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Supplemental Information 

1. Angular relations necessary to generate point group symmetry related 
projection directions for orthoaxial projections. 

For Cn symmetry, in order to generate necessary all symmetry-related projection 

directions from an orthoaxial projection direction 
  
ϕ,θ = 90,ψ( )within the unique range, 

the transformations are (Fig.S2): 

1.  for n even, unique range ϕ ∈[0,360 / n) : ϕk = k
360
n

+ϕ , k = 0,...,n
2
−1 , 

2. for n odd, unique range ϕ ∈[0,360 / 2n) : ϕk = k
360
n

+ϕ , k = 0,...,n −1. 

For Dn symmetry, in order to generate necessary all symmetry-related projection 

directions from an orthoaxial projection direction ϕ,θ = 90,ψ( )within the unique range, 

the transformations are (Fig.S3): 

1. for n even, unique range ϕ ∈[0,360 / 2n) , we have k = 0,...,n −1, and 

1.1. for k even, ϕk =
k
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1.2. for k odd, additional change of in-plane rotation, 
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, where [ ]   means integer part of the division, 

2. for n odd, unique range ϕ ∈[0,360 / 4n) , we have k = 0,...,2n −1, and 

2.1. for kmod4 = 0 , ϕk =
k
4

⎡

⎣
⎢

⎤

⎦
⎥
360
n

+ϕ,  

2.2. for kmod4 = 1, 
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2.3. for kmod4 = 2 , ϕk =
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2.4. for kmod4 = 3 , 
ϕk =
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As can be seen from the above equations, in order to generate all necessary 

orthoaxial projections given a subset in unique range, we need to consider three 

operations on projection images: mirror, rotation by   180 , and combined mirror and 

rotation by   180 .  Based on simple representations of four possible orientations (Fig.S1), 

we can illustrate the equations defining relations between orthoaxial projections using 

simple schematics (Figs.S2 and S3). 

 
Figure S1:  Overview of all four possible orientations of an orthoaxial projection within 

the unique range: (A) the original projection, (B) mirrored version of the original 

projection, (C) the   180  in-plane rotated original projection, and (D) mirrored version of 

the   180  in-plane rotated projection. 
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Figure S2:  Schematic diagram of relations between orthoaxial projections within the full 

angular range (  ϕ ∈[0,360) ) for (A) C1 symmetry, (B) C3 symmetry, and (C) C4 

symmetry.  The blue arc represents the unique angular range.  The progression of ϕ  

angle within the unique range is illustrated by three different-color arrows.  Arrows 

outside the unique range with same color denote projections related to the same 

projection of the unique range. 
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Figure S3:  Schematic diagram of relations between orthoaxial projections within the full 

angular range (  ϕ ∈[0,360) ) for (A) D1 symmetry, (B) D3 symmetry, and (C) D4 

symmetry.  The blue arc represents the unique angular range.  The progression of ϕ  

angle within the unique range is illustrated by three different-color arrows.  Arrows 

outside the unique range with same color denote projections related to the same 

projection of the unique range. 
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2.  A Python program that computes pixel adjustment factor given original pixel 

size, rise, and segment length: 

#!/usr/bin/env python 
 
def match_pixel_rise(dz, px, nz, rele = 0.1): 
 #  find pixel size closest to the given one (px)  
            #    such that rise (dz) is approximately equal to integer number of pixels 
 #  Input: 
 #       dz - axial rise [Angstrom] 
 #       px - pixel size [Angstrom] 
 #       nz - z length of the segment [pixel] 
 #       rele - relative error of the approximation 
 #  Output: 
 #       q  - pixel size adjustment factor 
 #       error - relative error of resulting approximation 
  
 dnz = nz*px 
 # odd number of full disks in the segment 
 ndisk = 2*((int(dnz/dz)-1)//2) + 1 
 # However, I believe we should only use half of them, 
            #    because error increase counting from the center of the volume 
 ndisk = (int(dnz/dz)-1)//2 
 
 q = 1.0 
 for i in xrange(900000): 
  q = 1.0 - 0.000001*i 
  error = ((int(ndisk*dz/q/px) - ndisk*dz/q/px)/px)**2 
  if( error < rele ):  return q,error 
 return -1.0,-1.0 
 
#  execute program 
dz = 27.6 
px = 1.31 
nz = 220 
 
o =  match_pixel_rise(dz, px, nz, 0.001) 
print o 
 
#  The resampling is done using function resample of SPARX system: 
 
#vn = resample( vo ,  1.0/o[0] ) 


