Synthesis, Thermal Properties and Cytotoxicity Evaluation of Hydrocarbon and Fluorocarbon Alkyl β-D-xylopyranoside Surfactants

SUPPORTING MATERIAL

Wenjin Xu,^a Gifty Osei-Prempeh,^b Fresia C. Lema Herrera,^c E. Davis Oldham,^a Renato J. Aguilera,^c Sean Parkin,^d Stephen E. Rankin,^e Barbara L. Knutson,^e and Hans-Joachim Lehmler^{*,a}

^a Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, 124 IREH, Iowa City, IA 52242, USA; ^b Department of Chemical Engineering, WVU Institute of Technology, 405 Fayette Pike, Montgomery, WV 25136, USA; ^c Department of Biological Sciences, Biosciences Research Building, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; ^d Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA; ^e Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, KY 40506, USA.

*Corresponding author: Hans-Joachim Lehmler The University of Iowa Department of Occupational and Environmental Health University of Iowa Research Park, 221 IREH Iowa City, IA 52242-5000 Phone: 1(319) 335-4211 Fax: 1(319) 335-4290 e-mail: <u>hans-joachim-lehmler@uiowa.edu</u>

Table of Content

Figure S1. ¹ H NMR spectrum of compound 8a in CDCl ₃ .	4
Figure S2. ¹³ C NMR spectrum of compound 8a in CDCl ₃ .	4
Figure S3. ¹ H NMR spectrum (300 MHz) of compound 8b in CDCl ₃ .	5
Figure S4. ¹³ C NMR spectrum (75 MHz) of compound 8b in CDCl ₃ .	5
Figure S5. ¹ H NMR spectrum (400 MHz) of compound 8c in $CDCl_3$.	6
Figure S6. ¹³ C NMR spectrum (100 MHz) of compound 8c in CDCl ₃ .	6
Figure S7. ¹ H NMR spectrum (400 MHz) of compound 8d in CDCl ₃ .	7
Figure S8. ¹³ C NMR spectrum (100 MHz) of compound 8d in CDCl ₃ .	7
Figure S9. ¹ H NMR spectrum (400 MHz) of compound 8e in CDCl ₃ .	8
Figure S10. ¹³ C NMR spectrum (100 MHz)of compound 8e in CDCl ₃ .	8
Figure S11. ¹ H NMR spectrum (400 MHz) of compound 8f in CDCl ₃ .	9
Figure S12. ¹³ C NMR spectrum (100 MHz) of compound 8f in CDCl ₃ .	9
Figure S13. ¹ H NMR spectrum (400 MHz) of compound 8g in CDCl ₃ .	10
Figure S14. ¹³ C NMR spectrum (100 MHz) of compound 8g in CDCl ₃ .	10
Figure S15. ¹ H NMR spectrum (282 MHz) of compound 9a in d ₄ -MeOH.	11
Figure S16. ¹³ C NMR spectrum (400 MHz) of compound 9a in d_4 -MeOH.	11
Figure S17. ¹ H NMR spectrum (300 MHz) of compound 9b in d ₄ -MeOH.	12
Figure S18. ¹³ C NMR spectrum (100 MHz) of compound 9b in d ₄ -MeOH.	12
Figure S19. ¹ H NMR spectrum (400 MHz) of compound 9c in d_4 -MeOH.	13
Figure S20. ¹³ C NMR spectrum (100 MHz) of compound 9c in d ₄ -MeOH.	13
Figure S21. ¹ H NMR spectrum (400 MHz) of compound 9d in d_4 -MeOH.	14
Figure S22. ¹³ C NMR spectrum (100 MHz) of compound 9d in d ₄ -MeOH.	14
Figure S23. ¹ H NMR spectrum (400 MHz) of compound 9e in d_4 -MeOH.	15
Figure S24. ¹³ C NMR spectrum (100 MHz) of compound 9e in d ₄ -MeOH.	15
Figure S25. ¹ H NMR spectrum (400 MHz) of compound 9f in d_4 -MeOH.	16
Figure S26. ¹³ C NMR spectrum (100 MHz) of compound 9f in d_4 -MeOH.	16
Figure S27. ¹ H NMR spectrum (400 MHz) of compound $9g$ in d ₄ -MeOH.	17
Figure S28. ¹³ C NMR spectrum (100 MHz) of compound $9g$ in d ₄ -MeOH.	17

Figure S29. COSY spectrum of compound 10 in $CDCl_3$.	18
Table S1. Crystal data and structure refinement for decyl β -D-xylopyranoside (9c).	19
Table S2. Selected bond lengths and angles for decyl β -D-xylopyranoside (9c).	20
Figure S30. Alternating bilayers of hydrophilic xyloside groups and hydrophobic decyl	
groups formed parallel to the a-b plane by decyl β -D-xylopyranoside (9c).	21

Figure S1. ¹H NMR spectrum (400 MHz) of compound 8a in CDCl₃.

Figure S2. ¹³C NMR spectrum (100 MHz) of compound 8a in CDCl₃.

Figure S3. ¹H NMR spectrum (300 MHz) of compound 8b in CDCl₃.

Figure S4. ¹³C NMR spectrum (75 MHz) of compound 8b in CDCl₃.

Figure S6. ¹³C NMR spectrum (100 MHz) of compound 8c in CDCl₃.

Figure S7. ¹H NMR spectrum (400 MHz) of compound 8d in CDCl₃.

Figure S8. ¹³C NMR spectrum (100 MHz) of compound 8d in CDCl₃.

Figure S9. ¹H NMR spectrum (400 MHz) of compound 8e in CDCl₃.

Figure S10. ¹³C NMR spectrum (100 MHz)of compound 8e in CDCl₃.

Figure S11. ¹H NMR spectrum (400 MHz) of compound 8f in CDCl₃.

Figure S12. ¹³C NMR spectrum (100 MHz) of compound 8f in CDCl₃.

Figure S13. ¹H NMR spectrum (400 MHz) of compound 8g in CDCl₃.

Figure S14. ¹³C NMR spectrum (100 MHz) of compound 8g in CDCl₃.

Figure S15. ¹H NMR spectrum (400 MHz) of compound **9a** in d₄-MeOH.

Figure S16. ¹³C NMR spectrum (400 MHz) of compound **9a** in d_4 -MeOH.

Figure S17. ¹H NMR spectrum (300 MHz) of compound **9b** in d₄-MeOH.

Figure S18. ¹³C NMR spectrum (100 MHz) of compound **9b** in d_4 -MeOH.

Figure S19. ¹H NMR spectrum (400 MHz) of compound **9c** in d₄-MeOH.

Figure S20. ¹³C NMR spectrum (100 MHz) of compound 9c in d₄-MeOH.

Figure S21. ¹H NMR spectrum (400 MHz) of compound **9d** in d₄-MeOH.

Figure S22. ¹³C NMR spectrum (100 MHz) of compound **9d** in d₄-MeOH.

Figure S23. ¹H NMR spectrum (400 MHz) of compound **9e** in d₄-MeOH.

Figure S24. ¹³C NMR spectrum (100 MHz) of compound **9e** in d₄-MeOH.

Figure S25. ¹H NMR spectrum (400 MHz) of compound **9f** in d₄-MeOH.

Figure S26. ¹³C NMR spectrum (100 MHz) of compound **9f** in d_4 -MeOH.

Figure S27. ¹H NMR spectrum (400 MHz) of compound **9g** in d₄-MeOH.

Figure S28. ¹³C NMR spectrum (100 MHz) of compound 9g in d₄-MeOH.

Figure S29. COSY spectrum of 10 in CDCl₃

Empirical formula	C ₁₅ H ₃₀ O ₅
Formula weight	290.40
Temperature	90.0(2) K
Wavelength	0.71070 Å
Crystal system	Monoclinic
Space group	C2
Unit cell dimensions:	
A	13.2154(6) Å
В	4.3040(2) Å
С	29.9491(16) Å
Volume	1662.03(14) Å ³
Z, calculated density	2, 1.197 mg/m ³
Absorption coefficient	0.089 mm ⁻¹
<i>F</i> (000)	660
Crystal size	0.3×0.3×0.04 mm
Theta range for data collection	2.09- 27.41°
Limiting indices	-16 < h < 16, -5 < k < 5, -38 < 1 < 38
Reflections collected/unique	2131/ 1625 [<i>R</i> (int) = 0.0535]
Completeness to $\theta = 27.41$	99.5%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	2131/1/193
Goodness-of-fit on F ²	1.017
Final R indices $[I > 2\sum(I)]$	R1 = 0.0479, wR2 = 0.0990
R indices (all data)	R1 = 0.0738, wR2 = 0.1127
Largest diff. peak and hole	0.275 and -0.206 e A^{-3}

Table S1. Crystal data and structure refinement for decyl β -D-xylopyranoside 9c.

Atoms	Bond lengths (Å)	Atoms	Bond angles (°)
O1-C5	1.432(3)	O1- C5-C4	109.8(2)
C1-C2	1.505(4)	O5- C5-O1	108.5(2)
O2-C2	1.425(3)	O5-C5-C4	107.8(2)
C2-C3	1.519(3)	C1-O1-C5	110.3(2)
O3-C3	1.432(3)	O1-C1-C2	110.8(2)
C3-C4	1.506(3).	O2-C2-C1	108.0(2)
O4-C4	1.422(3)	O2- C2-C3	109.2(2)
C4 -C5	1.515(4)	C1-C2-C3	110.4(2)
O5-C5	1.385(3)	O3-C3 C4	109.1(2)
O5 -C6	1.433(3)	O5-C6-C7	106.3(2)
C6-C7	1.518(3)	C6-C7-C8	114.8(2)
		O3-C3-C2	111.2(2)
		C4-C3-C2	112.7(2)
		O4-C4-C3	107.7(2)
		O4-C4-C5	110.5(2)
		C3-C4-C5	110.1(2)
		C5-O5-C6	115.6(2)

Table S2. Selected bond lengths and angles for decyl β -D-xylopyranoside 9c.

Figure S30. Alternating bilayers of hydrophilic xyloside groups and hydrophobic decyl groups formed parallel to the a-b plane by decyl β -D-xylopyranoside (9c).