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Subjects.Volunteers were recruited through advertisements in the
Basel andAlsace areas. Before entering the study, eachparticipant
completed a general medical questionnaire, along with the Short-
Form-36 Quality of Life Questionnaire, Horne–Östberg ques-
tionnaire, Munich Chronotype questionnaire, Pittsburgh Sleep
Quality Index, Epworth Sleepiness Scale, IQ questionnaire,
Hamilton Depression Rating Scale and Atypical Depression
Supplement, and Insomnia Severity Index questionnaire (1–6).
Volunteers were excluded who met any of the following exclusion
criteria: smoking, medication or drug consumption, shift work
within the last 3 mo, transmeridian flight during the month before
the study, sleep efficiency <80%, >10 periodic leg movements per
hour, or an apnea-hypopnea index >10.
At 3 wk before the start of constant routine study in the labo-

ratory, participants recorded individual sleep/wake times by
actigraphy and in sleep diaries. Habitual sleep times were de-
termined after 2 wk, and participants were instructed to sleep
according to the habitual times during the week before coming to
the laboratory. Compliance was monitored by actigraphy and
a sleep diary during this week. Demographic data and significant
sleep parameters are presented in Table S1. Further details on
study design and participants can be found in ref. 7.

Detection of Rhythmic Metabolites. After normalization, JTK-cycle
analysis was performedwith the two replicate time series for plasma
and saliva, as has been described previously for data from gene
expression arrays (8, 9). The nonparametric algorithm used by
JTK-cycle analysis is a combination of the Jonckheere–Terpstra
test for monotonic ordering and Kendall’s τ test for association of
measured quantities and is optimized for detection of rhythmicity.
Based on visual inspection of each metabolite curve by a trained
investigator, the α level of rhythmicity in this programwas set atP<
0.1. Next, the significance of rhythmicity for each compound was
determined using a modified version of the permutation analysis
described previously (10). The data were randomly shuffled in time,
resulting in a new time series for each sample. A discrete Fourier
transform (DFT) was then used to transform the time series into
the frequency domain. The DFT of a time series x1, x2, . . ., xN is
called a periodogram and is defined as
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The output of the periodogram summarizes the strength,
number, and frequency of sinusoidal components in the time
series. A significant sinusoidal component present in the time
series is indicated by a peak in the periodogram. The perio-
dogram was calculated for 1,000 random permutations of the
data for a given sample, and the DFT of the experimentally
observed time series was computed. The value at the peak in the
periodogram (restricted to a circadian range) obtained from
the observed time series was compared with the value found at
that frequency in the 1,000 permutated spectra. The number of
permuted values that were larger than the value obtained
from the original time series was then computed and divided by
1,000, resulting in a P value. Such a permutation test has been
used previously for circadian metabolomics (11) and has sev-
eral advantages. For a dataset of limited dimensionality, such
a permutation test is more appropriate than false discovery rate
(FDR)-based statistics because it makes no assumptions re-
garding the data, including distribution or independence. FDR-
based methodology assumes a sufficiently large number of P
values to comprise a normal distribution (12), which is not
possible with the 281 metabolites in plasma or the 178 me-
tabolites in saliva that we identified (each P < 0.001, D’Ag-
ostino–Pearson omnibus normality test). Furthermore, test
statistics for which P values are derived from parametric sta-
tistics assume independence of tests, which also is not the case
in the present study. In fact, an argument can be made that
different metabolites that share a single biochemical pathway
should be dependent on one another to a certain degree, es-
pecially if they are under clock control. Finally, in our per-
mutation analysis, the experimentally observed values of each
metabolite are compared with a probability distribution gen-
erated by the data, rather than with a theoretical distribution;
thus, the FDR for each metabolite is equal to the P value ob-
tained with the permutation test (13).
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Fig. S1. Montotonically increasing or decreasing metabolites in plasma and saliva. (A and B) Examples of profiles of substances previously implicated in sleep–
wake regulation. (C and D) Heat map of all such substances. High levels of metabolites are shown in red (plasma) and yellow (saliva), and low levels are shown
in green (plasma) and blue (saliva). Colored labels indicate exemplified metabolites in A and B.
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