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ONLINE METHODS

Geometry of V1

We assume a columnar architecture of the primary visual cortex (V1) with the 

cortical hypercolumns packed hexagonally in cortical space (Fig. 2a). The 

computational units within each hypercolumn have receptive fields centered at 

the same retinal location but each tuned to different orientations and spatial 

scales. For our purposes, we are concerned mainly with the orientation tuning of 

these un i ts .  We thus  use 8  broadband oriented filters to extract the 

corresponding or ientat ion energy in  the image patch under the RF 

(  0,1,K ,7  
8 radians; Fig. 4a). The average diameter of the receptive fields 

increase linearly with eccentricity with a slope of 0.124.

We can show that this geometry captures the logarithmic cortical 

magnification as follows. Let d0 be the RF diameter (in degrees) at eccentricity 

  0, s be the slope of the linear function relating RF diameters to eccentricity 

and  be the proportion of RF diameter overlap between adjacent hypercolumns 

(assumed constant across all eccentricities). Within a V1 hypercolumn, the 

eccentricity  of an RF at the cortical distance p, measured in units of 

hypercolumns from the location on V1 that represents the center of the fovea, is 

given by:

( p)  
 1

 p1 1  (1)
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where   d0 1   and  1 s 1  . For our model, d0  0.01, s  0.124 and 

  0.3 (average value in REF [49]). Away from the immediate vicinity of the 

center of gaze, Equation 1 can be written in approximate form as

( p)  
( 1)

 p (2)

Inverting the function, we can express p as a function of  as

p()  ln()
ln()

K (3)

where K  ln 
 (1)  ln().  Equation 3 thus gives the logarithmic cort ical 

magnification outside of the immediate center of gaze.

If we assume the critical spacing in the visual field for crowding to be 

  b , where b is Bouma’s constant (about 0.5), then the critical spacing in the 

cortex is

p  p     p  


ln     ln  

ln  


ln   b  ln  

ln  


ln 1 b 

ln  

(4)

Using b  0.5 we get p  6 . That is, the critical spacing for crowding corresponds 

to six hypercolumns in V1, independent of eccentricity. This is in agreement with 

the anatomical extent of lateral (long-range horizontal) connections in V118 and 

with the estimated extent of “combining fields” in V110 if each hypercolumn is 

roughly 1 mm on the cortex. 



24

Conversely, Equation 4 shows that if a computational unit in a particular 

hypercolumn has lateral connections to all computational units in neighboring 

hypercolumns up to an isotropic extent of a constant number of hypercolumns on 

the cortex, then the resulting spatial interaction in the visual field must follow 

Bouma's Law of linear scaling (  b ). We will refer to the set of hypercolumns 

(blue circles in Fig. 2a) to which a reference hypercolumn (red circle in Fig. 2a) 

has lateral connections, as the lateral interaction zone. In our model, we set the 

radius of the lateral interaction zone to 6 hypercolumns.

Saccadic eye movements

For the eye-movement simulations, the saccadic velocity profile was modeled as

follows. Let A be the saccade amplitude (the distance between successive 

fixations in degrees of visual angle), T the duration and v(t) the velocity profile of 

a saccade. v(t) must satisfy the following conditions50:

v(0)  0
v(T)  0

vpeak  v T
2  k A

dv
dt t T

2

 0

(5)

where k is a constant. A sinusoidal velocity profile of the following form satisfies 

the constraints in Equation 5 in the range 0  t  T :

v(t)  k A sin
 t
T

(6)

Since A  v(t)dt
0

T , we have:

T 

2k

A (7)
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The distance traversed, D() , in time  is therefore given by

D()  v(t)dt
0




A
2

1 cos 2k
A









(8)

The distribution of saccade amplitudes along the radial axis from the fovea was 

modeled as an exponential distribution31 with the following p.d.f. : f (x)  ex , 

  1
7.6 . The distribution along the iso-eccentric axis was assumed to be uniform.

Eye-movement simulations and image statistics

Using the distribution of saccade amplitudes and the corresponding velocity 

profile described above, we simulated saccadic eye movements in which the 

visual stimulus presented to the system was a random clutter of uppercase 

letters (Palatino font) at various sizes and orientations. For computational 

tractability we calculated the outputs of the set of 8 broadband oriented filters 

within each hypercolumn at discrete time points in the interval 0K T . Each filter 

measures the contrast energy along a given orientation in the image patch that is 

in the receptive field of the hypercolumn. Let r[t] denote the response of one of 

the filters at time t . The cumulative response of the filter over the time course of 

the eye movement is

r  r[t]e t 

t 0

T

 (9)

where the modulation of spatial attention during its overlap with saccadic eye 

movement (Fig. 2b) is modeled as an exponential decay function with a time 

constant  , a free parameter of the model. Such a characterization captures the 

probabilistic distribution of the overlap period. For the purpose of calculating joint 
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image statistics, the cumulative filter response, r , is first converted into a firing 

probability p with a saturating non-linearity:

p  tanh(kr) (10)

Let  i,R be a random variable associated with a filter with orientation i in the 

reference hypercolumn R .  i,R is equal to 1 if the cell has fired within a temporal 

window, else it is zero. For simplicity, the temporal window used in our 

simulations was the entire duration of a saccade. The joint probability distribution 

P  i,R, j,N , between the oriented filter in the reference hypercolumn and 

another oriented filter in a neighboring hypercolumn (N) can be calculated by 

accumulating and averaging the joint firing probabilities across many eye-

movement traces (30000 in our simulations). To obtain robust estimates of the 

joint probability distribution we used the bootstrap procedure. For any saccade 

trace, the probabilities are accumulated only if both the reference and the 

neighboring hypercolumn are under the spotlight of attention. Finally, the 

statistical dependence between  i,R and  j,N can be calculated in terms of the 

pair-wise mutual information

I  i,R; j,N  P i,R, j,N log2

P i,R, j,N 
P  i,R P  j,N  i ,R {0,1}

 j ,N {0,1}

 (11)

The mutual information is zero when the two random variables are statistically 

independent. 

For a reference hypercolumn R , pooled mutual information (pooled across 

all orientations) between R and a neighboring hypercolumn N is defined as
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ISC(R;N)  ISC  i,R; j,N 
j


i


IV(R;N)  IV  i,R; j,N 
j


i


(12)

where ISC and IV are the pairwise mutual information for the saccade-confounded 

and veridical conditions respectively (Equation 11). We express the gross 

difference between the saccade-confounded and veridical statistics in term of the 

normalized difference between saccade-confounded and veridical mutual 

information:

I(R;N)  ISC(R;N)  IV(R;N)
IV(R;N)

(13)

This normalized difference when plotted in visual space for all neighboring 

hypercolumns maps the amplitude and spatial extent of inappropriate feature 

integration for a reference hypercolumn. Image features from hypercolumns with 

negative difference (reduced mutual information in the saccade-confounded 

statistics as compared with the true statistics) would have weaker interactions 

and thus be only loosely bound to the reference features, leading to an under-

integration of features. Conversely, features from hypercolumns with positive 

difference (excessive mutual information in the saccade-confounded statistics) 

would strongly influence the reference, leading to excessive and possibly 

erroneous feature integration.


