Supporting information for:

Mixed-Valence Nickel-Iron Dithiolates Related to the [NiFe]-Hydrogenases

David Schilter, Mark J. Nilges, Mrinmoy Chakrabarti, Paul A. Lindahl, Thomas B. Rauchfuss, Matthias Stein

^aDepartment of Chemistry, University of Illinois, 600 S. Goodwin Ave. Urbana, IL 61801 ^bDepartment of Chemistry, Texas A&M University, College Station, TX 77842-3012 ^cMax Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraβe 1, 39106 Magdeburg, Germany

Figure S1: UV-vis spectra of 1, [1]BF₄ and [4e]BF₄ (0.5 mM in CH₂Cl₂).

Figure S3: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [1]BF₄.

Figure S4: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [1]PF₆.

Figure S5: X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [1]PF₆.

Figure S6: FT-IR spectrum (ν_{CO} region, CH_2Cl_2) of [1]BAr^F₄.

Figure S7: X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [1]BAr^F₄.

Figure S8: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [1'].

Figure S12: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [2]BF₄.

Figure S13: Positive ion ESI mass spectrum of $[3]BF_4$.

Figure S14: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [3]BF₄.

Figure S15: X-band EPR spectra (CH₂Cl₂/PhMe) of [3]BF₄ at 110 K and room temperature.

Figure S17: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4a]BF₄.

Figure S19: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4a']BF₄.

Figure S21: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4b]BF₄.

Figure S22: X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [4b]BF₄.

Figure S24: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4c]BF₄.

Figure S25: X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [4c]BF₄.

Figure S27: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4d]BF₄.

Figure S28: X-band EPR spectra (CH₂Cl₂/PhMe) of [4d]BF₄ collected at 110 K and room temperature.

Figure S30: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4e]BF₄.

Figure S31: X-band EPR spectrum (CH₂Cl₂/PhMe, rt) of [4e]BF₄.

Figure S32: Q-band EPR spectra ($CH_2Cl_2/PhMe$, 130 K) of [4e]BF₄. The experimental spectrum could be simulated as a sum of two components, denoted A and B.

Figure S34: FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [4e']BF₄.

Figure S35: X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [4e]BF₄ (exp.) and [4e']BF₄ (exp.'), along with their simulated spectra (sim. and sim.', respectively).

Figure S37: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4f]BF₄.

Figure S38: Positive ion ESI mass spectrum of $[4g]BF_4$.

Figure S39: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4g]BF₄.

Figure S40: X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [4g]BF₄.

Figure S42: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4h]BF₄.

Figure S43: The simulated and experimental X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [**4h**]BF₄.

Figure S45: FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [4i]BF₄.

Figure S46: X-band EPR spectrum (CH₂Cl₂/PhMe, 110 K) of [4i]BF₄.

Figure S48: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [4j]BF₄.

Figure S49: X-band EPR spectra (CH₂Cl₂/PhMe) of [4j]BF₄ collected at 110 K and room temperature.

Figure S51: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [5](BF₄)₂.

Complex	SOMF(1X) TZVP			ZORA SO ROKS DZ		
	g_1, g_2, g_3			g_1, g_2, g_3		
	BP	B3LYP	PBE0	BP	B3LYP	PBE0
$\left[1 ight]^{+a}$	2.033,	2.044,	2.047,	2.041,	2.052,	2.057,
	2.030,	2.042,	2.044,	2.035,	2.051,	2.055,
	2.012	2.005	2.004	2.020	2.006	2.004
$\left[1 ight]^{+b}$	2.033,	2.044,	2.047,	2.042,	2.051,	2.055,
	2.027,	2.037,	2.038,	2.030,	2.047,	2.051,
	2.012	2.004	2.003	2.019	2.005	2.004
$[2]^{+}$	2.029,	2.041,	2.044,	2.037,	2.049,	2.055,
	2.026,	2.038,	2.040,	2.029,	2.044,	2.048,
	2.011	2.004	2.003	2.010	2.008	2.003
$\left[3 ight]^{+a}$	2.033,	2.045,	2.048,	2.043,	2.052,	2.057,
	2.030,	2.041,	2.044,	2.035,	2.047,	2.051,
	2.016	2.006	2.005	2.026	2.010	2.008
$[3]^{+b}$	2.033,	2.041,	2.044,	2.042,	2.048,	2.052,
	2.027,	2.038,	2.040,	2.029,	2.047,	2.051,
	2.013	2.004	2.004	2.024	2.008	2.006
[4a] ^{+a}	2.038,	2.061,	2.065,	2.045,	2.060,	2.065,
	2.025,	2.037,	2.038,	2.029,	2.043,	2.046,
	2.014	2.010	2.011	2.018	2.006	2.004
$[4a]^{+b}$	2.044,	2.064,	2.069,	2.057,	2.072,	2.080,
	2.026,	2.047,	2.048,	2.024,	2.057,	2.065,
	2.006	2.003	2.003	2.002	1.996	1.993
[4e] ^{+a}	2.045,	2.067,	2.072,	2.059,	2.074,	2.082,
	2.032,	2.053,	2.056,	2.038,	2.067,	2.076,
	2.007	2.004	2.004	2.006	1.997	1.994
[4e] ^{+b}	2.043,	2.064,	2.068,	2.057,	2.072,	2.080,
	2.026,	2.047,	2.048,	2.024,	2.057,	2.065,
	2.006	2.003	2.003	2.002	1.996	1.993

Table 1: Calculated *g*-tensor principal values for complexes $[1]^+$, $[2]^+$, $[3]^+$, $[4a]^+$ and $[4e]^+$ (superscripts ^a and ^b refer to flipamers of each complex, see Scheme 5).

Figure S52: Mössbauer spectrum (5 K, 500 G) of (CO)₃Fe(pdt)Fe(CO)₃, and simulated spectrum (solid trace).

Figure S53: Mössbauer spectra of [**4e**]BF₄. A: 5 K, 500 G, 5 mM sample spectrum (black) overlaid on 40 mM sample spectrum (red). B: 4.2 K, 6 T Mössbauer data for [**4e**]BF₄, solid sample spectrum (black) overlaid on 40 mM sample spectrum (red).