SUPPLEMENTARY INFORMATION

Crystal structure of a heterodimer of editosome interaction proteins in complex with two copies of a cross-reacting nanobody

Young-jun Park¹, Els Pardon^{2,3}, Meiting Wu^{1,#}, Jan Steyaert^{2,3} and Wim G.J. Hol^{1,*}

¹Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, P.O. Box 357742, Seattle WA 98195, USA

²Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
³Department of Structural Biology, VIB, Vrije Universiteit Brussel, B-1050 Brussel

[#] Present address: Department of Bioengineering, Foege Hall N330Q, University of Washington, Seattle

* To whom correspondence should be addressed. Email address: wghol@u.washington.edu

SUPPLEMENTARY FIGURES

		1	2	Names	4	5	Function		Domai	n Struc	ture		MW	'(KDa)
	C	AI	KREPA1	TbMP81	LC-1	Band II	Interaction		L2BD	T2BD			OB-fold	81
		A2	KREPA2	TbMP63	LC-4	Band III	Interaction		L	1BD	X2BD		OB-fold	63
		A3	KREPA3	TbMP42	LC-7b	Band VI	Interaction				Zn1	Zn2	OB-fold	42
		A4	KREPA4	TbMP24	LC-10		Interaction						OB-fold	24
Editosome		A5	KREPA5	TbMP19			Interaction						OB-fold	19
Coro	J	A6	KREPA6	TbMP18	LC-11	Band VII	Interaction						OB-fold	18
COLA	1	B4	KREPB4	TbMP46	LC-5		Interaction				U1-like	RNAse Pu	um .	46
Proteins		B5	KREPB5	TbMP44	LC-8		Interaction				U1-like	RNAse Pr	um	44
		X2	KREX2	TbMP99	LC-3		Exonuclease	5'3'-exo				I	EEP	99
		L1	KREL1	TbMP52	LC-7a	Band IV	RNA Ligase				Ligase		A2BD	52
		L2	KREL2	TbMP48	LC-9	Band V	RNA Ligase				Ligase		AIBD	48
	6	T2	KRET2	TbMP57	LC-6b		TUTase			NTD	MD	CI	D	56
	C	N1	KREPB1	TbMP90			Endonuclease	U1-I	like RNAse	dsRBM				90
-		N2	KREPB3	TbMP61	Lc-6a		Endonuclease			U1-like	RNAse dsRB	м		61
Editosome		N3	KREPB2	TbMP67			Endonuclease			U1-like	RNAse dsRB	M		67
type-specific	\prec	B6	KREPB6	TbMP49	LC-7c		Interaction			U	1-like			49
Proteins		B7	KREPB7	TbMP47			Interaction			U1-	like			47
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		B8	KREPB8	TbMP41			Interaction				UI	l-like		41
	6	X1	KREPC1	TbMP100	Lc-2		Exonuclease	5'3'-exo					EEP	100

Supplementary Figure S1. Editosome proteins in *T. brucei*. First column: the short protein names used in this application (1,2). Second, third, fourth and fifth columns: alternative nomenclatures from, respectively (3-7). Last column: molecular weights of full length proteins in *T. brucei*. The structurally identified (8-10) or putative (4) domains are: L1BD = L1-binding domain; T2BD = T2 binding domain; OB-fold in six OB-fold interaction proteins; L2BD = L2-binding domain; X2BD = X2-binding domain; U1-like = U1-like zinc-finger domains in the endonucleases N1, N2, N3 and the interaction proteins B4, B5, B6, B7 and B8; RNase III = RNase-III-like motifs; Pum = Pumilio domain; 5'3'exo = domain with structural homology to $5' \rightarrow 3'$ exoribonuclease domain; EEP = endonuclease/exonuclease/phosphatase domain; Ligase = ligase domain; A1BD = A1-binding domain; A2BD = A2-binding domain; NTD = N-terminal, MD = middle and CTD = C-terminal domain of the 3'-terminal uridylyl transferase (TUTase) T2. Zn1 in A3 is a Zn-finger motif which is also present in the L2BD of A1 and the L1BD of A2. Zn2 in A3 is a Zn-finger motif which is also present in the X2BD of A2.

Supplementary Figure S2. Preparation of A2^{OB}-A3^{OB}-A6-^{A3}Nb14 complexes.

(A) SEC and SDS-PAGE of A2^{OB}-A3^{OB}-A6-^{A3}Nb14 complex. The A2^{OB}-A3^{OB}-A6-^{A3}Nb14 complex was purified by gel filtration over a Superdex 200 sizing column. Chromatographic absorbance traces at 280 nm are shown for the A2^{OB}-A3^{OB}-A6-^{A3}Nb14 complex (1st peak) and unbound ^{A3}Nb14 (2nd peak), as indicated.

(B) Proteins from the major peaks in (A) analyzed on an 8-16% SDS-PAGE gel. Lanes 1 and 10: Molecular weight markers; lanes 2 and 3:A2^{OB}-A3^{OB}-A6 and nanobody ^{A3}Nb14 as controls; lanes 4-9:1st gel filtration peak fractions 23 to 28; lanes 11-14: 2nd peak fractions 33 to 35. The lanes shown are all from the same gel – the gel has been split only to enable labeling in its center.

(C) SDS-PAGE of crystals containing A3^{OB}-A6-^{A3}Nb14. The crystals were carefully washed before electrophoresis. Dissolved crystals are shown in lane 2. Purified A2^{OB}-A3^{OB}-A6 and ^{A3}Nb14 are shown in lanes 3 and 4, as controls. Proteins were stained with Coomassie. The numbers to the left of lane 1 indicate the molecular weights of standard proteins.

Supplementary Figure S3. Sequence alignment of anti-A3 nanobodies ^{A3}Nb8 and ^{A3}Nb14.

The secondary structure elements correspond to the crystal structure of ^{A3}Nb14. Since each A3 and A6 monomer interacts with ^{A3}Nb14, the residues contacting A3^{OB} are labeled by blue circles, and residues contacting A6 by green circles. The three CDR's and framework regions of the nanobodies are indicated according to IMGT. (The double deletions after residue 113 derive from the fact that in the collection of 14 anti-A3 nanobodies obtained, several of these have a residue corresponding to this position).

Supplementary Figure S4. Electron densities of Selenomethionines of A3. Stereo-view of the A3^{OB}-A6-^{A3}Nb14 complex and the anomalous difference map. The A3^{OB}-A6-^{A3}Nb14 heterotetrameric complex is shown as ribbons. The anomalous difference map calculated from the Se MAD data is shown in gray mesh as contoured at 4.0 σ . The three sites observed all occur in one chain thereby unambiguously identifying that the two OB folds are different. Colors: A3^{OB} magenta with its ^{A3}Nb14 bound in blue, A6 yellow with its ^{A3}Nb14 bound in green.

Supplementary Figure S5. Family sequence alignments of A3. Multiple sequence alignment of C-terminal OB-domains from *T. brucei* A3 with orthologous proteins from other Kinetoplastida species. Lm, *Leishmania major*; Lb, *Leishmania brasiliensis*; Tc, *Trypanosoma cruzi*; Tb, *Trypanosoma brucei*. *T. brucei* A3 amino acids are numbered. The secondary structure elements correspond to the crystal structure of *T. brucei* A3. Strictly conserved residues are in the filled red boxes. A6-binding residues are depicted by blue circles above the sequences. Conserved prolines in the L23 loop are indicated by triangles below the sequences.

Supplementary Figure S6. Family sequence alignment of A6. Trypanosomatid species shown are: Lm, *Leishmania major*; Lb, *Leishmania brasiliensis*; Tc, *Trypanosoma cruzi*; Tb, *Trypanosoma brucei*. The *T. brucei* A6 amino acids are numbered. The secondary structure elements correspond to the crystal structure of *T. brucei* A6. Strictly conserved residues are in the filled red boxes. Contact residues involved in A3^{OB}-A6 heterodimer interface (current structure) and in the A6-A6 homodimer interface (PDB-ID: 3K7U)(10) are depicted by filled circles and triangles, respectively.

Supplementary Figure S7. Lattice contacts in the A3^{OB}-A6-^{A3}Nb14 crystals. Crystal lattice contacts are mediated by both nanobodies and the A3^{OB}-A6 dimer. Colors: A3^{OB} magenta; A6 yellow; ^{A3}Nb14 bound to A3^{OB} blue; ^{A3}Nb14 bound to A6 green.

(A and B). First arrow: the most extensive pairwise nanobody-nanobody interactions occur when two antiparallel strands of one nanobody form a four-stranded antiparallel β -sheet with the two equivalent β -strands from a neighboring nanobody. Second arrow: in this crystal contact an ^{A3}Nb14 nanobody engages three nanobodies of neighboring heterotetramers. Third arrow: important crystal contacts are made between the β surfaces of two adjacent A3^{OB}-A6 dimers, burying 2000 Å² surface area, leading to an (A3^{OB}-A6)₂ heterotetramer of four OB folds of two different chain types.

(**C and D**) The L23 loop positions of A3^{OB} and A6 are indicated with arrows, showing that none of the L23 loops are engaged in crystal contacts.

Supplementary Figure S8. Electron density from the A3^{OB}-A6-^{A3}Nb14 complex.

(A) Electron density map of the A3^{OB}-A6-^{A3}Nb14 in a region at the dimer interface of A3 and A6.

(B) Electron density maps of the A3^{OB}-A6-^{A3}Nb14 in the vicinity of residue F102 at Interaction Region 1. $2mF_o - DF_c$ electron density maps are shown as a blue mesh, contoured at 1 σ . Selected residues from the A3, A6, and CDR3 are labeled.

Supplementary Figure S9. Formation of A1^{OB}-A3^{OB}-A6 and A4^{OB}-A3^{OB}-A6 ternary complexes.

(A) A1^{OB}-A3^{OB}-A6 ternary complex. The gene encoding residues 20-164 of *T. brucei* A6, preceded by an N-terminal 6xHistidine tag, was cloned into a pRSF vector (Novagen). The gene encoding residues 626-762 of *T. brucei* A1 (A1^{OB}) and the gene encoding residues 245-393 of *T. brucei* A3 (A3^{OB}) were cloned into the bi-cistronic expression vector pACYC (Novagen) without His-tag. His₆A6, A1^{OB} and A3^{OB} are co-expressed in *E. coli* and co-purified by Ni-NTA chromatography via an N-terminal His₆-tagged A6.

(B) $A4^{OB}$ - $A3^{OB}$ -A6 ternary complex. The gene encoding residues 34-218 of *T. brucei* A4 (A4^{OB}), preceded by an N-terminal 6xHistidine tag, was cloned into a pRSF vector. The gene encoding residues 20-164 of *T. brucei* A6 and the gene encoding residues 245-393 of *T. brucei* A3 (A3^{OB}) were cloned into the bi-cistronic expression vector pACYC without His-tag. His₆A4^{OB}, A3^{OB} and A6 are co-expressed in *E. coli* and co-purified by Ni-NTA chromatography via an N-terminal His₆-tagged A4^{OB}. The soluble lysates were applied to a Ni-NTA column, washed with 20 mM imidazole and subsequently eluted with 250 mM imidazole. Proteins were analyzed on 8-16% SDS-PAGE gel and stained with Coomassie. Molecular weight markers are indicated on the left. T: total lysate; S: soluble fraction; FT: flow-through Ni-NTA; E: Ni-NTA elution fraction.

SUPPLEMENTARY TABLES

Supplementary Table S1. A6 residues interacting with A3^{OB} and A6

A6		A3 resid	lue (A3 ^{0B} - A	A6 dime	er) ^a	A6		A6 resi	due (A6-A6	dimer	b
	BSA (Å ²)	M-M	S-S	M-S	S-M		BSA (Å ²)	M-M	S-S	M-S	S-M
Lys20	30			Leu295 Trp355		Lys20					
Ser21	88	Leu295	Thr318 Asp319	Leu295	Leu295 Gly296 Thr318 Asp319(H)	Ser21					
Val22		Val203	Trp355	Trp355	Va1293	Val22		Thr26			
V al22	74	Met294 Leu295(H)	Leu295	Met294 Leu295 Thr318	Met294 Leu295	V a122	112	Leu27 Val28(H)	Ser53	Leu27 Thr51	Val28 Thr52
Asn23	57		Met294 Thr318 His333	Met294		Asn23	43	Thr26	Leu27 Thr51 His70	Leu27	
Ser24	48	Cys292 Val293(H)	Val293	Cys292 Val293 Met294	Val293	Ser24	45	Val25 Thr26(H)	Thr26	Val25	Thr26
Val25	38	His291	Cys292 Met294 Leu362		His291	Val25	32	Ser24	Val25		Ser24
Thr26	45	Val289 Asn290 His291(H)	His291	His291		Thr26	39	Val22 Asn23 Ser24(H)	Ser24	Ser24	
Leu27	25	Val289	Asn290 Leu362			Leu27	23	Val22	Asn23	Asn23	Val22
Val28	55	Val289(H)	Val289	Val289	Cys288	Val28		Val22(H)		Val22	
Val30	15		Ala283			Val30					
Va139 Tyr40	4 66		Ser324 Ser324 Pro325			Val39 Tyr40					
Thr51	20		Val289 Asn290		Val289	Thr51	20		Asn23		Val22
Thr52	21			Val289		Thr52	16			Val22	
Ser53	32		Val289	Val289		Ser53	40		Val22 Arg98	Val22	
Asp55 Glu66	15		Arg361 Arg361(H.SB)			Asp55 Glu66	70		Arg98(SB)		
X (7	75	A 2(2	Arg363(H.SB)			X (7	70		Arg100(SB)	A 100	
Lyso7 Asp68	68	Arg363	Arg363(H.SB) Met364		Leu362 Arg363 Met364	Lyso7 Asp68	62		Leu99 Arg100(H.SB) Leu101(H)	Arg100	Leu99 Arg100(H) Leu101
His69	31			Met364		His69	17			Leu101	
His70	43		Leu362 Met364		Leu362	His70	46		Asn23 Leu99	Leu101	Leu99
Arg98	60		Ala283 Phe320 Glu321		Glu321 Gly322	Val92 Arg98	39		Ser53 Glu66(SB)		
Leu99	61		His333 Leu362 Pro379	Asp331 His333		Leu99	79		His70	Asp68 His70	

A6		A3 resid	lue (A3 ^{0B} - A	A6 dime	er) ^a	A6	A6 residue (A6-A6 dimer) ^b						
	BSA (Å ²)	M-M	S-S	M-S	S-M		BSA (Ų)	M-M	S-S	M-S	S-M		
Arg100			Phe320 Pro323		Pro323	Arg100			Glu66(SB)		Lvs67		
	132		Asp331(H.SB) Asp327	Asp331	Pro328(H) 1 vs330		56		Asp68(H.SB)	Asp68	<u> </u>		
Leu101	74		Asp331 His333 Pro379	Asp331	Phe332	Leu101	84		Asp68(H) Pro116	Asp68	His69 His70		
Pro103	14		Pro328			Pro103			110110				
Leu105	58		Pro328		Gly326	Leu105							
Lys111	14		Tyr376			Lys111							
His112	24		Asp369(SB)			His112							
Phe113	116		Gln367 Asp369 Tyr376			Phe113							
Tyr114	58		Tyr378 Pro379		His377	Tyr114							
Phe115						Phe115	36		Phe115				
Pro116	54		Pro379 Met364	Pro379 Met364	His377 Pro379	Pro116	60		Pro116 Leu101	Pro116			
Tyr117	10		Asp327			Tyr117							
Gln119	22		Phe320			Gln119							
His124	18		Glu321			His124							

BSA: Buried surface area according to Pisa (11), **M-M**: Main chain - Main chain interactions; **S-S**: Side chain - Side chain interactions; **M-S**: Main chain - Side chain interactions; **S-M**: Side chain and Main chain interactions. **H**: Hydrogen bond; **SB**: Salt Bridge.

a: The interface residues in the A3^{OB}-A6 heterodimer structure (Current structure)

b: The interface residues in the A6 homodimer structure (PDB-ID: 3K7U)(10)

43		A6 resid	lue (A3 ⁰	^{DB} -A6 diı	ner) ^a
A3	BSA	M-M	S-S	M-S	S-M
	(A^2)				
Ala283	27		Val30		
His285	33		Ile54		
Cys288	16		val28	Thr26	
Val289	101	Thr ₂₆		111120	
v a120)	101	Leu27		Leu27	
		Val28(H)	Val28	Val28	Val28
			Thr51	Thr51	
					Thr52
	40	T I A (Ser53		T 1 A (
Asn290	43	Thr26	L au 27	L au 27	Thr26
		Val28	Leu2/	Leu2/	
		v a120	Thr51		
			Asp68		
			His70		
His291	42	Ser24			
		Val25			
		Thr26(H)	Thr26	Thr26	
Cur 202	20	Leu2/		Leu2/	Sar24
Cys292	20	Ser24 Val25	Val25	Ser24	Val25
		Thr26	v a125		Thr26
Val293	42	Val22	Val22	Ser24	Ser24
		Asn23			
		Ser24(H)	Ser24		
Met294	46	Val22		Val22	Val22
		Asn23	Asn23		Asn23
		Ser24	Val25		Ser24 Val25
L ou 295	48		v a12.5		L vs20
Leu295	10	Ser21	Ser21	Ser21	Ser21
		Val22(H)	Val22	Val22	Val22
		Asn23			
Gly296	1	Ser21		Ser21	
Ile317	1		a a i	Ser21	
Thr318	21		Ser21	Ser21	Va122
			Asn23		v a1∠∠
Asp319	25		Ser21	Ser21(H)	
				Asn23	
Phe320	100		Arg98	Arg98	
			Arg100		
Cl. 221	40		Gin119	A = 00	
GIU321	40		Arg98 His124	AIg98	
Glv322	18		1113124	Arg98	
0.,022	- 0			Gln119	
				Gln121	
Pro323	3		Arg100	Arg100	
Ser324	43		Val39	Tyr40	
			Tyr40		
Pro 225	27		Tur40	Tur-40	
Glv326	34		1 y140	Leu105	
01/520	57	1	1	Leuros	

Supplementary Table S2. A3 residues interacting with A6 in the A3^{OB}-A6 heterodimer.

A3		A6 residue (A3 ^{OB} -A6 dimer) ^a												
110	BSA $(Å^2)$	M-M	S-S	M-S	S-M									
Asp327	37		Tyr40 Arg100 Leu105 Tyr117	Leu105										
Pro328	45		Arg100 Leu105	Arg100(H) Leu105										
1 220	4			A == 100(II)										
Lys330	4		A cn 23	Arg100(H)										
Азрээт	52		Arg100 Leu101	Leu101	Leu99 Arg100(H) Leu101 Ser102									
Phe332	30	Tyr114		Leu101 Tyr114										
His333	46		Asn23 Leu99 Leu101	Leu101	Leu99									
Trp355	31		Lys20 Ser21		Lys20 Ser21									
Leu357	1		Val22											
Arg361	52		Ser53 Asp55 Glu66											
Leu362	75		Val25 Leu27 His70 Leu99 Ile118	Asp68 His70										
Arg363	70		Glu66 Asp68(H)	Asp68	Val65 Glu66 Lys67 Asp68									
Met364	79		Asp68 His69 His70 Pro116	Asp68	His69									
Gln367	28		Phe113											
Tyr368	4		DI 112	Phe113										
Asp369	33		His112	Phel13										
Tyr376	58		Lys111 Phe113	Lys111	Lys111									
His377	28	Tyr114		Tyr114	Tyr114									
Tyr378	21		Tyr114	Tyr114 Pro116										
Pro379	69		Leu99	Tyr114	Pro116									
			Tyr114 Pro116	Pro116										
Gln382	4		Glu66											

BSA: Buried surface area according to Pisa (11), **M-M**: Main chain - Main chain interactions; **S-S**: Side chain - Side chain interactions; **M-S**: Main chain - Side chain interactions; **S-M**: Side chain and Main chain interactions. **H**: Hydrogen bond; **SB**: Salt Bridge.

a: The interface residues in the A3^{OB}-A6 heterodimer structure (Current structure)

Nb14		A3 resid	lue (A3 ^{OB}	-A6 dime	er) ^a	Nb14	A6 residue (A3 ^{0B} -A6 dimer) ^a					
	BSA (Å ²)	M-M	S-S	M-S	S-M		BSA (Å ²)	M-M	S-S	M-S	S-M	
Gln3	49		Pro366 Tyr368		Pro366 Gln367 Tyr368 Try375	Gln3						
Val4	3			Tyr368		Val4	49	Ser108 Cys109		Glu106 Cys109		
Gln5	49		Tyr368		Tyr368	Gln5	28	Ser108	Ser108	Ser108	Ser108	
Arg29	33		Phe307			Arg29	46		Glu106(SB) Leu105 Tvr40		Tvr40	
Ser33	20		Phe307	Phe307	Phe307	Ser33	25	Val39	Tyr40			
Tvr34	9		Phe307	1110507	1110307	Tvr34	11		Tyr40		Tvr40	
Arg55	64		Phe307		Val306 Phe307(H)	Arg55	60		Phe38		Tyr40(H)	
Arg101	128	Phe307 Val365	Val306 Phe307 Arg336 Pro366 Val365 Tyr378	Phe305 Val306	Tvr378	Arg101	124	Phe38 Val39(H)	Val39 Tyr40 Arg73 Tyr117	Val39	Tyr40	
Phe102	140	Phe305	Gln302 Gly304 Val306 Phe307 Val311 Gln313 Aro336	Val306	Gln302 Glu303 Gly304 Phe305 Gln313	Phe102	125	Phe38	Gln35 Ser36 Val39 Val44 Gln46 Aro73	Val39	Ser36 Gly37 Val44 Gln46	
Ser103	29	Gly304 Phe305(H)		Phe305	Phe305	Ser103	32	Gly37 Phe38(H)		Phe38	Phe38	
Pro104	18	Glu303 Gly304	Gln302		Glu303	Pro104	16	Ser36 Gly37	Gln35		Ser36	
Val105	63	Glu303(H) Gly304	Glu303 Phe305		Gly304	Val105	58	Ser36(H) Gly37	Ser36 Phe38		Ser36	
Asn113	24			Gln367(H) Tyr378		Asn113	52			Lys111 Phe115		
Thr114	68		Thr334 Tyr378	Gln367 Tyr378		Thr114	40		Arg73 Phe115			
Val115	19		-	Gln367(H)		Val115	19			Lys111		
Asp116	29	Pro366 Tvr368(H)	Val365 Trv368	Gln367	Pro366 Tvr378	Asp116	31	Cys109		Cys109 Lys111		
Ser117	16	Tyr368	Try368	Tyr368	Try368	Ser117	14	Cys109	Cys109	Cys109	Cys109	
Trp118	56	Tyr368(H) Gly370(H)	Asp369		Tyr368 Asp369 Gly370	Trp118	63	Cys109(H)	Cys109 Asn110 Lys111	Asn110	Asn110	
Gly119	9	Gly370	ļ	0.071		Gly119	6			Ans110		
Gln120	48	Gly370 Ser371		Ser371		GIn120						

Supplementary Table S3. A.^{A3}Nb14 residues interacting with A3 and A6 in the A3^{OB}- A6 - (^{A3}Nb14)₂ heterotetramer.

B. A3 and A6 residues interacting with ^{A3}Nb14 residues in the A3^{OB}- A6 - (^{A3}Nb14)₂ heterotetramer.

A 20B			^{A3} Nb1	14		A6	^{A3} Nb14					
AJ	BSA	M-M	S-S	M-S	S-M	AU	BSA	M-M	S-S	M-S	S-M	
Gln302	(A²)		Phe102	Phe102		Gln35	(A²)			Phe102		
	39		Pro104 Val106		Pro104 Val106		30		Phe102			
Glu303				Phe102		Ser36		~	Phe102	Phe102		
	41	Ser103 Pro104		Pro104			50	Ser103 Pro104				
		Val105 Val106	Val105	Val105				Val105 Val106	Val105	Val105		
Gly304		0 102		Phe102		Gly37		G 102		Phe102		
	26	Ser103 Pro104 Val105		Val105			28	Pro104 Val105		Val105		
Phe305		Arg101	Arg55	Arg55		Phe38		Arg101 Pho102		Pho102		
	74	Phe102		Phe102			70	Ser103(H)	Ser103	Ser103	Ser103	
	/ 4	Ser103(H) Pro104	Ser103	Ser103	Ser103		70	Pro104	Val105			
		110104	Val105						v uri 05			
Val306	29	Arg101	Arg101	Arg55 Arg101	Arg101	Val39	49	Ser33 Arg101(H)		Arg101	Arg101	
		Phe102	Phe102	Phe102	Phe102		.,	Phe102	Phe102	ingioi	Phe102	
Phe307		Ser33	Arg29 Ser33	Ser33	Ser33	Tyr40		Ser33	Ser33	Arg29 Ser33	Ser33	
	157		Tyr34		Tyr34		118	~	Tyr34	Tyr34		
		Arg55 Arg101	Arg101	Arg55(H)	Arg101			Arg101	Arg101	Arg101	Arg101	
G1 000		0 -	Asp106		0.			0	D1 100	Asp106		
Glu308	15		Ser33 Arg55	Arg55		Val44	6		Phe102	Phe102		
Val311	5		Phe102	Phe102		Gln46	27		Phe102	Phe102	D1 100	
Gln313	20		Phe102	Phe102		Arg73	50		Asp100 Arg101		Phe102	
	30						52		Phe102			
Thr334	16		Thr114			Leu105	17		Val4			
Arg336	10		Asp100		Phe102	Chu106	7/		Arg29 Val4			
Algoot	31		Arg101		1110102	Giuloo	23		Arg29			
Val365			Phe102 Arg101			Ser108	-	Val4			Val4	
v a1505			Asp116			501100		Gln5	Gln5	Gln5	Gln5	
	36						55	Leu 6		Ser117		
				<u>c1 a</u>		~		Trp118				
Pro366	10		Arg101	Gln3 Arg101		Cys109		Val4 Asp116	Val4	Val4	Val4 Asp116	
	40	Asp116	0	Asp116			59	Ser117	Ser117	Ser117	Ser117	
Gln367				Gln3		Asn110		Trp118(H) Trp118	Trp118	Trp118 Trp118	Trp118	
	57				Asn113		(0)	1	Gln120	1	Gly119	
	57	Val115	Val115		Val115(H)		69				GIn120	
T2(9		Asp116	Cla 2	C1-2	Asp116	I111					V-1112	
1 91308			Gins	Gins	Val4	Lysiii					Asn112	
	103	Asp116	Gln5	Gln5	Gln5 Asp116		78		Val115		Val115 Asp116	
		Ser117	Ser117	Ser117	Ser117						Ser117	
Asn369		Trp118(H) Trp118	Trn118	Trp118 Trp118	Trp118	Tyr114		Asn113	Trp118	Trp118		
15000	23	112110		112110		1,1117	5	11011113				

A3 ^{OB}			A ³ Nb	14		A6	^{A3} Nb14					
	BSA (Ų)	M-M	S-S	M-S	S-M		BSA (Ų)	M-M	S-S	M-S	S-M	
Gly370	45	Trp118 Gly119 Gln120		Trp118 Gln120		Phe115	53	Asn113	Asn113 Thr114		Asn113 Thr114	
Ser371	37	Trp118 Gly119 Gln120	Gln120	Gln120	Gly119 Gln120							
Arg373	21		Gln120									
Tyr375	15		Gln3	Gln5								
Tyr378	61	Thr114	Arg101 Thr114 Asp116	Asp100 Arg101 Thr114 Asp116	Asn113 Thr114 Val115 Asp116							

BSA: Buried surface area according to Pisa (11), **M-M**: Main chain - Main chain interactions; **S-S**: Side chain - Side chain interactions; **M-S**: Main chain - Side chain interactions; **S-M**: Side chain and Main chain interactions. **H**: Hydrogen bond; **SB**: Salt Bridge.

a: The interface residues in the A3^{OB}-A6 heterodimer structure (Current structure)

SUPPLEMENTARY REFERENCES

- Note: Reference numbers 1-11 are those in the supplement. MT is the reference number of the same reference listed in the main text.
- 1.(MT51) Schnaufer, A., Wu, M., Park, Y.J., Nakai, T., Deng, J., Proff, R., Hol, W.G. and Stuart, K.D. (2010) A protein-protein interaction map of trypanosome ~20S editosomes. *J Biol Chem*, 285, 5282-5295.
- 2. (MT89) Ernst, N.L., Panicucci, B., Carnes, J. and Stuart, K. (2009) Differential functions of two editosome exoUases in Trypanosoma brucei. *RNA*, 15, 947-957.
- 3. (MT20) Stuart, K.D., Schnaufer, A., Ernst, N.L. and Panigrahi, A.K. (2005) Complex management: RNA editing in trypanosomes. *Trends Biochem Sci*, 30, 97-105.
- 4. (MT36) Worthey, E.A., Schnaufer, A., Mian, I.S., Stuart, K. and Salavati, R. (2003) Comparative analysis of editosome proteins in trypanosomatids. *Nucleic Acids Res*, 31, 6392-6408.
- 5. (MT25) Aphasizhev, R., Aphasizheva, I., Nelson, R.E., Gao, G., Simpson, A.M., Kang, X., Falick, A.M., Sbicego, S. and Simpson, L. (2003) Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. *EMBO J*, 22, 913-924.
- 6. (MT90) Huang, C.E., Cruz-Reyes, J., Zhelonkina, A.G., O'Hearn, S., Wirtz, E. and Sollner-Webb, B. (2001) Roles for ligases in the RNA editing complex of *Trypanosoma brucei*: band IV is needed for U-deletion and RNA repair. *EMBO J*, 20, 4694-4703.
- 7. (MT91) Simpson, L., Aphasizhev, R., Lukes, J. and Cruz-Reyes, J. Guide to the nomenclature of kinetoplastid RNA editing: a proposal. *Protist*, 161, 2-6.
- 8. (MTI7) Deng, J., Ernst, N.L., Turley, S., Stuart, K.D. and Hol, W.G. (2005) Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei. *EMBO J*, 24, 4007-4017.
- 9. (MT29) Deng, J., Schnaufer, A., Salavati, R., Stuart, K.D. and Hol, W.G. (2004) High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. *J Mol Biol*, 343, 601-613.
- 10. (MT54)Wu, M., Park, Y.J., Pardon, E., Turley, S., Hayhurst, A., Deng, J., Steyaert, J. and Hol, W.G. (2011) Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. *J Struct Biol*, 174, 124-136.
- 11. (MT69) Krissinel, E. and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. *J Mol Biol*, 372, 774-797.