
1

Supplemental Information

1. Angular relations necessary to generate point group symmetry related
projection directions for orthoaxial projections.

For Cn symmetry, in order to generate necessary all symmetry-related projection

directions from an orthoaxial projection direction

ϕ,θ = 90,ψ()within the unique range,

the transformations are (Fig.S2):

1. for n even, unique range ϕ ∈[0,360 / n) : ϕk = k
360
n

+ϕ , k = 0,...,n
2
−1 ,

2. for n odd, unique range ϕ ∈[0,360 / 2n) : ϕk = k
360
n

+ϕ , k = 0,...,n −1.

For Dn symmetry, in order to generate necessary all symmetry-related projection

directions from an orthoaxial projection direction ϕ,θ = 90,ψ()within the unique range,

the transformations are (Fig.S3):

1. for n even, unique range ϕ ∈[0,360 / 2n) , we have k = 0,...,n −1, and

1.1. for k even, ϕk =
k
2
360
n

+ϕ

1.2. for k odd, additional change of in-plane rotation,

ϕk =
k
2

⎡

⎣
⎢

⎤

⎦
⎥

360
n

−ϕ +180

ψ k =ψ +180

⎧

⎨
⎪⎪

⎩
⎪
⎪

, where [] means integer part of the division,

2. for n odd, unique range ϕ ∈[0,360 / 4n) , we have k = 0,...,2n −1, and

2.1. for kmod4 = 0 , ϕk =
k
4

⎡

⎣
⎢

⎤

⎦
⎥
360
n

+ϕ,

2.2. for kmod4 = 1,
ϕk =

k
4

⎡

⎣
⎢

⎤

⎦
⎥

360
n

+ 360
2n

+180 −ϕ

ψ k =ψ +180

⎧

⎨
⎪⎪

⎩
⎪
⎪

,

2.3. for kmod4 = 2 , ϕk =
k
4

⎡

⎣
⎢

⎤

⎦
⎥
360
n

+ 360
2n

+180 +ϕ ,

2

2.4. for kmod4 = 3 ,
ϕk =

k
4

⎡

⎣
⎢

⎤

⎦
⎥

360
n

+ 2 360
2n

−ϕ

ψ k =ψ +180

⎧

⎨
⎪⎪

⎩
⎪
⎪

.

As can be seen from the above equations, in order to generate all necessary

orthoaxial projections given a subset in unique range, we need to consider three

operations on projection images: mirror, rotation by 180 , and combined mirror and

rotation by 180 . Based on simple representations of four possible orientations (Fig.S1),

we can illustrate the equations defining relations between orthoaxial projections using

simple schematics (Figs.S2 and S3).

Figure S1: Overview of all four possible orientations of an orthoaxial projection within

the unique range: (A) the original projection, (B) mirrored version of the original

projection, (C) the 180 in-plane rotated original projection, and (D) mirrored version of

the 180 in-plane rotated projection.

3

Figure S2: Schematic diagram of relations between orthoaxial projections within the full

angular range (ϕ ∈[0,360)) for (A) C1 symmetry, (B) C3 symmetry, and (C) C4

symmetry. The blue arc represents the unique angular range. The progression of ϕ

angle within the unique range is illustrated by three different-color arrows. Arrows

outside the unique range with same color denote projections related to the same

projection of the unique range.

4

Figure S3: Schematic diagram of relations between orthoaxial projections within the full

angular range (ϕ ∈[0,360)) for (A) D1 symmetry, (B) D3 symmetry, and (C) D4

symmetry. The blue arc represents the unique angular range. The progression of ϕ

angle within the unique range is illustrated by three different-color arrows. Arrows

outside the unique range with same color denote projections related to the same

projection of the unique range.

5

2. A Python program that computes pixel adjustment factor given original pixel

size, rise, and segment length:

#!/usr/bin/env python

def match_pixel_rise(dz, px, nz, rele = 0.1):
 # find pixel size closest to the given one (px)
 # such that rise (dz) is approximately equal to integer number of pixels
 # Input:
 # dz - axial rise [Angstrom]
 # px - pixel size [Angstrom]
 # nz - z length of the segment [pixel]
 # rele - relative error of the approximation
 # Output:
 # q - pixel size adjustment factor
 # error - relative error of resulting approximation

 dnz = nz*px
 # odd number of full disks in the segment
 ndisk = 2*((int(dnz/dz)-1)//2) + 1
 # However, I believe we should only use half of them,
 # because error increase counting from the center of the volume
 ndisk = (int(dnz/dz)-1)//2

 q = 1.0
 for i in xrange(900000):
 q = 1.0 - 0.000001*i
 error = ((int(ndisk*dz/q/px) - ndisk*dz/q/px)/px)**2
 if(error < rele): return q,error
 return -1.0,-1.0

execute program
dz = 27.6
px = 1.31
nz = 220

o = match_pixel_rise(dz, px, nz, 0.001)
print o

The resampling is done using function resample of SPARX system:

#vn = resample(vo , 1.0/o[0])

