Supplementary Information for

An *Aspergillus nidulans* bZIP response pathway hardwired for defensive secondary metabolism operates through *aflR*

Wenbing Yin¹, Saori Amaike², Dana J. Wohlbach⁴, Audrey P. Gasch⁴, Yi-Ming Chiang⁵, Clay C. Wang⁵, JinWoo Bok¹, Marko Rohlfs⁶, Nancy P. Keller^{1,3}

¹ Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States

² Department of Plant Pathology, University of Wisconsin-Madison, WI, United States

³ Department of Bacteriology, University of Wisconsin-Madison, WI, United States

⁴ Department of Genetics, University of Wisconsin-Madison, WI, United States

⁵ Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, CA, United States

⁶ J.F Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Germany

*Corresponding author:

Phone: (608) 262-9795; fax: (608) 262-8418

E-mail: <u>npkeller@wisc.edu</u>

Running title: bZIP regulation of secondary metabolism in Aspergillus nidulans

Table S1.	PCR	primer	sets	utilized	in	this	study
-----------	-----	--------	------	----------	----	------	-------

Name of the primer	Oligonucleotide sequence (5'-3')	Uses	
A. fumigatus pyrG For	TGCCTCAAACAATGCTCTTC	A. fumigatus pyrG marker	
A. fumigatus pyrG Rev	CAAGGTATCGTCGGGAGGT	A. fumigatus pyrG marker	
gpdA(p)::pyrG For	GTGACGACAATACCTCCCGACACCT	A. nidulans gpdA	
and A way	GGCATCCGGATGTCGCAAGGCTTG	amplicon	
gpdA_rev	CAIGGIGAIGICIGCICAAG	A. <i>niaulans gpaA</i> amplicon	
OErsmA_5F_for	CGTCGGATCTGTCGACTTTC	OE::rsmA 5'flank	
OErsmA_5F_rev	CGAAGAGGGTGAAGAGCATTGTTTG AGGCAGTCTCGAGTGCAAAGTCTGC	OE::rsmA 5'flank	
OErsmA 3F for	AACAGCTACCCCGCTTGAGCAGACA	OE::rsmA 3'flank	
	TCACCCCTGAGACACTGCGATGAA		
OFrsmA 3F rev		OF…rsmA 3'flank	
OErsmA NEST for	AAACCAGGTCAACGTCATTGATTTC	OE::rsmA cassette	
		amplicon	
OErsmA_NEST_rev	ATCACACTGCGCACTAGTCTTCAAC	<i>OE::rsmA</i> cassette amplicon	
HisMBPRsmA_for	CCAAGGCCTTAGCAGGTGCATGTGG	rsmA cDNA amplicon	
	ACGTCCAATCAATATCCCTACTATG GGGGC	for Quickchange	
HisMBPRsmA rev	AAGCTTGCCTGCAGGCCATGGCTAG	rsmA cDNA amplicon	
	CCCGTCACAACAACCCATCCGGGTC	for Ouickchange	
pKLD116_for	GGTCGTCAGACTGTCGATGAAGCC	sequencing	
pKLD116_rev	CTTTCGGGCTTTGTTAGCAG	sequencing	
aflRtrpC_for	GCGGATCCTCTTCCGGGACTGGAAG CAGG	aflR complementation	
aflRtrpC_Rev	ATTGAATTCCGTGGCTGGTATCTGTG	<i>aflR</i> complementation	
aflR (p)mu1_for	GGGCTCGATATCTACCGACAAACAG	RsmA site mutation	
aflR (n)mu1 rev	GTTGAATTGTTATTTCTCCTGTTTGT	RemA site mutation	
	CGGTAGATATCGAGCCC	KSIIIA Site Inutation	
aflR (n)mu2 for	GCTGTACAGACTTTTAAGTTATGGC	Yap1 site mutation	
	GACTCAGCCAGCTGG	rup i bito matanon	
aflR (p)mu2 rev	CCAGCTGGCTGAGTCGCCATAACTT	Yap1 site mutation	
(p)	AAAAGTCTGTACAGC		
aflRtrpC screening_for	GTTGCATCTCGTGCTCCAG	<i>trpC</i> mutants	
aflRtrpC screening_rev	CGACGTACCATCCAAGAACC	<i>trpC</i> mutants	
A.f pyroAgpd_for	CGGAGTATTGACATTGCATTGG	A. fumigatus pyroA	
A f pyroAgod rev	CATTGTGCAACGCCCTTTGCAGAGC	A fumigatus nvroA	
in provepu_icv	TATCGGTCAGGGTGTGTGTATTCAAGT	amplicon	
and nuro for		A nidulans and	
spupyroA_tor	CTGACCGATAGCTCTGCAAAGGGC	amplicon	

gpdpyroA_rev	GGTGATGTCTGCTCAAGCGG	A. nidulans gpdA amplicon
OEaflR5F_for	CACCTTGGGTTGTGCAGGATC	OE::aflR 5'flank
OEaflR5F_rev	GTGCTTCCCCAATGCAATGTCAATA	<i>OE::aflR</i> 5'flank
	CTCCGGATATTTGCATATGATACAG	-
	GCCCG	
OEaflR3F_for	AACAGCTACCCCGCTTGAGCAGACA	OE::aflR 3'flank
	TCACCATGGAGCCCCCAGCGATCAG	
	С	
OEaflR3F_rev	GCGGATCCTCAGGCGTGGCGGAGGA	OE::aflR 3'flank
	TGC	
RsmA For	CAGAATTCCTTCCCGCTCTACG	rsmA probe
RsmA Rev	GCACCACACTCTCCTCAATTGC	rsmA probe
aflR_for	AGAGTTGCATCTCGTGCTCCAG	aflR probe
aflR_rev	CTTGAAGACAATAAGTGAGACGAG	aflR probe
StcU_for	ATGTCCTCCTCCGATAATTACC	<i>stcU</i> probe
StcU_rev	CTTTCCACTGATCCATTCGGC	stcU probe
aflJ Nor_for	ATGACCGGTGCTAACAAAGTAAAG	aflJ probe
aflJ Nor_rev	CACCTTGGGTTGTGCAGGATC	aflJ probe
VeA+for	TGTGTTATCCCATCAAGAGG	Screening progeny for <i>veA</i>
VeA+ rev	CTTGGCGCTGTAGACGATAA	Screening progeny for <i>veA</i>

Table S2. Transcription factor binding sites in secondary metabolism gene clusters.

Upstream regions (1000 bp) were queried for presence of AflR or Yap-like binding sites; motif presence is indicated by blue and purple boxes, respectively.

Gene		Description	AfIR Yap
Sterigmatoo	cystin cl	luster	
AN7804	stcW	FAD-containing monooxygenase	
AN7805	stcV	Putative norsolorinic acid reductase	
AN7806	stcU	Versicolorin reductase	
AN7807	stcT	Putative translation elongation factor 1 gamma	
AN7808	stcS	Sterigmatocystin biosynthesis P450 monooxygenase	
AN7809		Uncharacterized	
AN7810	stcQ	Putative aflatoxin biosynthesis protein	
AN7812	stcN	Putative versicolorin B synthase	
AN7814	stcK	Fatty acid synthase beta	
AN7815	stcJ	Fatty acid synthase alpha	
AN7816	stcI	Putative sterigmatocystin biosynthesis lipase/esterase	
AN7817		Uncharacterized	
AN7818	stcF	Sterigmatocystin biosynthesis P450 monooxygenase	
AN7819	aflJ	Putative co-regulator in sterigmatocystin biosynthesis	
AN7820	aflR	C6 zinc finger transcription factor	
AN7821	<i>stcE</i>	Norsolorinic acid reductase	
AN7824	stcB	Sterigmatocystin biosynthesis P450 monooxygenase	
AN7825	stcA	Polyketide synthase	
Monodicty	ohenone	e cluster	
AN0146	mdpC	Putative versicolorin ketoreductase	
AN0147	mdpD	Putative flavin-containing monooxygenase	
AN0148	mdpE	C6 zinc finger transcription factor	
AN0149	mdpF	Putative zinc-dependent hydrolase	
AN0150	mdpG	Polyketide synthase	
AN0153		Putative MYB DNA binding protein	
AN0154		Uncharacterized	
AN10021	mdpA	Putative regulatory protein	
AN10022	mdpH	Homologous to DUF 1772 superfamily	
AN10023	mdpL	Uncharacterized	
AN10035	mdpI	Putative AMP-binding CoA ligase	
AN10038	mdpJ	Putative glutathione S transferase	
AN10039		Putative histidine acid phosphatase	
AN10044	mdpK	Putative oxidoreductase	
Prenyl xant	hone cl	uster	
AN6784	xptA	Putative dimethyl-allyl-tryptophan synthase aromatic prenyltransferase	
AN6785		Uncharacterized	
AN6786		Putative beta-1,4-endoglucanase	
AN6787		Putative cytochrome P450	
AN6788		Uncharacterized	
AN6789		Uncharacterized	
AN6790		Uncharacterized	
AN6791		Putative polyketide synthase	
AN6792	gfdB	Putative NAD+ dependent glycerol 3-phosphate dehydrogenase	

Table S2. (continued)

AN6793		Uncharacterized	
AN6794		Uncharacterized	
Aspertheci	n cluste	er	
AN5998		Uncharacterized	
AN5999	1	Predicted role in arginine or pyrimidine metabolism	
AN6000	aptA	Polyketide synthase	
AN6001	aptB	Putative hydrolase	_
AN6002	aptC	Putative monooxygenase	
AN6003		Ucharacterized	
AN6004		Uncharacterized	
Penicillin c	luster		_
AN2621	acvA	Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase	
AN2622	ipnA	Isopenicillin-N synthase	
AN2623	aatA	Isopenicillin-N N-acyltransferase	
Terrequing	one A cl	luster	_
AN8513	tdiA	Single-module nonribosomal peptide like synthetase	
AN8514	tdiB	Asterriquinone prenyltransferase	_
AN8516	tdiD	Putative aminotransferase	
AN8518	tdiC	Putative NADPH-dependent quinone reductase	
AN8520	tdiE	Protein required for terrequinone A biosynthesis	
Asperfuran	none clu	ister	
AN1027		Uncharacterized	
AN1028		Uncharacterized	
AN1029	afoA	Homology to citrinin biosynthesis transcriptional activator	
AN1030		Uncharacterized	
AN1031	afoB	Putative efflux pump	
AN1032	afoC	Putative oxidoreductase	
AN1033	afoD	Putative salicylate hydroxylase	_
AN1034	afoE	Putative polyketide synthase	
AN1035	afoF	Putative FAD/FMN-dependent oxygenase	
AN1036	afoG	Polyketide synthase	_
AN1037	odeA	Oleate delta-12 desaturase	
AN11287		Uncharacterized	
AN11288	8	Uncharacterized	
Pantothenat	te cluste	er	
AN1777	_	Uncharacterized	
AN1778	panB	Putative ketopentoate hydroxymethyl transferase	
AN1779	nimO	Required for DNA synthesis and mitotic checkpoint control	
AN1780		Uncharacterized	
AN1781		Uncharacterized	
AN1782		Uncharacterized	
AN1783		Uncharacterized	_
AN1784		Putative polyketide synthase	
AN1785		Uncharacterized	
AN1786		Uncharacterized	
AN1787		Uncharacterized	
AN1788		Uncharacterized	
AN1789		Uncharacterized	

Table S2. (continued)

Other SM cluster

AN7080	Uncharacterized
AN7081	Uncharacterized
AN7083	Uncharacterized
AN7084	Putative polyketide synthase-like enzyme
AN7085	Uncharacterized
AN7086	Uncharacterized
AN7087	Uncharacterized
AN7088	Uncharacterized
AN7089	Uncharacterized
AN10887	Uncharacterized
AN10886	Uncharacterized
AN10885	Uncharacterized

Fig. S1 LC-MS analysis of secondary metabolite production by wild type (WT) and *OE::rsmA* respectively on malt extract agar

Fig. S2 MEME analysis of RsmA binding motif from RsmA regulated genes in *OE::rsmA* microarray

A total of 329 genes that were significantly up-regulated (FDR = 0.05) by more than 2-fold in *OE::rsmA* as compared to WT were used as target genes. The examination was carried out in 1000 bp upstream of target genes by searching for 6-12 nt motifs in either strand. Two conserved motifs (GCN4: TGACTCA and Yap 1: TTACTAA) were found.

Fig. S3 Phenotypes of *aflR* at *trpC* locus mutants

These mutants contain WT (RDIT9.32), *aflR* with WT promoter at *trpC* locus (TWY18.14), *aflR* and promoter with R^* mutation at *trpC* locus (TWY19.15), *aflR* and promoter with Y1^{*} mutation at *trpC* locus (TWY20.4) and *aflR* and promoter with R^* and Y1^{*} mutations at *trpC* locus (TWY21.20) which were grown under standard conditions.

Fig. S4 AfIR overexpression replicates an RsmA overexpression phenotype and deletion of

aflR in RsmA overexpression returns a WT phenotype

Panel A. Shown are bottom side of plates of AflR overexpression (OE::aflR, RWY20.3) and RsmA overexpression, *aflR* deletion (*OE::rsmA*, $\Delta aflR$, RSA15.2) double mutant strains grown on solid GMM media.

Panel B. TLC analysis of chloroform extracts of secondary metabolite production by strains shown in panel A (ST=sterigmatocystin standard).

Light

Dark

Fig. S5 Expression and purification of recombinant RsmA

Panel A. A Coomassie blue-stained SDS–PAGE gel is shown. Lanes: M, molecular weight markers; 1, total soluble proteins from uninduced bacterial cultures; 2, 3, 4 and 5, total soluble proteins from 1.5 h, 4.5 h, 3 h and 16 h induced bacterial cultures at 25 C, respectively; 6, 7 and 8, total soluble proteins from 1.5 h, 4.5 h and 16 h induced bacterial cultures at 37 C, respectively. The band corresponding to recombinant RsmA is indicated by the arrow.

Panel B. Purification of recombinant RsmA protein. Lanes: M, molecular weight markers; 1, purified recombinant RsmA protein.

