme. The ORTEP diagram is shown at 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radii.

Figure S5. The molecular structure of compound **11**, showing the atom-numbering scheme. The ORTEP diagram is shown at 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radii. Four independent molecules are present in the unit cell.

Figure S6. The molecular structure of compound **30**, showing the atom-numbering scheme. The ORTEP diagram is shown at 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radii.

.

2.5

[- 1	<u>160</u>	140	120 1 20	100	80	60	40	20	0 ppm
	ACQUISITION dof ACQUISITION dof sfrq 150.856 dim in 0.963 dimf pp 65536 disq sw 34013.6 disq sw 34013.6 disq sw 34013.6 disq sw 34013.6 disq sw 3.0 dif sw 8.0 did2 til 2.000 dpwr stil 640 dm2 stil 640 dm2 stil not used dseq stil not used dseq stil not used dseq stil not used dseq stil not used werv stil 0.000 wntfil stil 13591.9 stil stil 100.000 wnt stil 100.000 wnt stil 100.000 wnt	Becc2 2 2 1.0 2 2 1.0 2 2 1.0 2 2 1.0 15202 2 1.0 10 10 10 10 10 10 10 10 10 1	120	100	27.478 77.206 76.783 76.783 76.783	60 60		600 500 500 500 500 500 500 500 500 500	4a
6 6 5 1	ML-3_3 exp2 s2pul SAMPLE Nov 4 2007 dfrq solvent CDC13 dn File exp dpwr ACQUISITION dof	DEC. & V1 599.887 H1 36 0						BnO HO	
5									OTRS

- S25 -

DHL-3

OTBS

ppm

-

10.8

DHL-3 Pulse Sequence: relayh Solvent: CDC13

•

Amblent temperature INOVA-500 "inova5"

4b

BnO⁻

TBSO

OTBS

Relax. delay 1.300 sec CDSY 90-90 Acq. time 0.130 sec Width 3923.5 Hz 2D Width 3923.5 Hz 4 repetitions 256 increments OBSERVE H1, 499.8611751 MHz DATA PROCESSING Sine bell 0.065 sec F1 DATA PROCESSING Sine bell 0.033 sec FT size 1024 x 1024 Total time 25 min, 20 sec

200 180	160	140 13	20 100 - S28 -	80 6	50 40	20	0 ppm
nt 1200 ct 116 alock n gain not used FLAGS 11 n n dp y hs DISPLAY nn DISPLAY nn DISPLAY nn 07.85 15 500.00 rfl 11110.2 rfp 9694.5 th 44 ins 100.000 al cdc ph	dm2 c dm72 c dm72 10000 dseq2 1.00 homo2 n dfrq3 0 dr3 1 dof3 0 dm3 c dm3 c dm3 c dm3 c dm3 c dm3 n dm3 c dm3 n dm3 c dm3 n PROCESSING n PROCESSING th proc ft fn 131072 math f werr wexp wbs wnt	143.562 143.562 143.562 128.505 127.998 127.996 127.755		78.207 77.1305 77.130 77.130 76.616 69.120 69.120			-4.294
exp2 s2pul SAMPLE date Jul 21 2006 solvent CDCl3 file exp ACQUISITION sfrq 125.702 tn C13 at 1.215 np 65536 sw 26963.3 fb 15000 bs 4 tpwr 52 pw 10.2	DEC. & VT dfrq 499.864 dn H1 dpwr 40 dof 0 dm yyy dmm w dmf 8787.35 dseq 1.0 hnom n DEC2 0 dfrq2 0 dm2 1					BnO TBSO	отвя 0 4b
DHL-3							OTBS

Т

- S29 -

DHL-7

- S32 -

DHL-7

exp2 s2pul SAMPLE Di date Oct 3 2006 dfrq solvent Acetone dn file exp dpwr dof ЮH DEC. & VT Vent A (e ACQUISITION frg 125.703 dm C13 dmm 1.215 dmf 65536 dse 3 dr by 499.866 Η1 40 BnO Õ sfrq HO ууу Ж tn 8787.35 at np 5 sw fb bs 26963.3 dres 15000 homo 1.0 n 4 52 dfrq2 10.2 dn2 DEC2 0 tpwr pw d1 1.800 dpwr2 144.5 dof2 1200 dm2 44 dmm2 n dmf2 tof nt ct 0 n С alock 10000 not used dseq2 GS dres2 gain FLAGS 1.0 11 n homo2 n DE C 3 1n n y dfro nn dn3 dfrq3 dp 0 hs AY dpwr3 3378.4 dof3 21683.8 dm3 27 dmm3 0 dmf3 -128.918 128.434 DISPLAY 1 sp wp vs sc 0 n С 10000 0 dm 13 250 dseq3 86.74 dres3 500.00 homo3 5091.8 PR(3758.2 lb 8 wtfile wc hzman 1s rfl 1.0 n PROCESSING 1.00 rfp -78.934 th 128.083 100.000 proc h fn ins 1 at cdc ph ft 131072 math f 144.149 61.740 69.547 werr wexp wbs 74.077 104.915 wnt 30.054 -29.900 29.746 139.962 1 1 1 1 1 1 1 1 1 1 11 160 140 120 100 80 60 40 ppm 180

- S33 -

DHL -6

exp1 s2pul SAMPLE D date Oct 6 2006 dfrq DEC. & VT 499.864 solvent CDC13 dn HI exp dpwr file 30
 ile
 exp
 dpwr

 ACQUISITION
 dof

 frq
 499.864
 dm

 n
 H1
 dmm

 tt
 5.016
 dmf

 p
 65536
 dseq

 w
 6533.3
 dres

 b
 4000
 homo

 s
 4
 4

 pwr
 61
 dfrq2

 w
 13.5
 dn2
0 sfrq ททก BnÒ tn с at 200 6 np sw fb 1.0 n bs DEC2 tpwr 0 pw d 1 13.5 dn2 0.100 dpwr2 269.9 dof2 16 dm2 16 dm2 1 tof nt ct 0 n с alock n draf2 200 gain not used dseq2 FLAGS dres? 1.0 11 n homo2 n DEC3 in n dp hs y dfrq3 0 nn dn3 DISPLAY Y dpwr3 1292.2 dof3 3648.7 dm3 59 dmm3 0 dmf3 dpwr3 1 0 sµ ₩p Vs n С sc 200 ₩C 250 dseq3 14.59 dres3 100.00 homo3 510.6 PF 1.0 hzmm 1s rfl rfp n PROCESSING 0 wtfile 7 proc 1.000 fn th Ins ft 65536 f ai рh math werr wexp process plH wbs wft wnt 9 8 7 6 5 3 4 ppm الم مع معالم 4.45 -1.08 1.11 1.02 1.00 3.14 1.00

0.83

1.04

exp3 s2pu1

.26.337

-

ppm

60

50

40

- S38 -

- S40 -

٠

exp1 s2pul SAMPLE Di date Sep 21 2006 dfrq solvent CDC13 dn DEC. & VT 499.864 H1 solvent file 30 exp dpwr ACQUISITION dof 499.864 sfrq dm nnn H1 dmm tn C 5.016 dm f 65536 dseq 200 at BnÒ пр 1.0 sw 6533.3 dres 7 fb 4000 homo n bs 4 DEC2 tpwr 61 dfrg2 0 13.5 dn2 pw d1 0.100 dpwr2 1 tof 269.9 dof2 0 nt 16 dm2 16 dmm2 n ct С alock n dmrf2 200 notused dseq2 FLAGS dres2 gain 1.0 11 n homo2 n in DEC3 n dp hs y dfrq3 0 nn dn3 DISPLAY dpwr3 1 sp wp vs sc 1498.2 dof3 0 3184.9 dm3 71 dmm3 0 dmf3 n С 200 250 dseq3 wc hzmm 12.74 dres3 150.00 homo3 1.0 15 n PROCESSING rf) 510.6 rfp th 0 wtfile 7 proc fn ft 1.000 65536 ins ai рh math f werr wexp wbs process plH wft wnt · [] - r 1 .9 . 0 8.5 7.5 6.5 5.0 8.0 7.0 6.0 5.5 4.5 4.0 3.5 ppm *ــــ*, ، . L____ 3.89 5.25 2.64 1.21 1.15

1.00

1.20

- S42 -

- S43 -

- S44 -

BnO

65.714

70

7

54.303

Т

60

47.730

T - T

ppm

				- S45	-					
140	130	120	110	100	90	80	7 0	60	50	ppm
all protonated	d carbons	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Ma Martina and a martina a				
	t l									
. 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				- 449 hadinar Afy 2,8-4,				L
CH carbons										
******		******		******				L		·/~~~
CH2 carbons										
	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**********	1	***********************************	*****	*******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	18449F=det.mattatut=et.a.j=114.84	, Jacobine and State (1999)
CH3 carbons										
		7								
Pu]se Sequen	ce: dept Bn(
DHL-12										

exp1 \$2pul

			0				,		Ū	0.88	
-		r	۲ - ۱ 8		,		7	I		I T.	• · · · t
						ļ			~		
				werr wexp wbs wnt	proces	ss plH wft					
	rfp th ins ai	ph	0 7 1.000	wtfile proc fn math		ft 65536 f					
	wc hzmmn is rfl		250 14.56 112.50 510.6	dseq3 dres3 homo3 PR	OCESSIN	1.0 1 IG					
	sp wp vs sc		828.7 3640.1 56 0	dof3 dm3 dmm3 dmf3		0 n c 200					
	dp hs	DISPLAY	n y nn	dfrq3 dn3 dpwr3	DEC3	0 1					
	gain i1	FLAGS	n n	dseq2 dres2 homo2		1.0 n					
	tof nt ct		269.9 16 16	dof2 dm2 dmm2 dmm2		0 n c					
	bs tpwr pw d1		4 61 13.5	dfrq2 dn2 dnwr2	DEC2	0					
	at np sw fb		5.016 65536 6533.3 4000	dmf dseq dres homo		200 1.0					
	tire AC Sfrq tn	QUISITI 4	exp ON 99.864 H1	apwr dof dm dmm		30 0 nnn c					
	date solve	SAMPLE Sep Int	2 2006 CDC13	DE(dfrq dn	C. & V1 49	9.864 H1					

OH 10

2 ppm

т. I - т

1.08 2.40 ۰ 0.97

4

1.05

3

دی ا 1.08 1.00

Pulse Sequence; relayh Solvent: CDCl3 Ambient temperature INOVA-500 "inova5"

Relax. delay 1.300 sec COSY 90-90 Acq. time 0.153 sec Width 1669.2 Hz 2D Width 1669.2 Hz 4 repetitions 256 increments DBSERVE H1, 499.8611751 MHz DATA PROCESSING Sine bell 0.077 sec F1 DATA PROCESSING Sine bell 0.038 sec FT size 512 x 512 Total time 26 min, 28 sec

OH

10

- S49 -

exp2 s2pul

·····

30

40

- r-

· · · · · · · ·

20 ppm

--- T--

54.139

і ттт <u>т</u>ттт

6 **0**

49.200

· - T -

50

		- S5	51 -			
100	90	80	70	60	50	ppm
all protonated carbons						
	<u></u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		luumaan an	
CH carbons						
					·····	
CH2 carbons						
*****					99	
CH3 carbons						
	он 10					
DHL-10 Pulse Sequence: dept						

- S52 -

exp1 s2pul

				· 1	
				·	
		wexp wbs wnt	process p1H wft		
ins ai	1.000 ph	fn math werr	65536 f		
is rfi rfp	100.00 510.6 0	homo3 PRO Wtfile	CESSING		
VS SC WC hZm	58 0 250 14 25	dmm3 dmf3 dscq3 drcs3	200		
hs sp wp	nn DISPLAY 1403.9 3562.7	dn3 dpwr3 dof3 dm3	1 0		
11 1 n dip	FLAGS n n y	dres2 homo2 dfrq3	1.0 n DEC3 0		
nt ct alo gai	16 16 ck n n not used	dmm2 dmm2 dmf2 dseq2	n c 200		
tpw øw d1 tof	r 61 13.5 0.100 269.9	dfrq2 dn2 dpwr2 dof2	0 1 0		
Sw fb bs	6533.3 4000 4	dres homo	1.0 n DEC2		
sfr tn at	q 499.864 H1 5.016	dm dmm dmf	0 000 200		
fil	e exp	dpwr	30		

ppm

1.11 1.09

5.10

5

3.60

ட

1.00

Δ

-

1.26

1.27 1.09

Relax. delay 1.300 sec COSY 90-90 Acq. time 0.218 sec Width 2352.1 Hz 2D Width 2352.1 Hz 4 repetitions 256 increments DBSERVE H1, 499.8611751 MHz DATA PROCESSING Sine bell 0.109 sec F1 DATA PROCESSING Sine bell 0.054 sec FT size 1024 x 1024 Total time 27 min, 12 sec ò

11

Pulse Sequence: relayh Solvent: CDC13 Ambient temperature INOVA-500 "inova5"

Relax. delay 1.300 sec COSY 90-90 Acq. time 0.218 sec Width 2352.1 Hz 2D Width 2352.1 Hz 4 repetitions 256 increments OBSERVE H1, 499.8611751 MHz DATA PROCESSING Sine bell 0.109 sec F1 0ATA PROCESSING Sine bell 0.054 sec FT size 1024 x 1024 Total time 27 min, 12 sec

exp1 s2pul SAMPLE DEC. & VT date Dec solvent (c) ACQUISITION dof sfrq 499.864 dm H1 dmm 5.016 dmf 55536 dser 3 dre 499.864 H1 30 0 nnn BnO N_3 с 200 8 np sw fb bs 65536 diseq 6533.3 dires 4000 homo 4 1.0 n DE C2 61 dfrq2 0 tpwr pw d1 13.5 dn2 0.100 dpwr2 1 tof 269.9 dof2 16 dm2 Ō n ct 16 dmm2 С alock n dm f 2 200 not used dseq2 GS dres2 gain FLAGS 1.0 i 1 n homo2 n in n DEC3 y dfrq3 nn dn3 dp hs 0 DISPLAY dpwr3 1 sp wp vs sc wc hzman 914.4 dof3 0 4541.5 (Im3 n 103 dmm3 С 0 dm f 3 200 250 dseq3 18.17 dres3 1.0 200.00 homo3 510.6 PROCESSING 0 wtfile is rfl п rfp 7 proc 1.000 fm th ft ins 65536 ai ph math f werr wexp process p1H wbs wnt wft 10 9 8 7 5 6 3 4 ppm ____ 5.45 ېب 2.46 1.18 -·_____ / 4 ہہ یہ 15 1.13 1.25 1.03 2.45 1.00

0.87

1.03

- S60 -

exp2 s2pul ΟН SAMPLE Di date Dec 18 2006 dfrg DEC. & VT 499.864 solvent CDCl3 dn HI file exp dpwi ACDUISITION dof sfiq 125,702 dm file 40 0 BnO N₃ sfiq YYY C13 dmm tn Ŵ 8 1.215 dmf 8787.35 at 65536 d.€q 26963.≤ dre≐ np 1.0 ۶Ŵ fb 15000 homo n bs 8 52 dtru2 DE C2 tpwr 0 10., dn2 1.800 dpwr2 1.44.5 dof2 p∿ d1 1 tor 0 nt 1,00 dm2 n ct 120 dmm2 not used d.cg." FLAGS С. 10000 alock gatn 1.0 11 n home, л 111 11 DEC3 dp -y dtiq⊀ 0 nn dn3 115 DISPLAY dpwr 3 1 6012.4 dofs sp 0 wμ 15093.2 dm (11 122 dmms 0 dmt≺ 250 d*∈q3 vs ٢, 10000 5 C wc 60.37 die 3 hzmm 1.0 11111.8 PROCESSING 9678-1 15 i s rf1rfp 9678.1 1b 5 wtfile 1.00 th 100.000 proc ft ins 1.31072 ai cdc ph fin math f wert wexp wbs wnt 100.994 -66.211 62.630 71.818 70.339 137.285 1 -t. ' ' L. ' ' ' ' ' ' ' ' ' ' · • • -· · · · · · · · · ·· — -. . . ----. _ - - -1 1 150 140 120 110 100 90 80 70 60 160 130 ррт

- S64 -

exp3 Carbon

- S66 -

UHL -71

Pulse Sequence: hetcor Solvent: CDC13 Ambient temperature UNITYplus-300 "nmr3a.chem.nd.edu"

Relax. delay 1.500 sec Acq. time 0.179 sec Width 11471.2 Hz 2D Width 1790.8 Hz 4 repetitions 128 increments OBSERVE C13, 75.4216934 MHz DECOUPLE H1, 299.9482565 MHz Power 40 dB on during acquisition off during delay WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz F1 DATA PROCESSING Line broadening 0.3 Hz FT size 4095 x 512 Total time 14 min, 57 sec

100

95

75

F2 (ppm)

70

65

55

60

50

85

80

90

exp1 s2pul

SAMPLE	DEC. & VT
date May 27 2008	dfrg 499.864
solvent CDC13	dn H1
file exp	dowr 30
ACOUISITION	dof 0
sfra 499.864	dm nun
tn H1	dmm C
at 5.016	dmf 200
np 65536	dseg
sw 6533.3	dres 1.0
fb 4000	homo n
bs 4	DE C 2
tpwr 61	dfrg2 0
pw 13.5	dn2
0.100	dpwr2 1
tof 269.9	dof2 0
nt 16	dm2 D
ct 16	dmm.2 C
alock n	dmf2 200
gain not used	dseq2
FLAGS	dres2 1.0
i) n	homo2 n
in n	DEC3
dp V	dfrq3 0
hs nn	dn3
DISPLAY	dpwr3 1
sp 502.5	dof3 0
WD 5004.8	dm3 n
vs 68	dmm13 C
sc 0	dinf3 200
wc 250	dseq3
hzmm 20.02	dres3 1.0
is · 100.00	homo3 n
rfl 510.6	PROCESSING
rfp 0	wtfile
th 7	proc ft
ins 1.000	fn 65536
ai ph	math f

werr wexp process plH wbs wnt wft HO NHAC

:

0HL - 72

Pulse Sequence: relayh Solvent: CDC13 Ambient temperature INOVA-500 "nmr2a.chem.nd.edu"

Relax. delay 1.300 sec COSY 90-90 Acq. time 0.172 sec Width 2970.3 Hz 2D Width 2970.3 Hz 4 repetitions 256 increments OBSERVE H1, 499.8611751 MHz DATA PROCESSING Sine bell 0.086 sec f1 DATA PROCESSING Sine bell 0.043 sec fT size 1024 x 1024 Total time 26 min, 14 sec

- S70 -

D!-L - FL Standard Proton parameters

exp2 s2pu1

SAMDLE	05	
date May 27 2008	dfra	499.864
solvent CDC13	dn	H1
file exp	dpwr	40
ACQUISITION	dof	0
sfrq 125.702	din	ууу
th C13	(រ៣៣	של רפופ
at 1.215 Da 65536	dsen	0/07.35
sw 26963.3	dres	1.0
fb 15000	homo	 n
bs 1		DEC2
tpwr 52	dfrq2	0
pw 10.2	dn2	
tof 1.800	dof2	1
ot 640	dm2	· n
ct 161	dimm 2	c
alock n	dmf2	10000
gain not used	dscq2	
FLAGS	dres2	1.0
11 n	homo2	n n
in n	dfra2	0603
hs pp	dn3	0
DISPLAY	dpwr3	Ţ
sp 1833.2	dof3	Ô
wp 20768.4	dm3	n
vs 61	dmm3	C
SC 0	dmf3	10000
wc 250 bzmm 83.07	dres3	1 0
is • 500.00	homo3	1.0
rfl 11130.7	PR	OCESSING
rfp 9710.8	16	1.00
th 7	wtfile	
ins 100.000	proc	ft
ai cac ph	tn math	1310/2
	natura	Ť
	werr	
	wexp	
	wbs	
	wnt	
~ e		
800		
202		
1		
I		

-22.972

թթտ

100.412

68.298

65,165

60

.178

T

40

77.515

80

exp1 s2pul file

- S75 -

- S77 -

DHL-21

exp1 s2pul SAMPLE D date Jan 28 2007 dfrq solvent file

9

8

7

4.79

0.96

5

0.55

L. 4

3.20

3

ц

0.99

4

ہے L

1.02

3.35

1.02

2

ppm ____ 3.19

6

Pulse Sequence: relayh Solvent: CD30D Ambient temperature INOVA-500 "inova5"

Relax. delay 1.300 sec COSY 90-90 Acq. time 0.159 sec Width 3219.4 Hz 2D Width 3219.4 Hz 4 repetitions 256 increments OBSERVE H1, 499.8631314 MHz DATA PROCLSSING Sine bell 0.080 sec F1 DATA PROCESSING Sine bell 0.040 sec FT size 1024 x 1024 Total time 25 min, 56 sec

exp2 s2pul DEC. & VT 499.866 H1 40 SAMPLE (date Jan 28 2007 dfrq solvent cd3od dn HO₂C file 40 exp dpwr ACQUISITION dof 0 TION dof 125.703 dm C13 dmm 1.215 dmf 65536 dseq 26963.3 dres 15000 homo sfrq tn уу**у** ₩ 8787.35 at BnO NH_2 np sw fb 1.0 n bs 4 DFC2 52 dfiq2 10.2 dn2 1.800 dpwr2 14.5 dof2 0 tpwr pw d 1 1 tof 0 nt 1200 dm2 n ct 56 dmm2 n dmf2 С alock 1000**0** gain not used dseq2 + LAGS 1.0 dres2 1} n homo2 n in n y dfrq3 DF C3 dр 0 hs n'n dn3 DISPLAY dpwr3 1 sp wp vs sc wc 1240.2 dof3 22640.4 dm3 0 ___129.756 129.530 n 61 (imm3 С 10000 dmf3 • 250 dseq3 90.56 dres3 500.00 homo3 1.0 h zmm İS n 7417.6 PROCESSING 6177.7 1b 1 6 wtfile rf1 rfp th 1.00 100.000 proc h fn ft ins 131072 ai cdc ph math f werr 129.252 .320 wexp wbs wnt 5 -77.153 49.490 20.210 72.833 48.810 82.312 78.986 100.695 56.859 139.026 387 181.517 68. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 T T 11 180 160 140 100 20 ppm 120 80 6 O 40

130 1	20 110	100	90 80	70	6 0	50 40	30	20 ppm
all proto	Nated carbons							
CH carbons				+	,	- -		
CH2 caibor	15							
CH3 carbon	15							
DHL-24 Pulse Sequence: dept	HO ₂ C BnO NH	2						

- S85 -

DHL - 26 - 2

exp2 s2pu1

Pulse Sequence: relayh Solvent: COC13 Ambient temperature UNITYplus-300 "nmr3a.chem.nd.edu"

Relax. delay 1.400 sec CDSY 90-90 Acq. time 0.125 sec Width 2045.6 Hz 2D Width 2045.6 Hz 4 repetitions 128 increments OBSERVE H1, 299.9468517 MHz DATA PROCESSING Sine bell 0.063 sec F1 OATA PROCESSING Sine bell 0.063 sec FT size 2048 x 1024 Total time 13 min, 29 sec

- S87 -

F2 (ppm)

DHL 27

- S94 -

DHL 2.7

٠.

- S98 -

DHI - 17

exp3 s2pu1

•

	SAMPLE		DEC	C. &	VT	
date	Feb	1 2008	dfrg		499.8	66
solver	nt	CD3CN	dn			H1
file	afs/no	I.edu∕u~	dpwr			30
ser26	dhese	/Priva~	dof			Õ
te/DHI	/DHL-4	17-H.fi~	dm		1	nn
		d	dmm			С
AC	UISITI	ON	dmrf		2	200
sfrq		199.867	dseq			
tn		H1	dres		1	.0
at		5.016	homo			n
np		65536		DEC2	2	
sw		6533.3	dfrq2			0
fb		4000	dn2			
bs		4	dpwr2			1
tpwr		61	dof2			0
pw		13.5	dm2			n
d1		0.100	(Imm2			С
tof		269.9	dmf2		2	200
nt		16	dseq2			
ct		16	dres2		1	.0
alock		n	homo2			n
qain	no	ot used		DEC3	}	
-	FLAGS		dfrq3			0
11		n	dn3			
in		n	dpwr3			1
dp		У	dof3			0
hs		nn	dm3			n
	ISPLAY	<i>(</i>	dmm3			С
sp		635.2	dm f 3		2	200
wp		3854.4	dseq3			
vs		254	dres3		1	. 0
sç	•	0	homu3			n
wc		250	PRO	DCESS	SING	
hzmm		15.42	wtfile			
İS		400.00	ргос			ft
rf l		523.8	fn		655	36
гfp		0	math			f
th		7				
ins		1.000	werr			
aí	ph		wexp	ргос	ess p	01H
			wbs			
			wnt		5	/ft

exp3 s2pu1

SAMPLE date Jan 31 20 solvent CDC file /afs/nd.edu ser26/dhesek/Pri te/DHL/DHL-47-C. ACQUISITION sfrq 75.4 tn C at 0.9 np 327 sw 17116 fb 94 bs tpwr pW 8 d1 2.0 tof 6 ct 1 alock gain not us FLAGS il in 6 tp 770 wp 12819 vs 5 sc 2 hzmm 51. is 500. rf1 6836 rfp 5807 th 10.0 al cdc ph SC 7 0.0 ct 20 tof 1 is 500. ct 20 ct DEC. & VT 08 dfrq 299. 13 dn //// va~ dof 27. fi~ dm 27. d dmm 27. d dmf 8 29 dseq 13 13 dres 57. homo DEC2 .0 dfrq2 undefi d dm72 undefi 0 dmf2 undefi 10 dfrq3 undefi 11 dm3 undefi 12 dseq3 undefi 13 undefi 1 11 dm3 undefi 12 dseq3 undefi 13 undefi 1 10 processi	949 H1 40 2.7 Yyy w D33 1.0 n n n n n n n n n n n n n n n n n n n	H ACO ACO ACO T	10 ² C 0 NHTroc 20	-75.848 76.575 -75.848 76.575 -74.116 -7.10 -71.775 -7.10 -71.775 -7.10 -68.133 -68.133	54.835 50.168 66.746				
1	F	40 12	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · ·	40	, , , , , 20	nnm

DHL-48_3

exp1 Proton

SAMP	SPECIAL					
date Feb	17 2008	temp	1		22.0	
solvent	cd3od	gaír	I I	no	t used	
file	exp	spir	1	no	et used	
ACQUISI	TION	hst 0.008				
sw	9615.4	pw90			11.100	
at	3.408	alfa	£		10.000	
np	65536		FLA	٩GS		
fb	4000	i ľ			, n	
bs	4	in			n	
SS	2	đ₽			У	
d1	1.000	hs			nn	
nt	16		PROCE	ESSI	NG	
ct	16	fn			131072	
TRANSMI	TTER		DISF	PLAY	,	
tn	H1	sp			777.2	
sfrq	599.87 9	wp			4561.9	
tof	599.8	rf]			1208.5	
tpwr	61	гfр			0	
pw	11.100	гр			-56.3	
DECOUP	LER	lp			5.8	
dn	C13		Pł	.0T		
dof	0	wc			250	
dm	nnn	SC			0	
dmm	c	VS			184	
dpwr	38	th			50	
dmrf	35088	ai	cdc	рh		

DHL-48_3

exp2 Carbon

.

5	SAMPLE	SPECIAL				
date	Feb 17 2008	temp	22.0			
solven	t cd3od	gain	not used			
file	exp	spin	not used			
ACQU	JISITION	hst 0.008				
sw	36764.7	pw90	7.500			
at	1.783	alfa	10.000			
np	131072		FLAGS			
fb	17000	i 1	. n			
bs	8	in	n			
d 1	1.220	dp	У			
nt	2400	hs	nn			
ct	224	PROCESSING				
TRAI	NSMITTER	16	0.50			
tn	C13	fn	262144			
sfrq	150.855		UISPLAY			
tof	1542.6	sp	2279.9			
tpwr	58	wp	23947.0			
pw	7.500	rf1	9725.0			
DE	COUPLER	rfp	7413.7			
din	H1	rp	19.9			
dof	0	lρ	56.1			
dan	УУУ		PLOT			
dmm	w	wc	250			
dpwr	44	SC	0			
dmf	13908	vs	390			
		th	7			
		ai	cdc ph			

. .-

pp**m**

30

- S104 -

DHL-57

expl Proton

SAMPLE		SPECIAL			
date Mar 2	6 2008	temp)		22.0
solvent	cdcl3	gair	ו	no	t used
file	exp	- Šp i r	ר	no	t used
ACQUISITI	ON	hst			0.008
sw	7225.4	_pw90)		11.100
at	3.408	alfa	a –		10.000
np	49246		FL.	AGS	
fb	4000	i 1			, n
bs	4	in			n
S S	2	dp			У
d1	1.000	hs			nn
nt	8		PROC	ESSI	NG
ct	8	fn			131072
TRANSMITT	ER		DIS	PLAY	
tn	H1	sp			-613.3
sfrq 5	99.876	wp			7225.3
tof	0	rf1			613.4
tpwr	61	rfp			0
pw	11.100	rp			143.2
DECOUPLE	R	1p			7.7
dn	C13		P	LOT	
dof	0	wc			250
dim	nnn	SC			0
ជា៣៣	c	v s			873
dpwr	38	th			45
dmf	35088	ai	cdc	ph	

25

i J

.

exp2 Carbon

•

SAMPLE		SPECIAL				
date Mar 26 200	8	temp	ר		22.0	
solvent cdcl	3 (gair	ר	no	t used	
file ex	P	spir	ו	no	t used	
ACQUISITION	· 1	hst	0.008			
sw 30487.	8	pw9()		7.500	
at 1.78	3 1	alfa	1		10.000	
np 10869	4		FL,	٨GS		
fb 1700	0	i 1 –			n	
bs	4	in			n	
d1 1.22	0 (dp			У	
nt 25	6 I	hs			nn	
ιt 6	8		PROCI	ESSI	NG	
TRANSMITTER		1b			0.50	
tn C1	3	fn			262144	
sfrg 150.85	2		DIS	PLAY		
tof -720.	0 :	sp			1.6	
tpwr 5	8 \	νp		2	7215.3	
pw 7.50	0	rf).			1668.5	
DECOUPLER		rfp.			0	
dn H	1 (r p 🦢			-128.4	
dof	0	1 p -			-4.3	
dma yy	У		PI	LOT		
dmm	ŵ I	wс			250	
dpwr 4	4 :	S C			0	
dmf 1390	8	vs			151	
	•	th			5	
	i	ai	cdc	ph		

.

exp1 s2pul

160

exp2 s2pul DEC. & VT SAMPLE date Apr 2 2008 dfrq 499.864 solvent CDC13 dn H1 40 file exp dpwr ACQUISITION 0 dof 125.702 dm sfrq ууу tn C13 1.215 dmm ŵ 8787.35 d m f at Bn0⁻ 65536 dseq np BnO⁻ 1.0 26963.3 dres OH SW BnO fb 15000 homo n bs 4 DEC2 NDMM 52 dfrq2 0 t pwr 10.2 dn2 p₩ d1 1.800 dpwr 2 1 0 tof 144.5 dof2 nt 1200 cim2 'n 104 dmm2 c ct n dmf2 10000 alock gain not used dseq2 FLAGS dres2 1.0 11 homo2 n n DEC3 in n ŝ y dfrq3 dp μų nn dn3 hs DISPLAY dpwr3 202 sp wp vs -59.9 dof3 22817.3 dm3 122 dmm3 dmf3 10000 SC 0 250 dseq3 wc hzmm 91.27 dres3 1.0 is rf**l** 500.00 homo3 n 1441.5 0 1b PROCESSING 1.00 rfp th 6 wtfile ins 100.000 proc ft 131072 ai cdc ph fn math f werr wexp wbs wnt ŝ 38.38 æ 92.876

1 1

140

100

- S110 -

120

8.558

7 1

ppm

exp1 s2pul

DH1 6.2

•

.

e×p1 s2pul

CH3 carbons

BnO BnO BnO-NDMM

27

DHL-68_1

Pulse Sequence: dept

exp3 s2pu1

exp1 s2pul

exp2 s2pu1 SAMPLE DEC. & VT date May 17 2008 dfrq 499.864 CDC13 dn H1 solvent ACQUISITION file 40 dpwr . 0 dof 125.702 dm sfry ууу w C13 dmm 1.215 dmf 65536 dseq tn at 8787.35 np 26963.3 sŵ dres 1.0 fb 15000 homo n bs 4 DEC2 52 dfrq2 0 tpwr \cap 10.2 dn2 pW OH d 1 1.800 dpwr 2 1 tof 144.5 dof2 0 0 10000 dm2 nt 13 BnO BnO сt 5381 dmm2 С or 10000 alock n dm.f2 BnO BnO N_3 OH gain not used dseq2 BnO BnO FLAGS dres2 1.0 NDMM NDMM i 1 n homo2 n DFC3 in n y dfrq3 0 28b dp nn dn3 hs DISPLAY dpwr3 1 826.8 dof3 sp 0 wp 22604.6 dm3 n vs 381 dmm3 С 0 dmf3 10000 sc wc 250 dseq3 90.42 dres3 1.0 hzmm is 500.00 homo3 n 28 rf1 1405.6 PROCESSING rfp 0 lb 4 wtfile 1.00 th 100.000 ft ins proc 131072 ai cdc ph fn f math 128.212 128.130 127.741 werr wexp wbs wnt 127 20. .469 -138.27 137.62 ഹ -129. 129. 246 37. .678 102.026 98.608 55. .906 . 80 ------**** 1 - 1 - 1 - 1 - 1 - 1 11111 1 1 1 T-1-1-T 60 120 100 80 40 20 180 160 140 ppm

Pulse Sequence: dept

;

	•
CH3	carbons

๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CH2 carbons	

I			I		
	CH carbons				
				n	

DHL -77

exp1 s2pul

	SAMPLE	5	DEC	C. & VT
date	Jun	5 2008	dfra	499.864
solve	nt	CDC13	dn	H1
file		exp	dpwn	30
AC	OUISIE	ION '	dof	0
sfro		199.864	dm	nnn
tn		H1	dmm	С
at		5.016	dmrf	20 0
np		65536	dseq	
sw		6533.3	dres	1.0
fb		4000	homo	n
bs		4		DEC2
tpwr		61	dfrq2	0
pw		13.5	dn2	
d1		0.100	dpwr2	1
tof		269.9	dof2	0
nt		16	dm2	n
ct		16	dmm 2	С
a lock		n	dm f 2	200
gain	n	ot used	dseq2	
	FI AGS		dres2	1.0
i 1		п	homo2	n
in		n		DEC3
dp		У	dfrq3	0
hs		nn	dn3	
	DISPLA	Y	dpwr 3	1
sp		791.0	dof3	0
wp		2940.1	cl m 3	n
vs		46	dmm3	с
SC		0	dm f 3	20 0
WC		250	dseq3	
hzmm		11.76	dres3	1.0
15	•	200.00	homo3	n
rfl -		510.6	PRI	DCESSING
rfp		0	wtfile	
th		7	proc	ft
ins		1.000	fn	65536
ai	ph		math	f
			werr	
			wexn .	DIUCESS DIM

AcO AcO AcO-

30

4

DHL - 77

Pulse Sequence: relayh Solvent: CDC13 Ambient temperature INOVA-500 "nmr2a.chem.nd.edu"

Relax. delay 1.300 sec COSY 90-90 Acq. time 0.219 sec Width 2334.9 Hz 2D Width 2334.9 Hz 4 repetitions 256 increments OBSERVE H1, 499.8611751 MHz DATA PROCESSING Sine bell 0.110 sec F1 DATA PROCESSING Sine bell 0.055 sec FT size 1024 x 1024 Total time 27 min, 14 sec

AcO-AcO $-N_3$ AcO NDMM

- S123 -

exp2 s2pu1

if1 11125:0 DPROCESSING iff 9707:1 b 1.00 th 6 VEF1 is cdc ph fill werr werr 99:02 vuls 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 99:02 <th>SAMPLE date Jun 5 2008 solvent CDC13 file exp ACQUISITION sfrq 125.702 tn C13 at 1.215 np 65536 sw 26963.3 fb 15000 bs 4 tpwi 52 pw 10.2 d1 1.800 bs 4 tpwi 52 pw 10.2 d1 1.800 tof 144.5 nt 64 60 alock n gain not used FIAGS 1 n in n n n n bs py 22604.6 4 5 vc 250 hzmm 90.42 500.0</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th></th> <th></th> <th>AcO AcO AcO 30</th> <th>NDMM</th> <th></th> <th></th> <th></th>	SAMPLE date Jun 5 2008 solvent CDC13 file exp ACQUISITION sfrq 125.702 tn C13 at 1.215 np 65536 sw 26963.3 fb 15000 bs 4 tpwi 52 pw 10.2 d1 1.800 bs 4 tpwi 52 pw 10.2 d1 1.800 tof 144.5 nt 64 60 alock n gain not used FIAGS 1 n in n n n n bs py 22604.6 4 5 vc 250 hzmm 90.42 500.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			AcO AcO AcO 30	NDMM			
	<pre>is . 500.00 if1 11125.0 ifp 9707.1 th</pre>	homo3 n PROCESSING 1b 1.00 wtfile proc ft fn 131072 math f werr wexp wbs wnt	T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-	· · · · · · · · · · · · · · · · · · ·	85.590 77.230 77.230 76.975 70.516 68.359		- ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰	20.696	8.824

:

,

- S124 -

DHL-77 Pulse Sequence: dept CH3 carbons 30

4

.

.

.

,

CH2 carbons	

.

1		I		
CH carbons				

- S126 -

DHL - 73

DHI - 73

exp2 s2pul DEC. & VT SAMPLE date May 30 2008 dfrq 499.864 solvent CDC13 dn Η1 40 file exp dpwr ACQUISITION 0 dof 125.702 dm C13 dmm Phsfrq уүу ٢Ο tn Ŵ Ô 1.215 dmf 8787.35 at BnO 65536 dseq 26963.3 dres np 1.0 SW fb 15000 homo л 1) S 4 DEC2 52 dfrq2 0 tpwr 10.2 dn2 pw t b 1.800 dpwr2 1 tof 144.5 dof2 0 nt 610 dm2 · n 146 cimm2 ct с 10000 alock n dmf2 not used dseq2 gain FLAGS dres2 1.0 i 1 n homo2 n in DEC3 n y dfrq3 dр 0 hs nn dn3 01SPLAY dpwi 3 1 837.5 dof3 23415.1 dm3 0 л dmm 3 111 C 10000 0 dm f 3 250 dseq3 93.66 dres3 1.0 500.00 homu3 n PROCESSING 11133.6 9707.1 lb 5 wtfile 1.00 100.000 proc ft 131072 fn math f werr wexp wbs wnt

-0

NHAc

22

OAc

0

.

0

0

- S129 -

- S130 -

DHL - 75 SAMPLE D date Jun 1 2008 dfrq solvent CDC13 dn file Accur DEC. & VT 499.864 81 30 ACQUISITION 0 dof 499.864 dm H1 dmm sfrq nnn tn С H1 dmm 5.016 dmf 65536 dseq 6533.3 dres at 200 -0 np OAc 1.0 sw fb 4000 homo n 0 bs 4 DEC2 61 dfrq2 tpwr 0 Ph-13.5 dn2 0.100 dpwr2 °Ο pw ò d1 1 NHAc 269.9 dof2 0 BnO tof 16 clm2 16 clmm2 ' n nt AcHN 31 ct C n dmf2 200 alock gain not used dseq2 FLAGS dres2 1.0 **i**1 n homo2 n. in DEC3 n y dfrq3 0 dp hs nn dn3 DISPLAY dpwr3 1 760.1 dof3 3871.8 dm3 sp 0 wp VS n 120 dmm3 C sc 0 dmf3 200 wč 250 dseq3 15.49 400.00 510.6 dres3 homo3 PROCESSING hzmm 1.0 is rfl n wtfile rfp th 0 7 proc 3.000 fm ft ins 65536 ph math ai f werr wexp process p1H wbs wint wft . 1 9 8 6 3 5 2 7 4 ppm 1.2.2 **—**--.

:

- SÌ131 -

0.89

1.16

2.80

3.11

0.87

0.65

12.43

0.55

2.75

.

5.36

0.90

5.77 3.012.96

- S132 -

DHL - 75

21.010

ppm

23,583 22,821

- S133 -

DHL ~ 75

Pulse Sequence: dept

7

2

- S135 -

DHL - 76 exp1 s2pu1 SAMPLE DEC. & VT ΟН date Jun 13 2008 dfrg 499.866 solvent DMF dn Н1 exp dpwr 30 file Ph-ACQUISITION dof frq 499.866 dm Ċ Õ dof sfrq Ò nnn NHAc tn Н1 dnam С BnO 5.016 dmf 200 at 32 AcHN 90288 dseq np 8999.9 dres 1.0 sw fb 5000 homo n bs 4 DEC2 61 dfrq2 0 tpwr 13.5 dn2 0.100 dpwr p₩ d1 dpwr2 1 269.9 0 tof dof2 nt 16 dm2 · n ct 16 dmm2 С alock n) dmf2 200 gain not used dseq2 FLAGS 1.0 dres2 i 1 n homo2 n in DEC3 n y dfrq3 0 dp n**n** dn3 hs DISPLAY dpwr3 1 sp wp vs sc wc 860.8 dof3 0 4919.6 dm3 n 158 dmm3 С 0 dmf3 200 250 dseq3 hZmm is 19.68 dres3 1.0 200.00 homo3 -825.1 PROCESSING n rf1 гfр 0 wtfile 7 proc 1.000 fm th ft **65**536 ins ai ph math f werr process p1H wexp wbs wnt wft .

.

- S137 -

DHL - 76 Pulse Sequence: relayh Solvent: DMF Ambient temperature INOVA-500 "nmr2a.chem.nd.edu" Relax. delay 1.300 sec COSY 90-90 Acq. time 0.142 sec Width 3606.9 Hz 2D Width 3606.9 Hz 16 repetitions 512 increments OBSERVE H1, 499.8607706 MHz DATA PROCESSING F 2 Sine bell 0.071 sec F1 DATA PROCESSING Sine bell 0.035 sec FT size 1024 x 1024 (ppm) Total time 3 hr, 28 min, 9 sec 0 3.6 0 0 B 0 0 3.8 OH (0) n 0- \mathbb{O} Ph-°Ο Û Ò 4.0 NHAc BnO 0 32 E C AcHN 4.2 Ô (D) \bigcirc \bigcirc C' 4.4 4.6 0 033 8 4.8 O 5.0 Ô 5.2 (__) 0 5.4-5.4 5.2 5.0 4.8 4.6 4.4 4.2 3.6 4.0 3.8 F1 (ppm)

- S138 -

.

exp2 s2pul

DHL-76 -0 Pulse Sequence: hetcor OH) Solvent: DMF Ambient temperature User: 1-14-87 INOVA-500 "nmr2a.chem.nd.edu" 0 Ph- ~ 0 O. NHAc Relax. delay 1.500 sec Acq. time 0.111 sec Width 18403.5 Hz 2D Width 3534.8 Hz BnO 32 AcHN 16 repetitions Districtions 512 increments OBSERVE C13, 125.6900811 MHz DECOUPLE H1, 499.8634194 MHz Power 40 dB on during acquisition off during delay WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz F1 DATA PROCESSING Line broadening 0.3 Hz FT size 4096 x 1024 Total time 3 hr, 53 min, 17 sec F 1 [mqq] 3.6 1 Hillson Mult 3.8 4.0 4.2 -3 4.4 4.6 4.8 5.0 5.2 1 5.4 5.6 5.8 ✦ 6.0 [*** 50 80 75 70 65 60 55 90 105 100 95 85 F2 (ppm) •

- S141 -

DHL - 82

expl s2pul SAMPLE DEC. & VT HO₂C date Jun 16 2008 dfrq 499.866 H1 solvent CD3CN dn file ACQUISITION 30 0 exp dpwr dof 499.867 H1 5.016 65536 Phsfrq dm nnn Ċ tn dmm ¢ ŃHAc 0 200 at dmf np sw fb bs tpwr dseq BnO 6533.3 dres 1.0 33 AcHN 4000 homo 4 n DEC2 61 dfrq2 13.5 dn2 0 pw d1 0.100 dpwr2 269.9 dof2 16 dm2 16 dm2 dpwr2 1 Ō tof nt · n ct ¢ alock n dmf2 200 not used dseq2 gain FLAGS 1.0 dres2 **i**1 homo2 n n DEC3 in n dfrq3 y dfrq nn dn3 0 dp hs DISPLAY dpwr3 dof3 1 sp wp vs sc wc 506.4 ō 4764.6 dm3 114 dmm3 n dmm3 с 0 250 dm f 3 200 dseq3 hzmm is rfl 19.06 dres3 1.0 143.64 homo3 n 1493.6 PROCESSING rfp th 969.7 wtfile 7 proc 3.000 fn ft 65536 f ins ph math ai werr wexp process p1H wbs wft wnt ---- ----. 10 9 8 7 6 5 3 2 4 ppm . . . ۰. فتتوط فسنتها بالمانية التوابيا قاليهم فالتماني s - 117 - 11 1.80 1.80 5.00 1.92 1.09 2.34 1.06 9.65 0.75 6.27 0.87 3.00

- S143 -

DHL - 82

Pulse Sequence: relayh Solvent: CD3CN Ambient temperature INOVA-500 "nmr2a.chem.nd.edu" Relax. delay 1.300 sec COSY 90-90 Acg. time 0.138 sec

Acq. time 0.138 sec Width 3708.5 Hz 2D Width 3708.5 Hz 16 repetitions 512 increments OBSERVE H1, 499.8638327 MHz DATA PROCESSING Sine bell 0.069 sec F1 DATA PROCESSING Sine bell 0.035 sec FT size 1024 x 1024 Total time 3 hr, 27 min, 21 sec

DHL-82

exp7 s2pul

DHL-82

Pulse Sequence: dept

CH3 carbons

CH2 carbons

.

- S147 -

0 H .CO₂Bn BnO₂C н DHL - 88 N_3 0 HN 0 exp1 s2pul SAMPLE U date Jul 17 2008 dfrq --lvent CD3CN dn --svend dpwr DEC. & VT 499.866 Н1 Ο 30 e×p ACQUISITION dof 0 sfrq 499.867 dm H1 dmm nnn BnO₂C 36 \cap tn с 5.016 2 **0** 0 at dmrf Ô np sw fb 65536 dseq \cap 6533.3 dres 1.0 Ph ٢O 4000 homo n bs 4 DE C 2 0 NHAc 61 dfrq2 0 tpwr BnO 13.5 dn2 pw d1 0.100 dpwr2 1 AcHN tof 269.9 dof2 0 nt 16 dm2 'n 16 dmm2 сt c a lock n dmf2 200 gain not used dseq2 FLAGS dres2 1.0 11 n homo2 n **DEC3** ۱n n y dfrq3 0 dp hs nn dn3 DISPLAY dpwr3 1 481.4 dof3 4627.2 dm3 sp wp vs 0 n 263 dmm3 с sc 0 dm f 3 200 wc 250 dseq3 18.51 dres3 1.0 hzmm 200.00 homo3 497.3 PROCESSING 0 wtfile is n rf) гfр proc fn th 7 ft ins 1.000 65536 ai ph math f werr process plH wexp wbs wnt wft — г 10 9 8 7 6 5 3 2 4 ppm 1_____A___ цı., L.--. 63 6.95 17.45 97 2.12 6.43 5.56 0.98 6.44 2.14 5.63 1.15 0.97 1.77 0.97 2.63 25.76 1.00 12.91

- S149 -

DHL -88

exp7 s2pu1

DHL - 89

exp3 Proton

6.5

7.0

6.0

---- 1 -- 1

5.5

0.89

5.0

2.68

SAMPLE	SPECIAL
date Oct 17 2008	temp 22.0
solvent d2o	gain not used
file /afs/nd.edu/u	l∼špin notused
ser26/dhesek/Priva	l∼ hst 0.008
te/DHL/DHL-89H.fid	l pw90 10.100
ACQUISITION	alfa 10.000
sw 4807.7	FLAGS
at 3.408	il n
np 32768	in n
fb 4000	dp y
bs 4	hs nn
d1 0.600	PROCESSING
nt 32	fn 65536
ct 32	DISPLAY
TRANSMITTER	sp 649.8
tn H1	wp 3635.8
sfrq 599.877	rfl 2495.0
tof -299.9	rfp 2885.4
tpwr 61	rp 19.9
pw 10.400	lp 3.7
DECOUPLER	PLOT
dn C13	wc 250
dof 0	sc 0
dm nnn	vs 1592
dmm c	th 9
dpwr 38	ai cdc ph
dmf 35088	

1.18 5.29 11.33 2.00 5.16 2.14 11.33 2.14

Std proton

File: xp

Pulse Sequence: gCOSY Solvent: d2o Temp. 22.0 C / 295.1 K Operator: dhesek VNMRS-600 "nmr600"

Relax. delay 1.300 sec Acq. time 0.213 sec Width 4807.7 Hz 2D Width 4807.7 Hz 12 repetitions 512 increments OBSERVE H1, 599.8743040 MHz DATA PROCESSING Sine bell 0.106 sec F1 DATA PROCESSING Sine bell 0.191 sec F1 size 8192 x 8192 Total time 2 hr, 42 min, 32 sec

DHL - 89

exp4 Carbon

SAMPLE			SPECIAL
date Oct 17 2	008	temp	p 22.0
solvent	d20	oair	n not used
file	exp	spir	n not used
ACOUISITION		hst	0.008
sw 3048	7.8	pw9(0 7.500
at 1.	783	alfa	a 10.000
np 108	694		FLAGS
fb 17	000	i1	n
bs	4	in	n
d1 1.	220	dp	v
nt 20	000	hs	nn
ct 20	000		PROCESSING
TRANSMITTER		1b	0.50
tn	C13	fn	262144
sfra 150.	852		DISPLAY
tof -71	9.9	Sp	1678.3
tpwr	58	wp	25524.3
pw 7.	500	rf1	1668.4
DECOUPLER		rfp	0
dn	Η1	rp	135.4
dof	0	10	-0
dm	VVV		PLOT
dmm	Ŵ	wc	250
dpwr	44	SC	0
dmf 15	094	vs	4182
		th	5
		ai	cdc ph

- S162 -

- S164 -

DHL-84

exp2 \$2pul

SAMPLE	DEC. & VT
date Jun 29 2008	dfrg 499.866
solvent cd3od	dn H1
file exp	dpwr 40
ACQUISITION	dof 0
sfrq 125.703	dm yyy
tn C13	dmm w
at 1.215	dmf 8787.35
np 65536	dseq
sw 26963.3	dres 1.0
fb 15000	homo n
bs 1	DEC2
tpwr 52	dfrq2 0
pw 10.2	dn2
d1 1.800	dpwr2 1
tof 144.5	dof2 0
nt 7000	dm2 n
ct 0	dmm2 c
alock n	dmf2 10000
gain not used	dseq2
FLAGS	dres2 1.0
11 n	homo2 n
in n	DEC3
dp y	dfrq3 O
hs nn	dn3
DISPLAY	dpwr3 1
sp 1565.2	dof3 0
wp 21187.2	dm3 n
vs 526	dmm 3 c
sc 0	dmf3 10000
wc 250	dseq3
hzmm 84.75	dres3 1.0
is 500.00	homo3 n
rfl 1234.2	PROCESSING
rfp D	1b 1.00
th 68	wtfile
ins 100.000	proc ft
at cdc ph	fn 131072
	math f
	werr
	Weyn

wexp wbs wnt

160

T

- S168 -

- S169 -