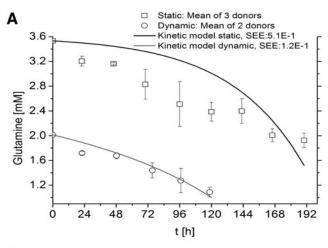
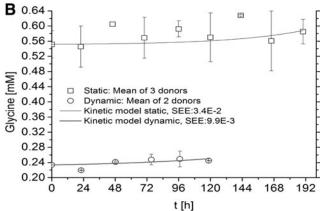
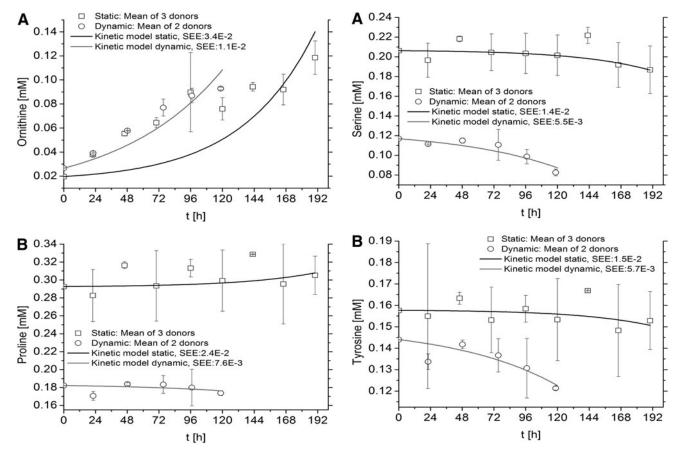

Supplementary Data


SUPPLEMENTARY FIG. S1. Nonessential amino acids have a distinct metabolism in hMSCs culture. **(A)** Alanine is secreted. **(B)** Arginine is consumed. Experimental concentrations, kinetics model, and standard error of estimates (SEE) are shown. hMSCs, human mesenchymal stem cells.


SUPPLEMENTARY FIG. S2. Nonessential amino acids have a distinct metabolism in hMSCs culture. **(A)** Both asparagine and **(B)** aspartate are consumed. Experimental concentrations, kinetics model, and SEE are shown.



SUPPLEMENTARY FIG. S3. Nonessential amino acids have a distinct metabolism in hMSCs culture. **(A)** Cysteine is secreted in static cultures and consumed in dynamic cultures. **(B)** Glutamate is secreted. Experimental concentrations, kinetics model, and SEE are shown.

SUPPLEMENTARY FIG. S4. Nonessential amino acids have a distinct metabolism in hMSCs culture. **(A)** Glutamine is consumed. **(B)** Glycine is secreted. Experimental concentrations, kinetics model, and SEE are shown.

SUPPLEMENTARY FIG. S5. Nonessential amino acids have a distinct metabolism in hMSCs culture. **(A)** Ornithine is secreted. **(B)** Proline is secreted in static culture and consumed in dynamic cultures. Experimental concentrations, kinetics model, and SEE are shown.

SUPPLEMENTARY FIG. S6. Nonessential amino acids have a distinct metabolism in hMSCs culture. **(A)** Serine and **(B)** tyrosine are both consumed. Experimental concentrations, kinetics model, and SEE are shown.

Supplementary Table S1. Specific Growth Rates (µ), Glucose (Q_{GLUC}), Lactate (Q_{LAC}), and $Y_{LAC/GLUC}$ with Standard Deviations

			Static					Dynamic			
	Donor	1	SD	2	SD	3	SD	1	SD	2	SD
Viable Cells Glucose Lactate Y _{lac/gluc}	$\mu \text{ [h}^{-1}] \times 10^{-2}$ $q_{\text{gluc}} \text{ [picomoles/cell/h]}$ $q_{\text{lac}} \text{ [picomoles/cell/h]}$ $q_{\text{la}}/q_{\text{gluc}} \text{ [-]}$	1.86 -0.4 1.2 3.08	0.1 0.2 0.4	1.85 -0.9 1.1 1.2	0.1 0.7 0.8	1.87 -0.9 2.3 2.6	0.06 0.7 0.7	1.21 -0.6 1.3 2.2	0.2 0.02 0.03	1.29 -0.62 1.2 1.9	0.1 0.03 0.04

Static cultures (three donors) and dynamic cultures (two donors).

SUPPLEMENTARY TABLE S2. AMINO ACIDS WITH SIGNIFICANT DEGRADATION RATES IN STATIC AND DYNAMIC CULTURES

			Static	Dynamic				
	$[h^{-1}]$	$\times 10^{-3} \text{ (n = 10)}$	$SD \times 10^{-3}$	\mathbb{R}^2	$\times 10^{-3} \text{ (n=7)}$	$SD \times 10^{-3}$	\mathbb{R}^2	
Arginine	k_r	1.2	0.7	0.80	2.6	1.3	0.83	
Aspartate	$k_{\rm d}$	1.1	0.7	0.74	2.1	1.0	0.83	
Asparagine	$k_{\rm p}$	1.3	0.6	0.86	1.8	1.3	0.71	
Glutamine	k_{a}	3.3	0.7	0.96	3.0	1.2	0.86	
Ornithine	$k_{\rm o}^{\rm q}$	5.7	1.8	0.89	7.3	3.6	0.79	