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Problems with Median Fluorescence Intensity (MFI). If we are given a
random sample from a probability distribution that is symmetric
about a particular point, then that point is both the mean value
and the median of the underlying distribution. Call it μ. One such
symmetric distribution is the normal, or Gaussian, distribution.
The sample mean value, the arithmetic mean (X̄) of the cited
random sample, is what is termed a complete, minimal sufficient
statistic for μ (1). It follows from theoretical developments that in
terms of minimizing variance there is no unbiased function of the
random sample that is better than X̄ (1). However, when the un-
derlying distribution of the data is Gaussian, then the sample
median of the random sample is a reasonably good estimator
of μ, with theoretical variance only 1.57 times the theoretical var-
iance of X̄ (1). Further, the sample median is robust to outlying
observations. Therefore, it may be slightly surprising that in com-
paring concentrations, as we do in this paper, one can do so much
better than conventional sample medians do.

Huber’s robust method of estimation, which we have applied
to estimating fβijg grew from his interest in estimating μ under a
particular set of mixture models, which are Gaussian only when
one component is absent. We discussed deviation from normality
of bead data and observed that the sample mean is very sensitive
to outliers or the scale of the distributions of bead measurements.
We add that there are problems estimating the variance of a sam-
ple median because the variance is inversely proportional to the
square of the underlying probability density evaluated at the po-
pulation median (1). Estimating the value of a density, let alone
the reciprocal of its square, is difficult. Indeed, no matter how one
estimates the variance of the median, even for large sample sizes,
a t-like statistic for comparing sample medians may not lend itself
to comparisons, not least here, where sampling distributions are
far from normal; and there are additional problems of scaling.

Transform of Fluorescence Measurements and Parameter Estimation.
For different conditions, we do not assume equal variance be-
cause even after the transform the variance may still vary with
i. However, we do assume a common variance across the repeats
j ¼ 1;:::::;Ri for condition i because they come from the same
sample. We transform fluorescence intensities (FI) measure-
ments using the following transformation:

Tð·Þ ¼ logð· −MSB þ sÞ: [S1]

Here, MSB is the pooled 5% trimmed mean blank measurements
of the given cytokine, and s is a number that makes the internal
term of the log positive for all k.MSB roughly determines the pre-
cision of the measurement. Because blank (or buffer alone) mea-
surements are standard in every experiment, it is convenient to
use it to adjust the FI.

For parameter estimation, we use all the bead measurements
per analyte to construct a distribution of (transformed) fluores-
cence values per condition. The model parameters μ, fαig, fβijg,
and s in Eq. 1 (main text) are estimated from the data in an itera-
tive fashion. Suppose the values for the difference between the

repeats fβijg and the transform-related quantity s are fixed. Then
Eq. 1 (main text) suggests a standard weighted least squares
method for estimating the overall mean μ and the difference be-
tween conditions fαig. That is, the error Tðyijk − βijÞ − ðμþ αiÞ
between the observation and the model is squared and summed
over i ¼ 0;1;:::::;N. In the sum, each error term is weighted in-
verse-proportionally to the empirical error standard deviation
σ̂i, estimated from the residuals Tðyijk − βijÞ − ðμ̂þ α̂iÞ of the un-
weighted least squares fit. Finally, μ and fαig that minimize the
weighted sum is found. Once the values for μ and fαig are fixed,
and the values for fβijg are estimated using a nonlinear least
squares method. This method requires a good initialization,
for which we found satisfactory results with Huber robust regres-
sion (2) on repeats for each condition. (Often this initialization is
good enough.) We estimate s based on the notion of profile like-
lihood (3). This process is iterated until convergence.

Selecting the Equivalence Margin Δ. This note deals with the ques-
tion of how to choose the equivalence margin Δ. As Δ increases,
smaller differences are called significant, leading to a loss of
specificity and as Δ decreases only large differences are called
significant, leading also to a loss of sensitivity. Because it is im-
possible to make an objective decision when the results are un-
known (as is usually the case), it is desirable for us to let the data
chooseΔ. A seemingly attractive possibility is to use a data-driven
machinery such as SAM (4). However, in these assays one does
not usually have the luxury of hundreds of p-values such as in
microarray analyses (for which SAM was designed). Instead,
we chooseΔ at a point in which the estimated power is reasonably
high. As we increase Δ we note a sharp drop in the estimated
power. This drop occurs as noise gives way to signal and is there-
fore where we wish to set Δ.

The power of the decision rule Eq. 3 (main text) is given as

πiðαi − α0;τi;ν;ΔÞ ¼ 1 − PrfTL;i ≥ tα;ν and

TU;i ≤ t1−α;νjαi − α0;τi;νg:

Under the assumption that α̂i − α̂0 follows a normal distri-
bution Nðαi − α0;τiÞ, the vector ðTL;i;TU;iÞ has a bivariate non-
central t-distribution with ν degrees of freedom and noncen-
trality parameters δL;iðΔÞ ¼ ðαi − α0 þ ΔÞ∕τi and δL;iðΔÞ ¼
ðαi − α0 − ΔÞ∕τi (5).

We estimate the power at the estimated effect size; i.e., eval-
uate πiðα̂i − α̂0;si;ν;ΔÞ. This estimated power is a nonincreasing
function of Δ. For each case-control group and for each analyte,
the largest Δ is chosen (Δ�) below which the average estimated
power (over i ¼ 1;:::::;N) is greater than a threshold. The median
of the Δ�s over the analytes is computed and denoted by Δ̄�. Then
the threshold is varied and the medians Δ� are plotted. We find
the inflection point of the plotted curve and use the value of
the threshold that yields the inflection point. This threshold in
turn determines Δ� for each analyte in each case-control group
(Fig. S7).
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Fig. S1. Quantile-quantile plots of typical xMap bead fluorescence intensity (FI) data, shown for 21 standard analytes. Straight lines (red) represent the stan-
dard normal distribution.

Fig. S2. Typical scale of xMap bead fluorescence intensity data for eotaxin. The standard concentration levels are 1.22, 4.88, 19.53, 78.12, 312.5, 1,250, and
5;000 pg∕mL; x4 diluted seven times. The range of data is depicted as the box-and-whisker plot. Also shown are the MFIs in repeat wells (blue dots) and the
confidence interval (dashed curves) of the standard curve (solid curve) fitted for the MFIs using a 4PL model (done with calib package [http://cran.r-project.org/
web/packages/calib/index.html] for R, The R Project for Statistical Computing).
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Fig. S3. FPR and TPR of SAxCyB, in comparison witht-test (t_fullFI) and t-test (t_MFI) at the nominal significance level 0.01 with multiple comparison procedure
(MCP) (A) and without MCP for 0.05 and 0.01 (inset) (B).

Fig. S4. Cytokines found to be differentially expressed by MFI t-tests but not SAxCyB. Experiment and hypotheses testing was done as described in Fig. 3C.
Hypotheses testing with t-tests on MFIs resulted in 12 cases that were significant (p < 0.05) by this method but not by SAxCyB. Fluorescence (top) and trans-
formed fluorescence (bottom) measurements of individual beads for all cases. Dots are MFI values. Blue—healthy controls, green—day zero patients, red—
month six patients. The data were overlaid for each well separately such that denser colors represent more measurements for that range.
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Fig. S5. Use of SAxCyB in analysis of cytokine stimulation assays. T cells from Fas−∕− or wild type mice were treated with cytokines (listed above) and synthesis
of cytokines (listed to the right) in these cells was measured. Treatments were done in four (IL-2, IL-12, IFNg, and TNFα) or three (IL-3) doses. Fraction of the
responding doses is shown. Data were generated from 80 wells for samples and 16 wells for the standard curve. The 80 wells were divided into two sets of 40,
where each set consists of one control (untreated) and 19 treatments in 4 or 3 doses, all technically repeated in duplicates. Twenty-one analytes were measured
per well. Each well contained 5;791� 601 data points, each bead/well combination contained 276� 79 events. (A) Cytokine expression data was analyzed using
median fluorescence intensity (MFI) and using all individual fluorescence data (t_MFI and t_fullFI respectively). (B) SAxCyB analysis of the same data and the
difference matrix of Fas−∕− minus (wild type). Asterisks mark cases where stimulus and response are the same cytokine (and therefore indistinguishable).
SAxCyB calls 238 differences (at the 0.05 significance level) compared to 38 and 44 found by commercial software (BeadView and MasterPlex QT respectively).
Many of the calls were for data at low MFIs.
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Fig. S6. Magnified view of Fig. 2B around the zero.

Fig. S7. Illustration of Δ selection using the power estimated from the data. Estimated power is plotted as a function of Δ. Each color represents a difference
analyte in the assay. Increasing the threshold from Threshold 3 to Threshold 4 yields the largest change in Δ̄� and Threshold 3 is selected.
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Table S1. List of analytes used for the sensitivity analysis

Analyte FPR TPR FPR TPR FPR TPR

GM-CSF 0.0000 0.9789 0.0059 0.1354 0.3193 1.0000
ICAM-1 0.0000 0.8597 0.0068 0.1258 0.1433 0.9283
IFNα 0.0000 0.9727 0.0027 0.1288 0.2036 1.0000
IFNβ 0.0000 0.9513 0.0005 0.2031 0.2063 0.9895
IL-17 0.0000 0.9800 0.0000 0.1225 0.3088 1.0000
IL-17F 0.0000 0.9602 0.0000 0.1816 0.1878 0.9927
IL-12p40 0.0000 0.9765 0.0000 0.1841 0.2862 1.0000
IL-12p70 0.0000 0.9912 0.0018 0.1220 0.3147 1.0000
IL-10 0.0000 0.9903 0.0050 0.1548 0.3574 1.0000
IL-8 0.0000 0.9881 0.0000 0.2432 0.2209 1.0000
IL-7 0.0000 0.9708 0.0000 0.1091 0.4395 1.0000
IL-6 0.0000 0.9769 0.0000 0.1036 0.3696 1.0000
IL-5 0.0000 0.9731 0.0000 0.1575 0.3279 1.0000
IL-4 0.0000 0.9822 0.0009 0.1463 0.4068 1.0000
IL-1a 0.0000 0.9752 0.0000 0.1241 0.4526 1.0000
IL-1b 0.0000 0.9816 0.0009 0.2330 0.3610 1.0000
LIF 0.0000 0.9846 0.0087 0.1663 0.2685 1.0000
MCP-1 0.0000 0.9414 0.0009 0.1194 0.2721 1.0000
MIG 0.0000 0.9708 0.0045 0.1573 0.3188 1.0000
MIP-1α 0.0000 0.9394 0.0000 0.1973 0.1937 1.0000
PAI-1 0.0000 0.9782 0.0032 0.1335 0.3728 1.0000
RANTES 0.0000 0.9590 0.0000 0.0924 0.3125 1.0000
SCF 0.0000 0.9721 0.0005 0.1333 0.3143 1.0000
sFas-L 0.0000 0.9782 0.0000 0.0857 0.3755 1.0000
TGFa 0.0000 0.9414 0.0032 0.1636 0.3175 1.0000
TGF-b 0.0000 0.9353 0.0009 0.2168 0.3719 1.0000
TNFα 0.0000 0.9897 0.0000 0.1239 0.3125 1.0000
TNFβ 0.0000 0.9915 0.0027 0.1791 0.2485 1.0000
TRAIL 0.0000 0.9614 0.0005 0.2054 0.3052 0.9943
VCAM-1 0.0000 0.9433 0.0000 0.0641 0.3370 0.9773
VEGF 0.0000 0.9702 0.0000 0.0933 0.2277 1.0000
Eotaxin 0.0002 0.9435 0.0028 0.1176 0.2236 0.9527
HGF 0.0005 0.9630 0.0027 0.0970 0.3370 0.9989
sCD40L 0.0007 0.9384 0.0018 0.1189 0.3342 0.9711
M-CSF 0.0007 0.9699 0.0000 0.1831 0.3565 1.0000
FGF-Basic 0.0011 0.9371 0.0014 0.0995 0.2884 0.9551
MIP-1β 0.0011 0.9569 0.0082 0.2043 0.2812 0.9986
IP-10 0.0014 0.9576 0.0009 0.1530 0.3288 1.0000
GROα 0.0020 0.9034 0.0014 0.1742 0.2358 0.9890
Resistin 0.0023 0.9217 0.0000 0.0683 0.4005 0.9700
ENA-78 0.0029 0.8854 0.0014 0.1113 0.2458 0.9426
IL-13 0.0041 0.9774 0.0018 0.1487 0.2653 1.0000
IL-15 0.0057 0.9368 0.0050 0.1186 0.2073 0.9624
Leptin 0.0066 0.8722 0.0023 0.1192 0.2780 0.9277
G-CSF 0.0084 0.9402 0.0009 0.1637 0.2875 0.9583
IL-1Ra 0.0091 0.8913 0.0005 0.0716 0.3433 0.9393
IFNγ 0.0111 0.9588 0.0000 0.1365 0.2785 0.9927
MCP3 0.0218 0.9468 0.0000 0.0847 0.3220 0.9682
IL-2 0.0240 0.9784 0.0018 0.0654 0.4408 1.0000
NGF 0.0247 0.9162 0.0005 0.1222 0.3324 0.9477
PDGF-BB 0.0683 0.9879 0.0077 0.1223 0.3501 1.0000

Analytes are sorted by the FPR of SAxCyB. All numbers are MCP-adjusted
at the nominal significance level 0.05. In the shaded area are the analytes
whose SAxCyB FPR is greater than 0.05. Also shown are a two-sample t-test
(“t_MFI”) that employs only MFIs (Median Fluorescence Intensities;
therefore two measurements for each instance) and a two-sample t-test
(“t_fullFI”) that employs all bead measurements and pools repeats. The
first reference is a common analysis method of xMap data and the
second is a naïve use of all the individual bead measurements
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