
Optoelectronic Reservoir Computing:

Supplementary Material

Y. Paquot1, F. Duport1, A. Smerieri1, J. Dambre2,

B. Schrauwen2, M. Haelterman1, S. Massar3∗

1Service OPERA-Photonique, Université libre de Bruxelles (U.L.B.), 50
Avenue F. D. Roosevelt, CP 194/5, B-1050 Bruxelles, Belgium

2Department of Electronics and Information Systems (ELIS), Ghent
University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium.

3Laboratoire d'Information Quantique (LIQ), Université libre de Bruxelles
(U.L.B.), 50 Avenue F. D. Roosevelt, CP 225, B-1050 Bruxelles, Belgium

∗ Corresponding author: smassar@ulb.ac.be

The supplementary material is divided in two parts. In the �rst we provide
a general introduction to the concept of Reservoir Computing, aimed towards
readers who might want to realize an experimental implementation of this con-
cept. In the second part we report some of the more technical details about the
experiments described in the paper and the equipment used.

1



An Introduction to Reservoir

Computing for Physicists and

Engineers

Introduction

Understanding how physical systems can process information is a major scien-
ti�c challenge. The tremendous progress that has been accomplished during
the past century has given rise to whole new �elds of science, such as computer
science and digital (silicon) electronics, or quantum information. Information
processing by classical analog systems is a case apart because remarkable exam-
ples are found in the biological sciences (e.g. the brain), but our understanding
is still very incomplete. Thus, we understand at the basic level many aspects
of how information is processed using biochemical reactions in cells, or how in-
formation is processed by neurons in a brain, to take two examples. But how
these elementary processes are organized at a higher level, and what is the large
scale architecture of these systems, still escapes us. Understanding these issues
would be of great conceptual interest. It could also have huge technological
repercussions, as it could completely change the way we build information pro-
cessing machines. That this tremendous scope for progress exists is illustrated
by the approximately 6 orders of magnitude gap in energy consumption between
a brain and a present day silicon computer1.

So far most work on information processing in analog systems has been based
on imitating biological systems. This has given rise to the �eld of arti�cial neural
networks. More abstract approaches have also been developed, such as hidden
Markov models, or support vector machines. Reservoir computing [2, 3, 4, 5, 6,
7, 8] provides an alternative line of attack. The interest of reservoir computing
is that 1) it proposes architectures that are quite di�erent from those studied
up to now; and 2) despite a relatively recent history -the �rst papers on the
topic date from 2002-, its performances are comparable to, and sometimes even
exceed, those of other approaches to machine learning2. A deeper understanding
of reservoir computing could provide new insights into how analog classical
systems, and in particular biological systems, process information. Additionally
it could give rise to novel approaches for implementing computation and enable
new applications.

The aim of the present text is not to duplicate existing reviews of reservoir
computing [9, 10]. Rather, we wish to present the subject from the point of

1To simulate (with a speed reduction of 2 orders of magnitude) a cat brain that con-
sumes roughly 1 Watt, the Blue Gene supercomputer consumes roughly a 106Watt. For a
presentation of the simulation, see [1]

2Machine learning is the �eld of arti�cial intelligence concerned with developing algorithms
whose response to the input -typically empirical data- improves with experience.

2



view of the physicist or engineer who wishes to build an experimental reservoir
computer. We will argue that reservoir computing provides a quite detailed,
but also quite �exible, road map towards building physical systems that process
information with architectures very di�erent from those used up to now.

Understanding Reservoir Computing

To understand the potentialities of reservoir computing, it is best to start with
an example, and then examine to what extent the example can be generalized.
Finally, on the basis of this discussion, we outline a road map for building
experimental reservoir computers.

The archetypal reservoir computer is constructed as follows. It consists of a
�nite number N of internal variables xi(n) (i = 0, ..., N −1) evolving in discrete
time n ∈ Z. The evolution of the variables xi(n) is perturbed by an external
input u(n). The evolution equations for the reservoir is:

xi(n+ 1) = tanh

[
N−1∑
i=0

aijxj(n) + biu(n)

]
, (1)

where the (time independent) coe�cients aij and bi are chosen independently
at random from a simple distribution, for instance Gaussian distributions with
mean zero and variances a2 and b2. The dynamics of this system (called the
�reservoir�) is �xed (i.e. the coe�cients aij and bi are �xed) . The dimensionality
N of the reservoir is typically much larger than the input dimensionality. Given
proper parameters a2 and b2, the reservoir will also have memory of past inputs.
The use of the tanh nonlinearity in eq. (1) is traditional, but by no means
essential, see below.

The aim of reservoir computing is to perform a computation on the input
u(n). To this end one maps the internal state of the reservoir to an output
signal denoted ŷ(n). The output should be as close as possible to a given target
function y(n). An example of this would be the detection of a stereotypical
pattern in the input sequence such as spoken digits in a stream of audio, or a
certain header in digital communication. Another example would be trying to
predict future inputs such as electrical load prediction or �nancial time-series
prediction.

The output ŷ(n) of the reservoir computer at time n is a linear combination
of the high dimensional internal states of the reservoir at time n:

ŷ(n) =

N−1∑
i=0

Wixi(n). (2)

The Wi are usually chosen as follows. For some time interval, n ∈ [1, T ] we
simulate the reservoir such that one knows both the inputs u(n) and the target
function y(n). We minimize, over this training interval, the Mean Square Error
between ŷ(n) and y(n):

3



MSE =
1

T

T∑
n=1

(ŷ(n)− y(n))2 . (3)

This can be e�ciently performed using standard linear regression techniques.
[In cases where a classi�cation of the inputs is desired, one may train several
outputs (one for each class) and then use a winner takes all approach, or one
may try to optimize the miss-classi�cation rate using techniques such as logistic
regression, Gaussian discriminant analysis, regression to the indicator function
or a linear support vector machine.] Note that in general one should apply some
form of regularization (to reduce the model complexity) to the readout function
eq. (2). To this end one uses optimization techniques that prefer models with
small parameters Wi. This is accomplished by using e.g. ridge regression.

The coe�cientsWi are now �xed and the reservoir computer is ready for use:
one can input into the reservoir new inputs u(n) and obtain the corresponding
output ŷ(n). Because of the training procedure where we ensured proper gen-
eralization, the output will continue to be close to the target function, even for
new data. It is considered good practice to check this. To this end one estimates
the performance of the reservoir in a test phase during which new inputs are
fed into the reservoir, and one compares, using the previously chosen Wi and
an appropriate error metric, how close the output is to the target function.

Several remarks are now in order:

1. For good performance, it is necessary to scale the coe�cients by a multi-
plicative factor

aij → αaij and bi → βbi .

(In other words, if the coe�cients are drawn from normal distributions
with mean zero, one adjusts the variances of the normals). These param-
eters are often called the feedback gain and input gain respectively. The
necessity for this scaling can be understood intuitively as follows: if the co-
e�cients aij are too small, then the state equation (1) is strongly damped;
if the coe�cients aij are too large, then the system has highly complex
dynamics or is even chaotic, and its behavior is very sensitive to small
changes in the input. The coe�cients bi are adjusted in order to have an
appropriate ratio between the contribution of the terms

∑
j aijxj(n) and

the source term biu(n). They also determine how non-linearly the inputs
are expanded in the reservoir states.

2. Finding the optimal values of Wi is immediate in the case of linear regres-
sion. Indeed inserting eq. (2) into eq. (3) and extremizing with respect
to Wi, one �nds that the optimal choice is

Wi =

N−1∑
j=0

R−1ij Pj (4)

whereR−1ij is the inverse of the correlation matrixRij =
1
T

∑T
n=1 xi(n)xj(n)

and Pj = 1
T

∑T
n=1 xj(n)y(n). This should be contrasted to what would

4



happen if one tried to optimize the coe�cients aij and bi. In this case
there are many more coe�cients to optimize, and furthermore it is dif-
�cult to �nd the optimal value, as one may very easily end up in local
optima. The use of a linear readout eq. (2) is thus highly advantageous.

3. Many variants on the above architecture have been investigated with suc-
cess. We can list:

(a) Using other nonlinearities than tanh, such as the biological inspired
models which approximate the way real neurons interact with each
other (spiking neuron models).

(b) Using sparse connection matrices aij (i.e. matrices with most of the
elements set to zero), so as to decrease the computational resources
required to simulate the evolution.

(c) Using multiple inputs uk(n), k = 1, ...,K. In this case one simply
adds an index to the coe�cients bi. The source term in eq. (1) thus
becomes

∑
k bikuk(n).

(d) Using the output ŷ(n) as input to the reservoir. This modi�cation
allows training the reservoir to behave as a given dynamical system
[2, 5].

4. The above approach is extremely powerful. To take two examples:

(a) Given a time series u(n) for times n = 1, ..., T , the task is to guess
the subsequent values of the time series u(T + 1), u(T + 2), ... The
time series could for instance come from the evolution of a chaotic
dynamical system, such as the Mackey-Glass system. Using the trick
3d, results which outperform all other known approaches for predict-
ing chaotic time series were obtained [5]. Reservoir computing also
won an international competition on prediction of future evolution of
�nancial time series [11].

(b) Reservoir computing has been extensively applied to speech recog-
nition. Using well known data sets, reservoir computing outper-
forms other approaches for isolated digit recognition [12, 13]. Re-
cently reservoir computing has been applied to a more complex task:
phoneme recognition. Performances comparable to the best alter-
native methods were obtained using 3 coupled reservoirs, each with
N = 20000 variables [14].

Road map for building information processing sys-

tems

The basic setup of reservoir computing, although typically implemented in soft-
ware, suggests many promising new avenues to implement computation in analog

5



dynamic systems. The theoretical requirements for reservoir computing to be
computationally universal (in the analog sense) [4] are very loose: the reservoir
is required to have fading memory, to be excitable by the input and a high di-
mensional readout must be possible. Many physical systems could be conceived
that adhere to these rules and could thus potentially be turned in universal com-
puting machines. However turning these general ideas into a working machine
in more di�cult.

If one wishes to build an experimental reservoir computer, then it is essen-
tial to understand what are the constraints, but also the design freedom. In
this respect, a number of important lessons can be learned from the example
presented in the previous section.

1. The fact that the interconnection matrix aij and the coe�cients bi in
eq. (1) are chosen at random is extremely important. It means that
�ne tuning of a large number of coe�cients is not necessary for a good
reservoir computer. Rather almost all interconnection matrices will give
good performance.

2. The fact that the tanh in eq. (1) can be changed into other non-linearities
is also extremely important. It means that one does not have to imi-
tate speci�c non-linear behavior (such as the speci�c dynamics of neurons
in a biological brain), but one can use the nonlinearities that are easily
accessible experimentally.

3. The fact that the only coe�cients that are task speci�c are the Wi (the
weights of the readout function) implies that a given dynamical system can
be used for many di�erent information processing tasks. It also implies
that one can separate the design and analysis of the reservoir itself from
the design and analysis of the readout function.

On the basis of these remarks, a reservoir computer can be built out of a dy-
namical system that satis�es the following constraints:

1. It should consist of a large number (say 50, or more, but this depends on
the task and on the speci�cs of the dynamic system) dynamical variables
which are coupled together by a non-linear evolution equation.

2. The evolution of the dynamical system can be perturbed by the external
input.

3. As much as possible, one should try to break all symmetries of the system
(this is the message coming from the fact that the aij and bi are random:
there is no residual structure/symmetry in the dynamics). To this end
one should privilege dynamical systems that depend on a large number of
random parameters.

4. A few global parameters must be experimentally tunable. These global
parameters are used to adjust the operating point of the system (typically
somwhat below the threshold of instability), and to adjust the overall

6



weight given to the external inputs (this corresponds to the scaling of the
coe�cients aij and bi).

5. It should be possible to read-out the state of a large number (better all)
of the dynamical variables, or at least to construct the readout function
y =

∑
iWixi with adjustable weights Wi. Note that a reservoir computer

can function satisfactorily even if only a subset of the dynamical variables
are read out.

Once these constraints are satis�ed, one can proceed to test the system (either
using numerical simulations, or using the experimental realization). In the reser-
voir computing literature, there exists a series of (somewhat) standardized tests
on which to evaluate the performance of the system. Some of these tests have
a theoretical justi�cation (e.g. linear memory capacity); others are interesting
tasks which have been often used by the community. These tasks thus pro-
vide benchmarks with which to compare the performances of di�erent reservoir
computers. Possible tasks to study include:

1. Linear memory capacity and memory function [3]. In this task the target
function y(n) = u(n − k) is simply the input k time steps in the past.
Performance on this task indicates how well the reservoir's state can be
used to recover past inputs. If the linear memory capacity is small, then
the reservoir will be unable to carry out tasks that require long memory
of the input.

2. Non-linear memory capacity, see [15, 16]. In this task the target function
is a non-linear function of the past inputs, for instance the product y(n) =
u(n−k)u(n−k′). Performance on this task measures how much non-linear
processing of the input is carried out by the reservoir.

3. Simulating speci�c Nonlinear Auto Regressive Moving Average (NARMA)
systems. For the NARMA tasks, the aim is to use the reservoir to simulat
the response of a NARMA system driven by a random input. Two variants
are widely used: a 10th order system (NARMA10) introduced in [17], and
the more di�cult 30th order system (NARMA30) (see for instance [18] for
a de�nition).

4. Predicting the evolution of the trajectory of chaotic attractors such as the
attractor of the Mackey-Glass system [5].

5. Speech recognition: Several benchmarks have been published, going from
Japanese vowel recognition [13], to isolated spoken digits [12], to phoneme
recognition [14].

This (non-exhaustive) list of benchmarks provides a natural road-map for future
experimental reservoirs. First master easy tasks such as signal classi�cation,
or isolated digit recognition. Then go on to moderately harder tasks such as
NARMA10 or NARMA30. Finally, one can imagine tackling hard tasks such
as phoneme recognition. In all cases, measure the linear and nonlinear memory

7



functions, as they will give task independent information on how the reservoir
is processing information.

This road-map is appealing. Steps along it have been followed using reser-
voirs based on water waves in a bucket [19], on the cerebral cortex of a cat [20],
on analog VLSI chips [21], using a (numerically simulated) array of coupled
semi-conductor optical ampli�ers [22]. However it is only very recently that it
has been possible, using an electronics implementation and a delayed feedback
loop, to demonstrate an analog reservoir computer with performance compara-
ble to that of digital reservoirs on a non trivial task (in this case isolated digit
recognition) [23].

Open questions and perspectives

The above road map leaves open a number of important questions. We outline
the most obvious:

1. E�ect of noise. In experimental realizations of reservoir computing, there
will inevitably be noise and imperfections. How will these a�ect the perfor-
mance of the scheme? There has not been an exhaustive analysis of this
issue, but a few remarks are in order. One should distinguish between
noise within the reservoir itself and noise in the readout.

(a) Noise in the reservoir itself is deleterious. However, reservoir comput-
ers can continue to work even with moderate levels of noise. Indeed
the noise can be viewed as an unwanted input, and the aim is to
perform the desired task while ignoring this second unwanted input.
A possible approach to counteract the e�ect of noise would simply be
to increase the size of the reservoir. But this remains to be studied
in detail.

(b) Noise in the readout can be bene�cial. Indeed adding noise to the
readout is a trick, equivalent to ridge regularization, often used in
numerical simulations to increase the robustness of reservoirs.

2. Best non-linearity. Experience with digital simulations of reservoirs shows
that sigmoidal nonlinearities, such as tanh, give very good performance.
However in experimental realizations, other nonlinearities may be much
easier to implement. Experience suggests that the best non-linearity de-
pends to some extent on the task at hand. Also sub-optimal nonlinearities
can presumably be compensated by increasing the size of the reservoir.

3. Continuous time and continuous space. In numerical simulations, it is by
far easier to work with a discrete set of variables xi(n), i = 0, ..., N − 1
evolving in discrete time n ∈ Z. But in experimental systems, it is of-
ten much more natural to work with continuous variables and continuous
time. A theory of reservoir computing operating with continuous vari-
ables evolving in continuous time remains to be written, although some
theoretical progress has been made along these lines [24].

8



Finally, what is the future of experimental reservoir computing? On the one
hand the quest is fundamental: can we build analog systems that perform high-
level information processing? Will we in this way gain new insights into how
biological information processing systems operate? On the other hand experi-
mental reservoir computers could ultimately have practical applications. Indeed
they are based on architectures completely di�erent from those used in present
day digital electronics. Presumably the place to look for applications is at the
frontier where digital electronics has di�culty coping, such as information pro-
cessing at ultra high speeds, or with ultra low energy consumption, or for tasks
which are hard to code using standard programming methods.

9



Experimental System, Numerical

Simulations, Tasks

Here we describe in more detail our experimental system (schematized in Fig. 1
of the main text), the algorithm used to simulate it numerically, and the tasks
we study to validate its performance as a reservoir.

Undriven system

We �rst consider the free running dynamics of our system, in the absence of
input.

The light source consists of a NLK1556STB 20 mW laser diode at the wave-
length 1564nm (in the standard C band of optical telecommunication). It pro-
duces a time independent intensity I0.

The light passes through an intensity modulator (Photline MXAN-LN LiNbO3

Mach-Zehnder modulator) driven by a time dependent voltage V (t). The light

intensity just after the modulator is I (t) = I0 cos
2
(
π V (t)

2Vπ
+ φ

)
where Vπ is a

constant voltage (the voltage which is needed to go from a maximum to the next
minimum of light at the output of the modulator, which in our case is ≈ 6V )
and φ can be adjusted by applying a DC bias voltage to the modulator. Taking
φ = 3π/4 + ϕ allows us to rewrite

I (t) =
I0
2

+
I0
2
sin

(
πV (t)

Vπ
+ ϕ

)
. (5)

The light passes trough a tunable optical attenuator, enabling the adjust-
ment of the loop's gain through the variation of the value I0. It propagates
through a long spool of �ber (1.7 km of single mode SMF-28 optical �ber
in our experiment), and is then detected by a photodiode integrated with
a transimpedance ampli�er. The resulting voltage is ampli�ed again (by a
RF ampli�er with a �xed gain of 27dB) to produce the voltage V (t) that
drives the intensity modulator. In our experiment, the photodiode (a TTI
TIA-525 with its transimpedance ampli�er, nominal bandpass of 125 MHz)
and RF ampli�er operate in a linear regime, hence V (t) is proportional to
I (t− T ) where T is the round trip time of the oscillator. However, one must
take into account that the photodiode acts as a lowpass �lter and that the
RF ampli�ers act as highpass �lters. Both the photodiode and the ampli�ers
also add noise. Thus, approximating the �lters by �rst order �lters, we have

Ṽ (ω) = A ω0

ω0+jω
jω

ω1+jω
ejωT

(
Ĩ (ω) + ñ (ω)

)
where j is the imaginary unit, tilde

denotes the Fourier transform, A denotes the ampli�cation factor, ω1 � ω0

are the cuto� frequencies of the resulting bandpass �lter, and n(t) is the white
noise. In the time domain we have V (t) = AFω0ω1

(I (t− T ) + n (t)) where
Fω0ω1

denotes the linear bandpass �lter.

10



Because of the high pass �lter, we can use as variable the �uctuations around

the mean intensity. We de�ne x (t) = I(t)−I0/2
I0/2

(i.e., we rescale the intensity I(t)

to lie in the interval [−1,+1]) whereupon eq. (5) becomes

x (t) = sin

(
αFω0ω1

(
x (t− T ) + n (t)

I0

)
+ ϕ

)
(6)

where α = πAI0
Vπ

is experimentally adjustable by changing the input light inten-
sity I0. Experimentally it can be tuned over the range α ∈ [0, 4.2].

Typical values of the parameters are T = 8.5µs, ω0/2π = 125MHz, ω1/2π =
50kHz, and the amplitude of n (t) /I0 is approximately 3.5%. At the output of
the intensity modulator, an optical splitter enables us to take approximately
3% of the optical signal in order to measure the optical intensity in the �ber by
the mean of a second ampli�ed photodiode (another TIA-525). The resulting
voltage is digitized with a National Instrument PXI card at the sample rate of
200 megasamples per second, or can be measured with a digital oscilloscope.

If we increase I0 gradually, the intensity I (t) undergoes a bifurcation di-
agram typical of nonlinear dynamical systems. Figure 1 shows the excellent
agreement between the experimentally observed bifurcation diagram and the
one obtained by numerical simulations of the evolution equations (with the bias
ϕ = 0). In this bifurcation diagram, the number of bifurcations before reach-
ing chaotic behavior is strongly a�ected by the amount of noise in the system.
Comparing this bifurcation diagram to simulations is the most precise way we
have to estimate the amount of noise in our experimental setup. The estimated
value is in agreement with measurements carried out on each component of the
setup separately. We also veri�ed that the thickness of the branches inside the
bifurcation diagram is mainly due to the noise level of oscilloscope.

Driven system

We now consider the addition of an input term. The input is characterized by a
new time scale T ′ ≤ T . The scalar input u (n) (evolving in discrete time n ∈ Z)
and the input mask bi are transformed into a continuous input s (t) as follows:

s (t) = biu (n) for t ∈
[
nT ′ +

iT ′

N
,nT ′ +

(i+ 1)T ′

N

]
, i = 0, . . . , N−1 , n ∈ Z

(7)
where N is the number of nodes in the reservoir. The input mask values bi,
i = 0, ..., N − 1 are randomly chosen from a given distribution (which may
depend on the task). The time scale θ over which the input s (t) changes is:

θ =
T ′

N
. (8)

A voltage proportional to s (t) is generated by a National Instruments PXI-
5422 function generator (with a 16 bit resolution and a sample rate of 200

11



MSamples/s) and added to the output voltage of the ampli�ed photodiode using
a RF combiner placed at the entrance of the RF ampli�er. So the voltage V (t)
that drives the intensity modulator is a combination of the light intensity and
the input signal. The dynamical equations thus become

x(t) = sin

(
αFω0ω1

(
x (t− T ) + n (t)

I0

)
+ βFω1

(s (t)) + ϕ

)
(9)

where β is experimentally adjustable by varying the output voltage amplitude
of the function generator. In this equation, we take into account that the RF
combiner is placed before the RF ampli�er, and therefore that the source term is
a�ected by the highpass �lter Fω1

of the RF ampli�er. Because of the di�erence
between the time scales T and ω1/2π, the e�ect of the �lter Fω1

is almost
negligible. Its main e�ect is to ensure that the e�ective source signal Fω1

(s (t))
has mean value zero.

In our experiments we take T = 8.5µs. The number N of variables is taken
in the range 50− 200. We take T ′ = N

N+1T (see �gure 2). Thus for N = 50, we
have θ = 167ns. The performance of the reservoir does not depend on the exact
value of T ′ chosen, as long as T ′/T is not a simple fraction (such as 1, 3/4, or
1/2), which would divide our reservoir into di�erent independent subsystems.

Discretized dynamics

To obtain the discretized dynamics, we discretise the intensity along the �ber
according to

xi(n) ' x
(
nT ′ +

(
i+

1

2

)
θ

)
i = 0, . . . , N − 1 = T ′/θ (10)

where we suppose that θ = T ′/N = T/ (N + k) with k integer (see �gure 2).
We thus have that the physical time t is related to n, i, k through

t = nT ′ +

(
i+

1

2

)
θ =

(
nN +

(
i+ 1

2

))
T

N + k
. (11)

Upon neglecting the e�ects of the �lters Fω0
and Fω1

we obtain the discretized
version of eq. (9), which reads

xi (n) =

{
sin (αxi−k (n− 1) + βmiu (n) + ϕ) k ≤ i < N

sin (αxN+i−k (n− 2) + βmiu (n) + ϕ) 0 ≤ i < k
(12)

Note that the absence of synchronisation (T ′ 6= T , or equivalently k > 0)
completely modi�es the dynamics by coupling the discretised variables xi to
each other. Note also that the wrap around e�ect (the second line in eq. (12))
does not appear in traditional reservoir computing.

12



Numerical simulations

Two di�erent numerical models were developed to study the capabilities of the
network: a 'discretized' model, closer to the standard formulation of Echo State
Networks, and a 'continuous' model, which is as close as possible to our experi-
mental apparatus.

In the 'discretized' version of the model we implement the discretization
described by eq. (12). No noise is considered, and the bandpass e�ects of the
various components are neglected. The sine nonlinearity and the topology of the
network are preserved. The optimal operating point of the system is found by
tuning the parameters α and β in eq. (12). This model is used to set a perfor-
mance goal for our experimental system: if the performance of the experiment
is close to the one of the model, then our system is robust enough with respect
to the noise and the e�ects introduced by each of its components. Moreover,
the performance of the 'discretized' model is the same, within the experimen-
tal error, to the one of traditional networks as reported in [25], allowing us to
validate the chosen nonlinearity and topology as good choices for a reservoir
computer.

The 'continuous' Matlab model we developed is instead as close as pos-
sible to the experiment. All the signals in the simulation are discretized at
200 MSamples/s. This corresponds to the sample rate of the arbitrary wave-
form generator and the digitizer. All the components are represented by their
transfer function at their respective operating point (sine function for the Mach-
Zehnder modulator, responsivity and transimpedance gains of the photodiodes,
gain of the ampli�er). The collective frequency response of all the components
is represented by a bandpass �lter with �rst order slopes. This is a reasonable
approximation to the exact slope of the bandpass �lters which was measured
using a vector network analyzer in open loop con�guration. Noise is added to
the signal at each noisy element of the system (dark current of the photodiode,
noise added by each ampli�er...).

The dynamics of the model correspond very closely to the experiment. This
is illustrated for instance by the clear agreement of the simulated and measured
bifurcation diagram (see �g. 1) and by the clear agreement of the simulated
and measured performances on the channel equalization task, see Fig. 4 in the
main text.

The continuous model allows us to easily explore the sensitivity to parame-
ters, such as noise level or the shape of the nonlinearity, which can't always be
reached with the experiment.

Post processing

The light intensity I(t) in the �ber loop is converted to a voltage by a TIA-
525 photodiode and recorded by the digitizer operating at 200MS/s. From
the intensity I(t) recorded during a time T ′ we extract N discrete variable
values xi(n), i = 0, ..., N − 1. This is carried out as follows. The intensity I(t)

13



is divided into N pieces of duration θ. We neglect the �rst quarter and the
last quarter of the data points recorded over the duration θ and associate to
xi(n) the average of the remaining data points. This procedure in which the
beginning and end of each interval θ is omitted allows us to not be a�ected by
the transients as the intensity goes from one value to the other, and also allows
an e�cient synchronization of our system. The estimator ŷ(n) is then obtained
by taking a linear combination ŷ(n) =

∑
iWixi(n) where the weights Wi are

optimized. This post processing is carried out o�ine, on a computer. Fig. 2
shows an example of the input sent to the reservoir, the reservoir response and
the discretization operated on the reservoir output.

Tasks

In our work we considered several tasks. We review them in detail.

Signal classi�cation

This is a simple task that we use for a �rst evaluation of the performance of
the reservoir. The input u(n) to the system consists of random sequences of
sine and square waves discretized into 12 points per period. The mask values bi
are drawn from the uniform distribution over the interval [0,+1]. The reservoir
size is taken to be N = 50. The output ŷ(n) should be 1 when the signal is
the square wave, and 0 when it is the sine. The weights Wi are obtained by
minimizing the MSE between ŷ(n) and the ideal output. Experimentally we
obtain NMSE ' 1.5 10−3 , which corresponds to essentially perfect operation
for this task. These experimental results are in close agreement with those
obtained using numerical simulations of our reservoir. This performance was
obtained at an attenuation of −0.5 dB and an input gain of 10.5. For this task,
we obtained the best results by shifting the bias ϕto π/4.

For comparison, practically the same task was studied previously in [22]. An
error rate (percentage of time the signal was misclassi�ed) of 2.5% was obtained.

Nonlinear channel equalization

The task is to reconstruct the input d(n) ∈ {−3,−1,+1,+3} of a noisy nonlinear
wireless communication channel, given the output u(n) of the channel. The
relation between d(n) and u(n) is

q(n) = 0.08d(n+ 2)-0.12d(n+ 1) + d(n) + 0.18d(n-1)

-0.1d(n-2)) + 0.091d(n− 3)�0.05d(n− 4) (13)

+0.04d(n-5) + 0.03d(n-6) + 0.01d(n− 7)

u(n) = q(n) + 0.036q(n)2 − 0.011q(n)3 + ν(n) (14)

14



where ν(n) represents i.i.d. Gaussian noise with zero mean, adjusted in power to
yield signal-to-noise ratios ranging from 12 to 32 dB. This task was introduced in
[26] and it was shown in [5] that reservoir computing could signi�cantly improve
performance on this task.

In our study, the input mask is taken to be uniformly distributed over the
interval [−1,+1]. The reservoir size is taken to be N = 50. To perform the task,
we �rst obtain an estimator ŷ(n) of the input by minimizing the MSE between

ŷ(n) and d(n). We then obtain an estimator d̂(n) by replacing ŷ(n) by the
discretized value {−3,−1,+1,+3} to which it is closest. Finally we estimate the

Symbol Error Rate (SER), i.e., the fraction of time that d̂(n) di�ers from d(n).
The performance of the network is calculated as the average performance over
10 di�erent input sequences, in which the �rst 3000 samples form the training
set and the following 6000 samples form the test set. The SER on the test set
is then studied as a function of Signal to Noise Ratio at the input. The values
reported in Figure 4 in the main text are the average SER for 10 di�erent trials,
while the error bars represent the standard deviation of the SER for the same
trials. It should be noted that 6000 test steps are the maximum number of steps
that the arbitrary waveform generator in our setup allows. Hence, when SERs
approach 10−4, our average SERs include trials where two errors, one error, or
no error at all have been made by the reservoir. This means that the error
bars on the experimental data where SERs are close to 10−4 are only roughly
estimated. In contrast, data from simulations do not su�er from this e�ect,
as we can arbitrarily increase the number of test samples for a more precise
measurement.

For comparison, at a SNR ratio of 28dB, the three models studied in [26]
gave SER of 2 · 10−3,4 · 10−3,1.5 · 10−2, while the reservoir studied in [5] gave
SERs of 1 ·10−4 to 1 ·10−5. At the same SNR of 28dB, our experimental system
gives a SER of 1.3 · 10−4.

The optimal working point for this test actually depends on the signal-to-
noise ratio. For SNRs of 32, 28 and 24 dB the best working point was at 1.66
input gain, −4.2 dB attenuation. For a SNR of 20 dB the best working point
was at 1.23 input gain, −3.5 dB attenuation; for a SNR of 16 dB it was at
0.85 input gain and −2.8 dB attenuation; �nally, for a SNR of 12 dB the best
working point was at 1.44 input gain, −2.8 dB attenuation.

NARMA10

In this task the aim is to reproduce the behavior of a nonlinear, tenth-order
system with random input drawn from a uniform distribution over the interval
[0, 0.5]. The equation de�ning the target system is given by

y(n+ 1) = 0.3y(n) + 0.05y(n)

(
9∑
i=0

y(n− i)

)
+ 1.5u(n− 9)u(n) + 0.1 (15)

For this task, the mask is uniformly distributed over [0,+1] and the reservoir

15



size is N = 50. We �rst train our system using 1000 time steps, then we test the
system on a new sequence of 1000 inputs. The performance of the reservoir is
measured by the Normalized Mean Square Error of the estimator ŷ(n), averaged
over 10 di�erent pairs of train and test sequences. For this NARMA10 task,
the best performances (NMSE = 0.16 for the discretized simulation, 0.168 for
the continuous simulation and 0.167 for the experiment ) are obtained in a very
linear regime, at an input gain of 0.55 and an attenuation of −0.5 dB.

Isolated spoken digit recognition

For the isolated spoken digit recognition task, the data is taken from the NIST
TI-46 corpus [27]. It consists of ten spoken digits (0...9), each one recorded ten
times by �ve di�erent female speakers. These 500 spoken words are sampled at
12.5 kHz. This spoken digit recording is preprocessed using the Lyon cochlear
ear model [28]. The input to the reservoir uj(n) consists of an 86-dimensional
state vector (j = 1, ..., 86) with up to 130 time steps. The number of variables
is taken to be N = 200. The input mask is taken to be a N × 86 dimensional
matrix bij with elements taken from the the set {−0.1,+0.1} with equal prob-
abilities. The product

∑
j bijuj(n) of the mask with the input is used to drive

the reservoir. Ten linear classi�ers ŷk(n) (k = 0, ..., 9) are trained, each one
associated to one digit. The target function for yk(n) is +1 if the spoken digit is
k, and -1 otherwise. The classi�ers are averaged in time, and a winner-takes-all
approach is applied to select the actual digit.

In our study, the 500 spoken words are divided in �ve subsets. We trained
the reservoir on four of the subsets, and then tested it on the �fth one. This
is repeated �ve times in order to use each subset as test part. In this way we
can test our system over all the speakers and digits, and compute an average
performance . The performance is given in terms of the Word Error Rate, that
is the fraction of digits that are misclassi�ed. We obtain a WER of 0.4% which
correspond to 2 errors in 500 recognized digits; the best operating point is at
an input gain of 1.66 and a feedback gain of −0.9 dB .

For comparison, in [29], where Reservoir Computing was �rst used on this
spoken digit benchmark, a WER of 4.3% was reported for a reservoir of size
1232. In [12] a WER of 0.2% was obtained for a reservoir of size 308 and using
the winner-takes-all approach. In [30] a WER of 1.3% for reservoirs of size
200 is reported. The experimental reservoir reported in [23] gives a WER of
0.2% using a reservoir of size 400. The Sphinx-4 system [31] uses a completely
di�erent method based on Hidden Markov Models and achieves a WER of 0.55%
on the same data set.

16



Figure 1: Simulated (left panel) and measured (right panel) bifurcation dia-
gram. The vertical axis (output states) is proportional to the optical intensity
in the optical �ber for the simulations, and to the voltage at the output of the
readout photodiode for the measurements (this voltage is equal to de optical
intensity multiplied by the gain of the ampli�ed photodiode). The gray scale
represents the histogram of optical intensities inside the system as a function of
the feedback gain. When the feedback gain is lower than unity, only one value
of the light intensity is possible. For feedback gain slightly larger than unity,
the light intensity oscillates between two values. For even larger feedback gain
(around 2), the nonbijective nature of the Mach-Zehnder modulator's transfer
function leads to oscillation between multiple light intensity levels or even to a
chaotic behavior. The number of bifurcations before reaching the chaotic be-
havior is determined by the amount of noise inside the system. The thickness
of the branches in the measured bifurcation diagram is due to the noise added
by the oscilloscope.

17



1 2 3 4 5 6 7

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

N
e

tw
o

rk
 s

ta
te

0.9 1 1.1 1.2 1.3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

N
e

tw
o

rk
 s

ta
te

4 4.1 4.2 4.3 4.4 4.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

T’

θ

x 10
−5

x 10
−5

x 10
−5

Figure 2: Operation of the experimental reservoir. The blue line represents
the masked input driving the reservoir; the red line represents the reservoir
response to the depicted input as measured by the oscilloscope. Both have been
normalized so that their values lie between -1 and 1 for the whole length of
the experiment. The white squares along the red line represent the discretized
values of the reservoir states, obtained by averaging the reservoir output on a
time interval of durationθ/2. The upper part of the �gure shows the reservoir
operation for the �rst 8 inputs of the reservoir; note that the input is zero up
to t ≈ 0.8 · 10−5. The bottom left panel shows a detail from the measurement
on the response to the very �rst input value, when no feedback is present yet,
and we only see the instantaneous response of the Mach-Zehnder. The panel on
the bottom right depicts the response of the system to the 5th input, where the
e�ect of the feedback is clearly visible: the amplitudes of the reservoir states are
no longer just related to the instantaneous input, but are in�uenced by previous
inputs as well.

18



REFERENCES

References

[1] Ananthanarayanan, R., Esser, S. K., Simon, H. D., and Modha, D. S.
The cat is out of the bag: cortical simulations with 1�09 neurons, 10�13
synapses. Proc. Int. Conference for High Performance Computing, Net-
working, Storage and Analysis (SC '07), 1�12, (2007).

[2] Jaeger, H. The "echo state" approach to analysing and training recurrent
neural networks. Technical Report GMD Report 148, German National
Research Center for Information Technology (2001).

[3] Jaeger, H. Short term memory in echo state networks. Technical Report
GMD Report 152, German National Research Center for Information Tech-
nology (2001).

[4] Maass, W., Natschlager, T., and Markram, H. Real-time computing with-
out stable states: A new framework for neural computation based on per-
turbations. Neural Comput., 14, 2531�2560 (2002).

[5] Jaeger, H. and Haas, H. Harnessing nonlinearity: predicting chaotic sys-
tems and saving energy in wireless communication. Science (New York,
N.Y.), 304, 78�80 (2004).

[6] Steil, J. J. Backpropagation-decorrelation: online recurrent learning with
O(N) complexity. Proceedings of IJCNN '04, 1, 843�848 (2004)

[7] Legenstein, R. and Maass., W. What makes a dynamical system computa-
tionally powerful?, In Haykin, S., Principe, J., Sejnowski, T., McWhirter,
J., editors, New Directions in Statistical Signal Processing: From Systems
to Brain, pages 127�154. MIT Press (2005).

[8] Verstraeten, D., Schrauwen, B., D'Haene, M., and Stroobandt, D. An
experimental uni�cation of reservoir computing methods. Neural Netw.,
20, 391�403 (2007).

[9] Luko²evi£ius, M. and Jaeger, H. Reservoir computing approaches to re-
current neural network training. Computer Science Review, 3, 127�149
(2009).

[10] Hammer, B., Schrauwen, B., and Steil, J. J. Recent advances in e�cient
learning of recurrent networks. In Proceedings of the European Symposium
on Arti�cial Neural Networks, 213�216 (2009).

[11] http://www.neural-forecasting-competition.com/NN3/index.htm.

[12] Verstraeten, D., Schrauwen, B., and Stroobandt, D. Reservoir-based tech-
niques for speech recognition. In The 2006 IEEE International Joint Con-
ference on Neural Network Proceedings, 1050�1053 (2006).

19



[13] Jaeger, H., Lukosevicius, M., Popovici, D. and Siewert, U. Optimization
and applications of echo state networks with leaky-integrator neurons. Neu-
ral Netw., 20 , 335�52 (2007).

[14] Triefenbach, F., Jalalvand, A., Schrauwen, B., and Martens, J. Phoneme
recognition with large hierarchical reservoirs. Advances in Neural Informa-
tion Processing Systems, 23, 1�9 (2010).

[15] Verstraeten, D., Dambre, J., Schrauwen, B., and Massar, S. Linear and
nonlinear memory capacity of dynamical systems. in preparation.

[16] Verstraeten, D., Dambre, J., Dutoit, X., and Schrauwen, B. Memory versus
non-linearity in reservoirs. In The 2010 International Joint Conference on
Neural Networks (IJCNN), 1�8 (2010).

[17] Atiya, A. F. and Parlos, A. G. New results on recurrent network training:
unifying the algorithms and accelerating convergence. IEEE T. Neural
Netw., 11, 697�709 (2000).

[18] Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J. J., and
Stroobandt, D. Improving reservoirs using intrinsic plasticity. Neurocom-
puting, 71, 1159�1171 (2008).

[19] Fernando, C. and Sojakka, S. Pattern recognition in a bucket. In Banzhaf,
W., Ziegler, J., Christaller, T., Dittrich, P. and Kim, J., editors, Advances
in Arti�cial Life, volume 2801 of Lecture Notes in Computer Science, 588�
597. Springer Berlin / Heidelberg (2003).

[20] Nikolic, D., Häusler, S., Singer, W., and Maass, W. Temporal dynamics
of information content carried by neurons in the primary visual cortex.
Advances in Neural Information Processing Systems, 19, 1041�1048 (2007).

[21] Schürmann, F., Meier, K., and Schemmel, J. Edge of chaos computation
in mixed-mode vlsi - a hard liquid. In Advances in Neural Information
Processing Systems. MIT Press (2005).

[22] Vandoorne, K. et al. Toward optical signal processing using photonic reser-
voir computing. Opt. Express, 16, 11182�92 (2008).

[23] Appeltant, L. et al. Information processing using a single dynamical node
as complex system. Nat. Commun., 2, 468 (2011).

[24] Hermans, M., and Schrauwen, B. Memory in linear recurrent neural net-
works in continuous time. Neural networks : the o�cial journal of the
International Neural Network Society, 23, 341�55 (2010).

[25] Rodan, A. and Tino, P. Simple deterministically constructed recurrent
neural networks. Intelligent Data Engineering and Automated Learning -
IDEAL 2010, 267�274 (2010).

20



[26] Mathews, V. J. and Lee, J. Adaptive algorithms for bilinear �ltering.
Proceedings of SPIE, 2296, 317�327 (1994).

[27] Texas Instruments-Developed 46-Word Speaker-Dependent Isolated Word
Corpus (TI46), September 1991, NIST Speech Disc 7-1.1 (1 disc) (1991).

[28] Lyon, R. A computational model of �ltering, detection, and compression in
the cochlea. In ICASSP '82. IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 1282�1285. IEEE (1982).

[29] Verstraeten, D., Schrauwen, B., and Stroobandt, D. Isolated word recog-
nition using a liquid state machine. In Proceedings of the 13th European
Symposium on Arti�cial Neural Networks (ESANN), 435�440 (2005).

[30] Rodan, A. and Tino, P. Minimum complexity echo state network. IEEE
T. Neural Netw., 22, 131�44 (2011).

[31] Walker, W. et al. Sphinx-4: a �exible open source framework for speech
recognition. Technical report, Mountain View, CA, USA (2004).

21


