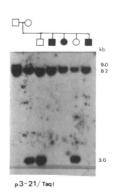
A third Taql allele is detected by the probe pTD3 – 21 (D15S10) in Southern African chromosomes

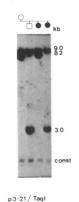
M.-A.Colman, P.Segalo, M.Ramsay and T.Jenkins MRC Human Ecogenetics Research Unit, Department of Human Genetics, School of Pathology, South African Institute for Medical Research and University of the Witwatersrand, Johannesburg, South Africa

Source/Description: Probe pTD3-21 is a human cDNA clone which was isolated from HindIII total-digest libraries of flow-sorted inverted duplicated human chromosomes 15 (1) and has been subcloned as a 2.2 kb HindIII fragment in the vector pBR322. It maps to the region absent in Prader-Willi Syndrome patients with deletions (2).

Polymorphism: pTD3-21 was originally reported to detect a two-allele TaqI polymorphism with polymorphic fragment sizes of 9.0 kb and 8.2 kb and a constant band of 0.5 kb, with a PIC value of 0.28 (3). pTD3-21 has also been found to detect a third, African-specific allele of 3.0 kb.

Frequency: Determined in 20 random Caucasoid individuals, 23 random San individuals ('Bushmen') and 64 random Negroid individuals who are the parents of tyrosinase-positive oculocutaneous albino (ty-pos OCA) children.


	Frequer	су		
Allele	Size (kb)	Negroid	San	Caucasoid
A 1	9.0	0.48	0.15	0.90
A2	8.2	0.40	0.52	0.10
A3	3.0	0.12	0.33	_
	PIC	0.59	0.60	0.16


Chromosomal Localisation: Probe pTD3-21 (D15S10) maps to the region 15q11-q12 (1).

Mendelian Inheritance: Codominant segregation has been shown in 9 families, two of which are shown below. The black symbols represent children with ty-pos OCA which is inherited as an autosomal recessive.

Probe Availability: Probe pTD3-21 was purchased from AT-CC (depositor Marc Lalande).

References: 1) Donlon et al. (1986) PNAS USA 83, 4408-4412. 2) Latt et al. (1987) Cytogenet. Cell Genet. 46, 644. 3) Nicholls et al. (1989) Am. J. Med. Genet. 33, 66-77.

Microsatellite polymorphism at the D9S12 locus

M.A.R.Yuille, M.Leversha, D.R.Goudie, N.A.Affara and M.A.Ferguson-Smith

University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB3 9JH, UK

Source/Description: Cosmid T512 — which we obtained by screening a human genomic library with a HinfI fragment of the probe pTHH22 (Holm et al., 1988) — contains (CA)₁₆, the flanks of which were sequenced as described (Yuille et al., 1991). Alleles were typed using the polymerase chain reaction.

Primer Sequences:

5' CCT CCA CAT GGA CTC ACC TG 3' (CA strand); 5' AAG GGG AGG GAA TCA GGT GT 3' (TG strand).

Polymorphism: Heterozygosity was estimated at 74% by analysis of 92 chromosomes from unrelated individuals.

Allele	bp	Frequency
B 1	194	0.01
B2	192	0.05
B3	190	0.10
B4	188	0.05
B5	186	0.06
B6	184	0.21
B7	182	0.43
B 8	180	ND
В9	178	0.01
B10	176	0.08

Chromosomal Localisation: Fluorescence in situ hybridisation localises cosT512 to Chr 9q22.31.

Mendelian Inheritance: Co-dominant segregation was observed in 9 families of 2, 3 and 4 generations.

Comments: Alleles were typed as described (Yuille *et al.*, 1990) except: all NTPs were at 125 μ M; 1.0 μ Ci of alpha ³²P-dCTP was used; samples were heat denatured at 95 °C and snap-chilled on ice before gel-loading. EMBL Data Library accession number for sequence data is X60736.

Acknowledgements: This work was supported in part by the Imperial Cancer Research Fund. Dr C.A.Sargent kindly provided access to a cosmid library.

References: 1) Yuille, M.A.R. et al. (1990) Nucl. Acids Res. 18, 7472. 2) Yuille, M.A.R. et al. (1991) Nucl. Acids Res. 19, 1950. 3) Holm, T. et al. (1988) Nucl. Acids Res. 15, 5216.